Week2: Kapitel 2: Replizierende Handelsstrategien

Letzte Woche hatten wir an einigen Beispielen gesehen, dass man, bei vereinfachenden Voraussetzungen (es sind immer nur zwei Preiseinstellungen möglich), beliebige Optionsauszahlungen durch geeignete Handelsstrategien replizieren kann. Das ist die fundamentale Idee der Optionspreisbewertung. Für die weiteren Herleitungen und Berechnungen brauchen wir also zunächst mal eine allgemeine Formel, die uns sagt, wenn wir heute etwa soundsoviele Stücke vom Underlying kaufen, morgen soundsoviele Stücke dazu kaufen oder wieder verkaufen usw., welcher Geldbetrag dann am Ende davon generiert worden ist. Dazu betrachten wir das folgende Setting:

Wir betrachten eine Handelsstrategie mit N Handelszeitpunkten

$$t_0$$
, t_1 , t_2 , \cdot , t_{N-1} , t_N

Zum Zeitpunkt t_0 haben wir ein Startkapital V_0 . Wir handeln mit einem Underlying S, ein liquide handelbares Asset (etwa eine Aktie, ein Aktienindex, ein Währungswechselkurs oder ein Rohstoff wie Öl, Gold oder Silber), welche am Ende vom Tag t_k den Preis $S_k = S(t_k)$ habe. Wir verfolgen folgende Handelsstrategie:

- Am Ende vom Tag t_0 kaufen wir δ_0 Aktien zum Preis S_0 .
- Am Ende vom Tag t_1 verkaufen wir die δ_0 Aktien vom Vortag und kaufen δ_1 neue, beides zum Preis S_1 .
- Allgemein: Am Ende vom Tag t_k verkaufen wir die δ_{k-1} Aktien vom Vortag und kaufen δ_k neue, beides zum Preis S_k . Am Ende vom Tag t_k halten wir also δ_k Aktien.
- Am Ende vom Tag t_N wird die Position geschlossen, wir verkaufen die δ_{N-1} Aktien vom Vortag, zum Preis S_N , und kaufen keine neuen mehr.

Dann gilt das folgende, mathematisch zwar sehr elementare (nur plus, minus, mal, geteilt..) aber konzeptionell sehr fundamentale (wir werden es sehr häufig brauchen und es kommt auch in der Klausur dran)

Theorem 2.1: Wir verfolgen eine Handelsstrategie wie gerade oben beschrieben.

a) Die Zinsen seien null. Dann gilt: Durch eine solche Handelsstrategie wird bei Zeit t_N der Betrag

$$V_N = V_0 + \sum_{k=1}^N \delta_{k-1} (S_k - S_{k-1})$$

generiert.

b) Die Zinsen r seien jetzt ungleich null. Wir nehmen an, dass ein Geldbetrag G in jeder Handelsperiode von t_{k-1} nach t_k gemäss

$$G \xrightarrow{\text{von t}_{k-1} \text{ nach t}_k} G(1+r)$$

verzinst wird. Dann gilt: Durch eine solche Handelsstrategie wird bei Zeit t_N der Betrag

$$V_N = (1+r)^N v_N$$

generiert, wobei v_N gegeben ist durch

$$v_N = v_0 + \sum_{k=1}^N \delta_{k-1}(s_k - s_{k-1})$$

mit den diskontierten Grössen

$$s_k := (1+r)^{-k} S_k$$

 $v_k := (1+r)^{-k} V_k$

Insbesondere ist also $v_0 = V_0$, das war das Startkapital.

Beweis: Die Formel aus Teil (a) ist ein Spezialfall der Formel aus Teil (b) für den Fall Zinsen r = 0. Es reicht also, den Fall (b) zu beweisen. Mit der Abkürzung

$$R := 1 + r$$

können wir die Formel aus (b) auch so schreiben:

$$v_{N} = v_{0} + \sum_{k=1}^{N} \delta_{k-1}(s_{k} - s_{k-1})$$

$$R^{-N}V_{N} = V_{0} + \sum_{k=1}^{N} \delta_{k-1}(R^{-k}S_{k} - R^{-(k-1)}S_{k-1})$$

$$V_{N} = R^{N}V_{0} + \sum_{k=1}^{N} \delta_{k-1}(R^{N-k}S_{k} - R^{N-(k-1)}S_{k-1})$$

Wir zeigen jetzt durch Induktion: Für eine beliebige Zeit $\ell \in \{0, 1, \dots, N\}$ ist der Portfoliowert V_{ℓ} gegeben durch

$$V_{\ell} = R^{\ell} V_0 + \sum_{k=1}^{\ell} \delta_{k-1} (R^{\ell-k} S_k - R^{\ell-(k-1)} S_{k-1})$$

Für $\ell = N$ folgt dann die Behauptung.

Induktionsanfang: Für $\ell = 0$ haben wir

$$V_0 = R^0 V_0 + \sum_{k=1}^0 \cdots = V_0$$

da die Summe keine Terme enthält. Das stimmt also.

Schluss von ℓ auf $\ell+1$: Die Formel stimme für ℓ , am Ende von Tag ℓ hat das Bank-Portfolio also den Wert

$$V_{\ell} = R^{\ell}V_0 + \sum_{k=1}^{\ell} \delta_{k-1} (R^{\ell-k}S_k - R^{\ell-(k-1)}S_{k-1})$$

Nach Definition der Handelsstrategie, müssen wir am Ende von Tag ℓ eine Anzahl von δ_{ℓ} Stücken vom Underlying halten. Der Preis des Underlyings am Ende von Tag ℓ ist S_{ℓ} und wir müssen den Betrag $\delta_{\ell}S_{\ell}$ bezahlen. Wir haben also am Ende von Tag ℓ

$$V_{\ell} = R^{\ell}V_{0} + \sum_{k=1}^{\ell} \delta_{k-1}(R^{\ell-k}S_{k} - R^{\ell-(k-1)}S_{k-1})$$

$$= R^{\ell}V_{0} + \sum_{k=1}^{\ell} \delta_{k-1}(R^{\ell-k}S_{k} - R^{\ell-(k-1)}S_{k-1}) - \delta_{\ell}S_{\ell} + \underbrace{\delta_{\ell}S_{\ell}}_{Aktie}$$

Die Zeit vergeht von Tag ℓ nach Tag $\ell+1$. Der Cash- oder Geld-Betrag wird gemäss $G \to RG$ verzinst. Das Underlying oder die Aktie verändert ihren Wert gemäss $S_{\ell} \to S_{\ell+1}$. Der Wert des Bank-Portfolios am Ende von Tag $\ell+1$ beträgt also

$$V_{\ell+1} = R \left\{ R^{\ell} V_0 + \sum_{k=1}^{\ell} \delta_{k-1} (R^{\ell-k} S_k - R^{\ell-(k-1)} S_{k-1}) - \delta_{\ell} S_{\ell} \right\} + \delta_{\ell} S_{\ell+1}$$

$$= R^{\ell+1} V_0 + \sum_{k=1}^{\ell} \delta_{k-1} (R^{\ell+1-k} S_k - R^{\ell+1-(k-1)} S_{k-1}) - \delta_{\ell} R S_{\ell} + \delta_{\ell} S_{\ell+1}$$

$$= R^{\ell+1} V_0 + \sum_{k=1}^{\ell} \delta_{k-1} (R^{\ell+1-k} S_k - R^{\ell+1-(k-1)} S_{k-1}) + \delta_{\ell} (S_{\ell+1} - R S_{\ell})$$

$$= R^{\ell+1} V_0 + \sum_{k=1}^{\ell+1} \delta_{k-1} (R^{\ell+1-k} S_k - R^{\ell+1-(k-1)} S_{k-1})$$

Damit ist die Formel auch für $\ell+1$ verifiziert und das Theorem ist bewiesen.