www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

EXCEL® VBA 24-HOUR TRAINER

INTRODUCTION. .

» SECTION I
LESSON 1
LESSON 2
LESSON 3
LESSON 4

» SECTIONIII
LESSON 5
LESSON 6
LESSON 7
LESSON 8

» SECTION Il

LESSON 9

LESSON 10
LESSON 11
LESSON 12
LESSON 13
LESSON 14
LESSON 15
LESSON 16
LESSON 17

.. XXVii
UNDERSTANDING THE BASICS
Introducing VBA 3
Getting Started withMacros. i 9
Introducing the Visual Basic Editor 19
Workinginthe VBE. 27
DIVING DEEPER INTO VBA
Object-oriented Programming — An Overview. 43
Variables, Data Types,and Constants 49
Understanding Objects and Collections 61
Making Decisions with VBA o o L 69
BEYOND THE MACRO RECORDER: WRITING
YOUR OWN CODE
Repeating Actions withLoops 85
Working with Arrayso 99
Automating Procedures with Worksheet Events. m
Automating Procedures with Workbook Events 123
Using Embedded Controls 135
Programming Charts 151
Programming PivotTables and PivotCharts 163
User Defined Functions. o . 183
DebuggingYourCode. ...t 195

Continues

www.it-ebooks.info

http://www.it-ebooks.info/

» SECTION IV

ADVANCED PROGRAMMING TECHNIQUES

LESSON 18 Creating UserForms. 215
LESSON 19 UserForm Controls and Their Functions 231
LESSON 20 Advanced UserForms 249
LESSON 21 ClassModules. 263
LESSON 22 Add-INS . . 279
LESSON 23 Managing ExternalData 295
LESSON 24 Data Access with ActiveX Data Objects. 307
LESSON 25 Not Gone, Not Forgotten. 315
» SECTIONV INTERACTING WITH OTHER OFFICE APPLICATIONS

LESSON 26 Overview of Office Automation fromExcel 327
LESSON 27 Working with Word from Excel......... 333
LESSON 28 Working with Outlook from Excel 343
LESSON 29 Working with Access fromExcel 353
LESSON 30 Working with PowerPoint from Excel 363
APPENDIX What'sonthe DVD? 37
L1 0 = 375

www.it-ebooks.info

http://www.it-ebooks.info/

Excel° VBA

24-HOUR TRAINER

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Excel® VBA
24-HOUR TRAINER

Tom Urtis

WILEY
Wiley Publishing, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

Excel® VBA 24-Hour Trainer

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-89069-1
ISBN: 978-1-118-08764-0
ISBN: 978-1-118-08760-2
ISBN: 978-1-118-08755-8

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 5§72-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2011922792

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Excel is a registered
trademark of Microsoft Corporation. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc. is not associated with any product or vendor mentioned in this book.

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.it-ebooks.info/

To Bill and Mary Urtis

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE AUTHOR

TOM URTIS is a Microsoft Office developer and programming expert with over
20 years of experience in developing customized Office programs with Visual
Basic for Applications (VBA) and Application Programming Interface (API).
In 2000 Tom founded Atlas Programming Management (www.atlaspm.com),
an Office solutions company in Silicon Valley that specializes in Excel to pro-
vide consulting, project development, training, and support for a diverse inter-
national clientele. As an Excel trainer, Tom created the Excel Aptitude Test
(XAT, www.xatcorp.com), which measures knowledge of Excel for a custom-
ized training curriculum based on the test score.

Tom is co-author of Holy Macro! It’s 2,500 Excel VBA Examples, and he has served as a technical
editor and consultant for other Excel books and training materials. Tom received the Most Valuable
Professional award for Excel from Microsoft in 2008, and it has been renewed each year thereafter

in recognition of his Excel skills and contributions to the Excel community. Tom is one of some 100
Excel experts worldwide who hold the Excel MVP award.

A native of New York state, Tom is a graduate of Michigan State University, and has lived and
worked in the San Francisco Bay Area for 30 years. Tom is an avid sports fan and collector of rare
sports memorabilia, and he enjoys the outdoor life that California offers. He can be reached by
email, at tom@atlaspm.com.

ABOUT THE TECHNICAL EDITOR

MIKE ALEXANDER is a Microsoft MVP and the author of several books on advanced business analysis
with Microsoft Access and Excel. He has more than 15 years of experience consulting and developing
Office solutions. In his spare time he runs a free tutorial site, www.datapigtechnologies.com, where
he shares basic Access and Excel tips with the Office community.

www.it-ebooks.info

http://www.atlaspm.com
http://www.xatcorp.com
mailto:tom@atlaspm.com
http://www.datapigtechnologies.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CREDITS

EXECUTIVE EDITOR
Carol Long

PROJECT EDITOR
Christopher J. Rivera

DEVELOPMENT EDITOR
Kezia Endsley

TECHNICAL EDITOR
Michael Alexander

PRODUCTION EDITOR
Kathleen Wisor

COPY EDITOR
Kim Cofer

EDITORIAL DIRECTOR
Robyn B. Siesky

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER
Tim Tate

www.it-ebooks.info

VICE PRESIDENT AND EXECUTIVE
GROUP PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE
PUBLISHER
Barry Pruett

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

COMPOSITOR
JoAnn Kolonick,
Happenstance Type-O-Rama

PROOFREADER
Louise Watson, Word One

INDEXER
Robert Swanson

COVER DESIGNER
Michael Trent

COVER IMAGE
© Richard Cano

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

THE PRODUCTION OF THIS BOOK was made possible by the combined efforts of highly talented
people, starting with the entire Wiley Publishing team. Thanks to Carol Long, the Executive
Editor, who got the project approved and kept the process moving from start to finish. Thanks to
Mike Alexander, who introduced me to Wiley Publishing and was the Technical Editor. Thanks
to Ed Connor and Christopher Rivera, the Project Editors, and to Kim Cofer, who edited copy.
Thanks to Kezia Endsley, the Design Editor. Thanks to Rosemarie Graham, Carol Kessel, Mary
Beth Wakefield, and Ashley Zurcher of Wiley Publishing for all their assistance. Many thanks to
the Excel development team at Microsoft Corporation for improving Excel with each new release
of Office, while considering suggestions from Excel users. Finally, a special thanks to the global
Excel community. You’ve shown me creative ways to use Excel over the years, and taught me how to
explain technical concepts to beginning Excel users.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

INTRODUCTION

CHAPTER 1: INTRODUCING VBA

XXVii

What Is VBA?
A Brief History of VBA
What VBA Can Do for You
Automating a Recurring Task
Automating a Repetitive Task
Running a Macro Automatically if Another Action Takes Place
Creating Your Own Worksheet Functions
Simplifying the Workbook’s Look and Feel for Other Users
Controlling Other Office Applications from Excel
Liabilities of VBA
Try It

CHAPTER 2: GETTING STARTED WITH MACROS

Composing Your First Macro
Accessing the VBA Environment
Using the Macro Recorder

Running a Macro
The Macro Dialog Box
Shortcut Key

Try It
Lesson Requirements
Step-by-Step

CHAPTER 3: INTRODUCING THE VISUAL BASIC EDITOR

- s
oON O O o 0ONO oot orolrol U1~ W w

N - Y —
0 00NN O

19

What Is the VBE?
How To Get Into the VBE

www.it-ebooks.info

19
20

http://www.it-ebooks.info/

CONTENTS

Understanding the VBE 20
The Project Explorer Window 21
The Code Window 21
The Properties Window 22
The Immediate Window 22

Understanding Modules 22

Using the Object Browser 23

Exiting the VBE 24

Try It 25

CHAPTER 4: WORKING IN THE VBE 27

Toolbars in the VBE 27

Macros and Modules 28
Locating Your Macros 28
Understanding the Code 29
Editing a Macro with Comments and Improvements to the Code 30
Deleting a Macro 33
Inserting a Module 33
Renaming a Module 34
Deleting a Module 36

Locking and Protecting the VBE 36

Try It 37
Lesson Requirements 37
Step-by-Step 37

CHAPTER 5: OBJECT-ORIENTED PROGRAMMING — AN OVERVIEW 43

What “Object-Oriented Programming” Means 43

The Object Model 44
Properties 45
Methods 46
Collections 46

Try It 47

CHAPTER 6: VARIABLES, DATA TYPES, AND CONSTANTS 49

What Is a Variable? 49

Assigning Values to Variables 50

Why You Need Variables 50

XVi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Data Types 51
Understanding the Different Data Types 51
Declaring a Variable for Dates and Times 53
Declaring a Variable with the Proper Data Type 53

Forcing Variable Declaration 54

Understanding a Variable’s Scope 56
Local Macro Level Only 56
Module Level 56
Application Level 57

Constants 57
Choosing the Scope and Lifetime of Your Constants 58

Try It 58
Lesson Requirements 58
Step-by-Step 58

CHAPTER 7: UNDERSTANDING OBJECTS AND COLLECTIONS 61

Workbooks 61

Worksheets 62

Cells and Ranges 63

SpecialCells 64

Try It 65
Lesson Requirements 65
Step-by-Step 65

CHAPTER 8: MAKING DECISIONS WITH VBA 69

Understanding Logical Operators 69
AND 70
OR 70
NOT 71

Choosing Between This or That 72
If..Then 72
If..Then..Else 73
If.. Then...Elself 74
Select Case 74

Getting Users to Make Decisions 76
Message Boxes 76
Input Boxes 77

Try It 78
Lesson Requirements 78
Step-by-Step 78

www.it-ebooks.info

xvii

http://www.it-ebooks.info/

CONTENTS

PART Ill: BEYOND THE MACRO RECORDER:
WRITING YOUR OWN CODE

CHAPTER 9: REPEATING ACTIONS WITH LOOPS 85
What Is a Loop? 85
Types of Loops 86

For...Next 87
For...Each...Next 88
Exiting a For... Loop 89
Looping In Reverse with Step 90
Do...While 91
Do...Until 91
Do...Loop...While 93
Do...Loop...Until 94
While...Wend 94
Nesting Loops 94
Try It 95
Lesson Requirements 96
Step-by-Step 96

CHAPTER 10: WORKING WITH ARRAYS 99

What Is an Array? 99
What Arrays Can Do for You 101
Declaring Arrays 102

The Option Base Statement 103

Boundaries in Arrays 104

Declaring Arrays with Fixed Elements 104

Declaring Dynamic Arrays with ReDim and Preserve 105

Try It 107
Lesson Requirements 107
Step-by-Step 107

CHAPTER 11: AUTOMATING PROCEDURES WITH WORKSHEET EVENTS 111

What Is an “Event”? M
Worksheet Events — an Overview 112
Where Does the Worksheet Event Code Go? 12
Enabling and Disabling Events 14

xviii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Examples of Common Worksheet Events 15
Worksheet_Change Event 15
Worksheet_SelectionChange Event 116
Worksheet_BeforeDoubleClick Event 116
Worksheet_BeforeRightClick Event 17
Worksheet_FollowHyperlink Event 17
Worksheet_Activate Event 17
Worksheet_Deactivate Event 18
Worksheet_Calculate Event 118
Worksheet_PivotTableUpdate Event 119

Try It 119
Lesson Requirements 119
Step-by-Step 119

CHAPTER 12: AUTOMATING PROCEDURES WITH WORKBOOK EVENTS123

Workbook Events — An Overview 123
Where Does the Workbook Event Code Go? 123
Entering Workbook Event Code 125

Examples of Common Workbook Events 126
Workbook_Open Event 126
Workbook_BeforeClose Event 127
Workbook_ Activate Event 127
Workbook_Deactivate Event 128
Workbook_SheetChange Event 128
Workbook_SheetSelectionChange Event 128
Workbook_SheetBeforeDoubleClick Event 129
Workbook_SheetBeforeRightClick Event 129
Workbook_SheetPivotTableUpdate Event 130
Workbook_NewSheet Event 130
Workbook_BeforePrint Event 130
Workbook_SheetActivate Event 131
Workbook_SheetDeactivate Event 131
Workbook_BeforeSave Event 131

Try It 132
Lesson Requirements 132
Step-by-Step 132

Xix

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13: USING EMBEDDED CONTROLS

135

Working with Forms Controls and ActiveX Controls 135
The Forms Toolbar 136
The Control Toolbox 140

Try It 144
Lesson Requirements 144
Step-by-Step 144

CHAPTER 14: PROGRAMMING CHARTS 151

Adding a Chart to a Chart Sheet 152

Adding an Embedded Chart to a Worksheet 154

Moving a Chart 155

Looping Through All Embedded Charts 157

Deleting Charts 158

Renaming a Chart 159

Try It 160
Lesson Requirements 160
Step-by-Step 160

CHAPTER 15: PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 163

Creating a PivotTable Report 163
Hiding the PivotTable Field List 167
Using the Report Filter Area 167
Formatting Numbers in the Values Area 168

Why It’s Called a PivotTable 170

Creating a PivotChart 171

Understanding PivotCaches 173

Manipulating PivotFields in VBA 176

Manipulating Pivotltems with VBA 177

Creating a PivotTables Collection 177

Try It 178
Lesson Requirements 178
Step-by-Step 179

CHAPTER 16: USER DEFINED FUNCTIONS 183

What Is a User Defined Function? 183
Characteristics of User Defined Functions 184
Anatomy of a UDF 184
UDF Examples That Solve Common Tasks 185

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Volatile Functions 188
The Name of the Active Worksheet and Workbook 189
UDFs with Conditional Formatting 190
Calling Your Function from a Macro 190
Adding a Description to the Insert Function Dialog 191

Try It 193
Lesson Requirements 193
Step-by-Step 193

CHAPTER 17: DEBUGGING YOUR CODE 195

What Is Debugging? 195

What Causes Errors? 196

Weapons of Mass Debugging 198
The Debugging Toolbar 198

Trapping Errors 207
Error Handler 207
Bypassing Errors 208

Try It 210
Lesson Requirements 210
Step-by-Step 210

CHAPTER 18: CREATING USERFORMS 215

What Is a UserForm? 215

Creating a UserForm 216

Designing a UserForm 218

Showing a UserForm 225

Where Does the UserForm’s Code Go? 225

Closing a UserForm 226
Unloading a UserForm 226
Hiding a UserForm 227

Try It 228
Lesson Requirements 228
Step-by-Step 228

www.it-ebooks.info

XXi

http://www.it-ebooks.info/

CONTENTS

CHAPTER 19: USERFORM CONTROLS AND THEIR FUNCTIONS 231
Understanding the Frequently Used UserForm Controls 231
CommandButtons 232
Labels 232
TextBoxes 234
ListBoxes 236
ComboBoxes 238
CheckBoxes 240
OptionButtons 241
Frames 243
MultiPages 245
Try It 246
Lesson Requirements 246
Step-by-Step 246
CHAPTER 20: ADVANCED USERFORMS 249
The UserForm Toolbar 249
Modal versus Modeless 250
Disabling the UserForm’s Close Button 250
Maximizing Your UserForm’s Size 252
Selecting and Displaying Photographs on a UserForm 252
Unloading a UserForm Automatically 253
Pre-Sorting the ListBox and ComboBox Items 253
Populating ListBoxes and ComboBoxes with Unique Items 255
Display a Real-Time Chart in a UserForm 258
Try It 259
Lesson Requirements 259
Step-by-Step 259
CHAPTER 21: CLASS MODULES 263
What Is a Class? 263
What Is a Class Module? 264
Creating Your Own Objects 265
An Important Benefit of Class Modules 266
Creating Collections 268
Class Modules for Embedded Objects 269
Try It 272
Lesson Requirements 272
Step-by-Step 272

xXii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

CHAPTER 22: ADD-INS 279
What Is an Excel Add-In? 279
Creating an Add-In 280
Converting a File to an Add-In 284
Installing an Add-In 286
Creating a User Interface for Your Add-In 288
Changing the Add-In’s Code 290
Closing Add-Ins 290
Removing an Add-In from the Add-Ins List 291
Try It 291

Lesson Requirements 291
Step-by-Step 291

CHAPTER 23: MANAGING EXTERNAL DATA 295
Creating QueryTables from Web Queries 295
Creating a QueryTable for Access 299
Using Text Files to Store External Data 301
Try It 304

Lesson Requirements 304
Step-by-Step 304

CHAPTER 24: DATA ACCESS WITH ACTIVEX DATA OBJECTS 307

Introducing ADO 307
The Connection Object 309
The Recordset Object 309
The Command Object 310

An Introduction to Structured Query Language (SQL) 310
The SELECT Statement 31
The INSERT Statement 31
The UPDATE Statement 312
The DELETE Statement 312

Try It 313

CHAPTER 25: NOT GONE, NOT FORGOTTEN 315
Using Dialog Sheets 315

What Does a Dialog Sheet Look Like? 316
Option to Show Message Only Once 318

www.it-ebooks.info

xxiii

http://www.it-ebooks.info/

CONTENTS

Using XLM Get.Cell Functions 321
Using the SendKeys Method 322
Try It 323
Lesson Requirements 323
Step-by-Step 323
CHAPTER 26: OVERVIEW OF OFFICE AUTOMATION FROM EXCEL 327
Why Automate Another Application? 327
Understanding Office Automation 328
Early Binding 328
Late Binding 329
Which One Is Better? 330
Try It 330
Lesson Requirements 330
Step-by-Step 330
CHAPTER 27: WORKING WITH WORD FROM EXCEL 333
Activating a Word Document 333
Activating the Word Application 334
Opening and Activating a Word Document 334
Creating a New Word Document 336
Copying an Excel Range to a Word Document 337
Printing a Word Document from Excel 337
Importing a Word Document to Excel 338
Try It 339
Lesson Requirements 339
Step-by-Step 339
CHAPTER 28: WORKING WITH OUTLOOK FROM EXCEL 343
Opening Outlook 343
Composing an E-mail in Outlook from Excel 344
Creating a Mailltem Object 344
Transferring an Excel Range to the Body of Your E-mail 345
Putting It All Together 346
E-mailing a Single Worksheet 348
Try It 348
Lesson Requirements 348
Step-by-Step 348

XXiv

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

CHAPTER 29: WORKING WITH ACCESS FROM EXCEL 353
Adding a Record to an Access Table 353
Exporting an Access Table to an Excel Spreadsheet 356
Creating a New Table in Access 358
Try It 359
Lesson Requirements 359
Step-by-Step 360
CHAPTER 30: WORKING WITH POWERPOINT FROM EXCEL 363
Creating a New PowerPoint Presentation 363
Copying a Worksheet Range to a PowerPoint Slide 364
Copying Chart Sheets to PowerPoint Slides 365
Running a PowerPoint Presentation from Excel 367
Try It 368
Lesson Requirements 368
Step-by-Step 368
APPENDIX: WHAT’S ON THE DVD? 371

INDEX 375

www.it-ebooks.info

XXV

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

CONGRATULATIONS ON MAKING TWO EXCELLENT CHOICES! You want to learn programming for
Microsoft Excel with Visual Basic for Applications (VBA), and you’ve purchased this book to teach
you. Excel is the most powerful and widely used spreadsheet application in the world. VBA enables
you to become much more productive and efficient, while getting your everyday Excel tasks done
more quickly and with fewer errors. You’ll gain a programming skill that is in high demand, which
will improve your value in the workplace and your marketability when searching for employment.

This book covers VBA from the ground up, and assumes you have never programmed Excel before.
If you’ve never recorded or written an Excel macro, this book will show you how. If you’ve worked

with VBA before, this book has examples of programming techniques you might not have seen. The
instruction and examples in this book teach VBA concepts that range in levels from fundamental to
advanced. The techniques in this book will apply just as well to the Excel business power user as to

the keeper of the family budget.

VBA is the programming language for Microsoft’s popular Office suite of applications, including
Excel, Word, Access, PowerPoint, and Outlook. A full section of this book explains how to control
each of those applications from Excel with VBA. By the time you complete this book, you will have
learned how to record, write, and run your own macros. You’ll learn how to make VBA run itself by
programming Excel to monitor and respond to users’ actions, and how to create friendly, custom-
ized interfaces that the users of your workbooks will enjoy.

The future of VBA is solid. Microsoft has confirmed time and again that VBA will be supported
in versions of Excel into the foreseeable future. The programming skills you learn in this book will
serve you throughout your career. You’ll be able to apply the principles you learn in this book to
other tasks that can be automated in Excel and Microsoft’s other Office applications. VBA is an
enormous programming language, and combined with Excel, it’s an ongoing, rewarding process of
learning something new every day. With this book as your entry into the world of VBA program-
ming, you are well on your way.

WHO THIS BOOK IS FOR

This book is for Excel users who have never programmed Excel before. You are an Excel user who
has been doing a frequent task manually, and you are ready to automate the task with VBA. You
might also be a job seeker, and you want to improve your chances of being hired in this difficult job
market by learning a valuable skill. Whether your Excel tasks are large or small, this book is for
you. You’ll learn how to use VBA to automate your work, from recording a simple one-line macro
to writing a complex program with a customized, user-friendly interface that will look nothing like
Excel. There is something in this book for everyone, but especially for the person who wants to dive
right into VBA from square one and learn to use its powerful programming tools.

www.it-ebooks.info

http://www.it-ebooks.info/
detlef
Hervorheben

detlef
Hervorheben

detlef
Hervorheben

INTRODUCTION

WHAT THIS BOOK COVERS

This book contains 30 lessons, which are broken into five sections.

>

Section I: Understanding the BASICs — Section I includes Lessons 1 to 4, introducing you to
VBA by providing a historical background and a discussion of what VBA is and what it can
do for you. Section I familiarizes you with the Macro Recorder and the Visual Basic Editor,
where VBA code is maintained.

Section II: Diving Deeper into VBA — Section II includes Lessons 5 to 8, which discuss VBA
topics including an overview of object-oriented programming, variable declaration, objects
and collections, and arrays.

Section III: Beyond the Macro Recorder: Writing Your Own Code — Section III includes
Lessons 9 to 17. You learn how to write your own macros without help from the Macro
Recorder. You become familiar with loops, event programming at the workbook and worksheet
levels, charts, PivotTables, and User Defined Functions, and learn how to debug your VBA code.

Section IV: Advanced Programming Techniques — Section IV includes Lessons 18 to 25, and
deals with the more advanced topics of UserForms, class modules, add-ins, retrieving external
data, and backwards-compatible features that have been all but forgotten but are still fully
supported in all Excel versions.

Section V: Interacting with Other Office Applications — Section V includes Lessons 26 to 30,
dealing with how to control Access, Word, Outlook, and PowerPoint from Excel.

HOW THIS BOOK IS STRUCTURED

My primary goal in this book is to teach you what you need to know in VBA. I tried to write this
book as if you and I were sitting down in front of your computer, and I was explaining Excel and
VBA’s technical concepts in an informal tutorial session. The book is structured such that each
lesson teaches you the theory of a topic, followed by one or more coded examples, with plenty of
screenshots and notes to help you follow along. To avoid redundancy of instruction, the lessons
build on each other, so the later chapters assume you’ve read, or are already familiar with, the mate-
rial discussed in earlier lessons. I strongly recommend that you watch the videos. You will get more
out of them than you might imagine, because they include bonus information about Excel, such as
tips and tricks, that will help you manage your workbooks with greater ease and efficiency.

WHAT YOU NEED TO USE THIS BOOK

What you need is this book and a fully installed version of Microsoft Office. If you only have Excel
installed, that will suffice for lessons up to and including Lesson 25. Lessons 26 to 30 deal with
controlling other Office applications from Excel. VBA ships with Excel so you already have all the

Xxviii

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

programming tools you need, but make sure your installation has provided you with access to the
VBE and Help files. It’s possible to exclude those items in the installation process. The version of
Windows is not important. In many examples, different versions of Excel are represented, with
Excel’s latest version at this writing, version 2010, shown most frequently. Almost everything dis-
cussed in this book has VBA example code to go along with it, with notes in the code (lines of text
in VBA code that starf] an apostrophe) that explain what the code is doing, and why. There are
plenty of screenshots to help you see beforehand what to expect, and help you after you’ve tested
your code to confirm you followed the steps correctly.

There’s one other item you need, which only you are in control of, and that is arranging a quiet
period of time for yourself on a regular basis, so you can read this book and view its video Try It
lessons uninterrupted. Everyone studies and retains new material differently, and we all live in a
busy world. But do what you can to carve out some “you time” as you make your way through the
book. You’ll find a lot of useful material that will lead you to think of other situations you typically
encounter in Excel that can be solved with the concepts you’ll be learning.

INSTRUCTIONAL VIDEOS

Twenty-six of the 30 lessons in this book are brought to life through hours of instructional video
that are available at the following website: www.wrox.com/go/excelvba. Those lessons with video
conclude with a tutorial. Both the content of the lesson and the accompanying tutorial are covered
in the video. You may want to watch the video before you read each lesson or vice versa. The choice
is up to you.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes with a warning icon like this one hold important, not-to-be-forgotien
information that is directly relevant to the surrounding text.

The pencil icon indicates notes, tips, hints, tricks, or asides to the current
discussion.

References at the end of each chapter will point you to www.wrox.com/go/
excelvba, where you can download the instructional video that accompanies a
given lesson.

XXiX

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.wrox.com/go/excelvba
http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/
detlef
Hervorheben

detlef
Hervorheben

detlef
Notiz
for example, look at pages 10,11 to make the developer-tab (das Entwickler-Menue) visible

INTRODUCTION

As for styles in the text:

> We highlight new terms and important words when we introduce them.
> We show keyboard strokes like this: Ctrl+A.

» We show file names, URLs, and code within the text like so: persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

SUPPORTING WEBSITES AND CODE

As you work through each lesson I recommend that you type in all of the code. However, depending
on how you learn, you may prefer to download the code. The code is available at www.wrox.com.
You can use the search box on the website to locate this title. After you have located this book, click
the Download Code link to access the files that can be downloaded. You can download the files via
HTTP or FTP. All of the files are stored as ZIP files.

The ISBN for this book is 978-0-470-89069-1. You may find it easier to search
by the ISBN than by the title of the book.

You can also download the code from the main Wrox download page, www.wrox.com/dynamic/
books/download.aspx. Click the link to the Excel VBA 24-Hour Trainer to access the files that
can be downloaded.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

XXX

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/misc-pages/bookslist.shtml
http://www.wrox.com/dynamic/books/download.aspx
http://www.it-ebooks.info/

INTRODUCTION

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will find a number of different forums that will help you, not only as you
read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, You must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXXi

www.it-ebooks.info

http://www.wrox.com/contact/techsupport.shtml
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Excel® VBA 24-Hour Trainer

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION |
Understanding the BASICs

» LESSON 1: Introducing VBA
» LESSON 2: Getting Started with Macros
» LESSON 3: Introducing the Visual Basic Editor

» LESSON 4: Working in the VBE

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing VBA

Welcome to your first lesson in Visual Basic for Applications! A good place to start is at the
beginning, where you’ll find it useful to get an understanding of where VBA came from and
what VBA is today. Once you get a feel for how VBA fits into the overall Excel universe, you’ll
learn how to use VBA to manipulate Excel in ways you might never have thought possible.

WHAT IS VBA?

Visual Basic for Applications (VBA) is a programming language created by Microsoft to auto-
mate operations in applications that support it, such as Excel. VBA is an enormously powerful
tool that enables you to control Excel in countless ways that you cannot do manually.

In fact, VBA is also the language that manipulates Microsoft Office applications in Access,
Word, PowerPoint, and Outlook. For the purposes here, VBA is the tool you’ll use to develop
macros and manipulate the kinds of objects you will learn about in this book to control Excel,
and to control other Office applications from Excel.

You do not need to purchase anything more than the Office suite (or the individual applica-
tion) to also own VBA. If you have Excel on your computer, you have VBA on your computer.

WHAT IS A “MACRO,” ANYWAY?

Back in the day, a programming language was often called a “macro language” if
its capabilities included the automation of a sequence of commands in spreadsheet
or word processor applications. With Microsoft’s release of Office 5, VBA set a
new bar for how robust a programming language can be, with capabilities extend-
ing far beyond those of earlier programming languages, such as the ability to create
and control objects within Excel, or to have access to disk drives and networks.

continues

www.it-ebooks.info

http://www.it-ebooks.info/

4 | LESSON1 INTRODUCING VBA

(continued)

So, VBA is a programming language and it is also a macro language. Confusion

of terminology arises when referring to VBA code that is a series of commands
written and executed in Excel. Is it a macro, a procedure, or a program? Since
Microsoft commonly refers to its VBA procedures as macros, that’s good enough
for me to call them macros as well. Outside of a few exceptions that’ll be discussed
when the time comes, I’ll be referring to VBA procedures as macros.

A BRIEF HISTORY OF VBA

VBA is a present-day dialect of the BASIC (Beginner’s All-purpose Symbolic Instruction Code) pro-
gramming language that was developed in the 1960s. BASIC became widely used in many software
applications throughout the next two decades, because it was easy to learn and understand.

Over the years, BASIC has evolved and improved in response to advancing technology and increased
demands by its users for greater programming flexibility. In 1985, Microsoft released a much richer
version of BASIC, named QuickBASIC, which boasted the most up-to-date features found in pro-
gramming languages of the day. In 1992, Microsoft released Visual Basic for Windows, designed to
work within the burgeoning Windows environment.

Meanwhile, various software publishers were making their own enhancements to BASIC for their
products’ programming languages, resulting in a wide and confusing range of functionality and
commands among software applications that were using BASIC. Microsoft recognized the need
for developing a standardized programming language for its software products, and created Visual
Basic for Applications.

VBA was first released by Microsoft with Excel 5 in the Office 1995 suite. Since then, VBA has
become the programming language for Microsoft’s other popular Office applications, as well as for
external software customers of Microsoft to whom VBA has been licensed for use.

DON’T CONFUSE VB WITH VBA!

With all the acronyms bandied about in the world of computing, it’s easy to get
some terms confused. “VB” stands for Visual Basic and it is not the same as VBA.
Though both VB and VBA are programming languages derived from BASIC and
created by Microsoft, they are otherwise very different.

VB is a language that allows you to create standalone executable applications that
do not even require its users to have Office or Excel loaded onto their computers.
On the other hand, VBA cannot create standalone applications, and it exists within
a host application such as Excel and the workbook containing the VBA code. For a
VBA macro to run, its host application workbook must be open. This book is about
VBA, and how it controls Excel.

www.it-ebooks.info

http://www.it-ebooks.info/

What VBA Can Do forYou | 5

WHAT VBA CAN DO FOR YOU

Everyone reading this book uses Excel for their own needs, such as financial budgeting, forecasting,
analyzing scientific data, creating invoices, or charting the progress of their favorite basketball team.
One thing all readers have in common is the need to automate some kind of frequently encountered
task that is either too time-consuming or too cumbersome to continue doing manually. That’s where
VBA comes in.

The good news is, utilizing VBA does not mandate that you first become a world-class professional
programmer. Many VBA commands are at your disposal and, as this book will show you, are rela-
tively easy to implement and customize for your everyday purposes.

Anything you can do manually you can do with VBA, but faster and with a minimized risk of
human error. Many things that Excel does not allow you to do manually, you can do with VBA. The
following sections describe a handful of examples of what VBA can do for you.

Automating a Recurring Task

If you find yourself needing to produce weekly or monthly sales and expense reports, a macro can
create them in no time flat, in a style and format you (and more importantly, your boss) will be
thrilled with. And if the source data changes later that day and you need to produce the updated
report again, no problem — just run the macro again!

Automating a Repetitive Task

When faced with needing to perform the same task on every worksheet in your workbook, or in
every workbook in a particular file folder, you can create a macro to “loop” through each object
and do the deed. You learn how to repeat actions with various looping methods in Lesson 9.

Running a Macro Automatically if Another Action Takes Place

In some situations you’ll want a macro to run automatically, so you don’t have to worry about
remembering to run it yourself. For example, to automatically refresh a pivot table the moment

its source data changes, you can monitor those changes with VBA, assuring that your pivot table
always displays real-time results. This is called “event” programming, which is cool stuff, and is
discussed in Lessons 11 and 12.

Creating Your Own Worksheet Functions

You can create your own worksheet functions, known as “User Defined Functions,” to handle custom
calculations that Excel’s built-in functions do not provide for, or would be too complicated to use even
if such functions were available. For example, you’ll see how to add up numbers in cells that are for-
matted a certain color. UDFs, as these custom functions are called, are covered in Lesson 16.

Simplifying the Workbook’s Look and Feel for Other Users

When you create a workbook for others to use, there will inevitably be users who know little
to nothing about Excel, but who will still need to work in that file. You can build a customized

www.it-ebooks.info

http://www.it-ebooks.info/

6 | LESSON1 INTRODUCING VBA

interface with user-friendly menus and informational pop-up boxes to guide your novice users
throughout their activities in the workbook. You might be surprised at how un-Excel-looking an
Excel workbook can be, with VBA providing a visually comfortable and interactive experience for
users unfamiliar with Excel, enabling them to get their work done. Figure 1-1 shows an example of
accomplishing this with UserForms, which are discussed in Lessons 18, 19, and 20.

Management Model for Widgets, Inc. 3 x|

i Enter the Monthly Budget Activity ltems for Widgets, Inc.
o | AT e
.”.i_lll) ‘L) n[C
Y 0
- >

‘ Capital Ventures 1
' Investments

¥ Override previous entries

~ Month ‘ Income ‘ ‘ Expenses
& January Sales Advertising |
 February Licensing Payroll
© March Royalties Maintenance
© April Miscellaneous Utilities
© May Rent
© June Office Supplies
© July Taxes
© August Insurance
 September
© October Major Improvement, Mortgage, and Escrow
" November New Roof Mortgage Principle
 December New Heating [Mortgage Interest
Parking Paving Property Tax
Confirm These Entries ‘ Print the Budget for Widgets, Inc. ‘ Exit |
FIGURE 1-1

Controlling Other Office Applications from Excel

If you create narrative reports in Word that require an embedded list of data from Excel, or if you
need to import a table from Access into an Excel worksheet, VBA can automate the process. VBA is
the programming language for Microsoft’s other Office applications, enabling you to write macros in
Excel to perform tasks in those other applications, with the users being none the wiser that they ever
left Excel while the macro was running.

As you can imagine, the list of advantages to using VBA could fill a city telephone book. The point
is, there are sure to be tasks in your everyday dealings with Excel that can be accomplished more
quickly and efficiently with VBA, and this book will show you how.

www.it-ebooks.info

http://www.it-ebooks.info/

Liabilities of VBA | 7

LIABILITIES OF VBA

Although VBA is a tremendously useful and versatile tool, alas, it is not an elevator to Excel nir-
vana. The pros far outweigh the cons, but learning and using VBA comes with a few caveats that
you need to be aware of:

> With each version release of Excel, Microsoft may add new VBA commands or stop support-
ing existing VBA commands, sometimes without advance warning. Surprises do happen, as
was especially the case when Office 2007 was released with all its added features. Such is life
in the world of Excel VBA; you will probably learn of coding errors from people who have
upgraded to a newer version and are using the workbook you created in an earlier version.

> VBA does not run uniformly in all computer operating environments. Sometimes, no matter
how extensively you test your code and how flawlessly the macros run on your computer,
there will be users of your workbook who will report an error in your code. It won’t be your
fault or VBA’s fault, it’s just the idiosyncrasies of how programming languages such as VBA
mix with various operating systems, Office versions, and network configurations. Debugging
your code is the subject of Lesson 17.

> Programming languages, including VBA, are not warmly received by all workplace IT depart-
ments. Many companies have set internal policies that forbid employees from downloading
malicious software onto workplace computers. This is an understandable concern, but the
corporate safety nets are sometimes cast far and wide to include Excel workbooks with VBA
code. The tug of war in companies between the security interests of IT, and the work effi-
ciency needs of management, can determine whether the VBA code you install will actually
be allowed for use in some company venues.

> Finally, VBA is a large program. It has thousands of keywords and the language library is
only getting larger. Actually, I see this as a good thing, because the more VBA you learn,
the more productivity and control you will have with Excel. Just as with any language, be it
spoken or programming, there is a level of rolling-up-your-shirtsleeves commitment that’ll be
needed to learn VBA. Even the longest journey starts with a first step, and this book will get
you on your way.

@ VBA has a bright, stable future. An occasional rumor will make the rounds on
the Internet, claiming the imminent demise of VBA. Do not believe it. VBA is
here to stay, and Microsoft has publicly said so, time and again. The facts are, in
2007, Microsoft closed its VBA licensing program to new customers, and VBA
is not supported in the 2008 version of Office for the Mac. However, Microsoft
has consistently made very clear its plan for supporting VBA in future versions
of Excel for Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

8 | LESSON1 INTRODUCING VBA

TRYIT

There’s nothing specific to try based on the material in this lesson. What you could do is make a list
of some of your most frequent everyday Excel tasks. Chances are, those frequently recurring tasks
will be good candidates for the first VBA macros you’ll be composing when you practice macro-

writing on your own.

There is no video to accompany this lesson.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Macros

In Lesson 1, you read that VBA is the programming language of Microsoft Excel and that a
macro is a sequence of VBA commands to run a task automatically instead of manually. In
this lesson, you learn how to create a simple macro, what its code looks like, and a few options
for how you can run the macro.

COMPOSING YOUR FIRST MACRO

This lesson leads you through the process of composing a macro to sort and format a range of
data. But even before the first line of programming code is written, you’ll want to set up shop
by giving yourself easy access to the VBA-related tools you’ll be using. The following house-
keeping tips usually need to be done only once, and are worth taking the time to do now, if
you haven’t already done so.

Accessing the VBA Environment

At the time of this writing, Excel is at a unique stage in its ongoing evolution, because three of its
versions are being used with substantial popularity. Version 2003 (also known as version 11) was
the final Excel version having the traditional menu bar interface of File, Edit, View, and so on.
Then came version 2007 (also known as version 12) with Office’s new Ribbon interface, and
most recently, version 2010 (also known as version 14) has taken its place among the commu-
nity of Excel users.

As with other tasks you typically do in Excel, the actions you take to create, view, edit, or run
VBA code usually start by clicking the on-screen icon relating to that task. Exactly what those
VBA-related icons look like, and what you need to do to make them easily accessible to you,
will depend on the particular version of Excel you are working with.

Start by making sure that the VBA-related icons you’ll be using most frequently are already
displayed whenever you open Excel.

www.it-ebooks.info

http://www.it-ebooks.info/

10 | LESSON2 GETTING STARTED WITH MACROS

For versions of Excel up to and including 2003,
from your worksheet menu, click View = =] Ele Edt [view | Insert Format Took Data FlashPaper window Help
. . . . H jormal |y
Toolbars = Visual Basic as shown in Figure 2-1. % ige e, [A S
This displays the Visual Basic toolbar, as shown T || e o
in Figure 2-2, which you can dock just asyoudo |- Tokars V=] standar
with your other toolbars. E Epmlate Formatting
% Status Bar Borders
For versions of Excel after 2003 (that is, start- 5| Header and Foater... chart
ing with Excel 2007), the Ribbon user interface |4 - [l R R
. . . T Custom Views. .. Drawing
hfas replaced the menu interface, rgsultmg ina &l ~ -— A
different look to the VBA-related icons and a 11| i Farms
. . 1l
different set of steps required to see them. 73] e T
4 List
In versions 2007 and 2010, these VBA icons o Fictura
are located on the Developer tab. By default, i E'V:”:'_b'e
. . . rotection
the Developer tab is not automatically dis- % T
played along with the other Ribbon tabs. You 51 Text To Speech
. . == - 1
need to do a set of one-time mouse clicks to Iz Yisua Base I
5 5 o |23 Wakch Window
show the Developer tab, and to keep it visible | 24] ol
25 .
whenever you open Excel. Although the steps E3 Wordirt
to do this are easy, they are different between o Custonize...
versions 2007 and 2010. FIGURE 2-1

In Excel 2007, click the round Office
button near the top-left corner of VisualBasic v x| _»P
your screen. Then, click the Excel ML RECSISTAN MR

Options button located at the bottom FIGURE 2-2 e R
of that menu, as shown in Figure 2-3.

7
H

Open
In the Excel Options dialog box, click the Popular item at the
. . Save
upper left, and select the Show Developer tab in the Ribbon g
option, as shown in Figure 2-4. = savens ,

For Excel version 2010, showing the Developer tab is a bit dif-
ferent. A new Ribbon tab named File has supplanted the Office

Open from Office Live »

RS ITCLELCZQD

button. Click the File tab and then click the Options button as R it

shown in Figure 2-5. o ’

In the Excel Options dialog box for version 2010, click the e :

Customize Ribbon item at the left, which displays two vertical .

lists as shown in Figure 2-6. Notice that the list on the right seng ’

has . . . 2./ Publish »

a drop-down menu above it called Customize the Ribbon. B

Select the Main Tabs item from that drop-down. In the list of] cose

Main Tabs, select Developer and click OK.] r—
FIGURE 2-3

www.it-ebooks.info

http://www.it-ebooks.info/
detlef
Hervorheben

detlef
Hervorheben

detlef
Hervorheben

Composing Your First Macro | 11

Trust Center

Resources

.
Excel Options
[===
L @ Change the most popular options in Excel.
Formulas
Proofing Top options for working with Excel
Save Show Mini Toolbar on selection
Enable Live Preview ()
Advanced
L>-[7] Show Developer tab in the Ribbon ()
Customize Color scheme:
Add-Ins

ScreenTip style: | Show feature descriptions in ScreenTips El

Create lists for use in sorts and fill sequences: Edi stom Lists.

When creating new workbooks

Use this font: |Body Font lz‘

Font size:

eteuit siwfor e shects. | Nomatvien [7]
Include this many sheets:

Personalize your copy of Microsoft Office

User name: |Thomas Urtis
Choose the languages you want to use with Microsoft Office: | Language Settings...

FIGURE 2-4

Senzial
=ermulas
“racting
save
Lanquage
Acvenced
ustomize Ribbon
Quick Access Toolbar
sddns

Trus: Center

@ Customize the Ribbon,

Choote commands fro

Customize the Rigko
|Popuiar commanas v Main Tabs -

I Chart Types.. Al
Burders |r
Calculzte Now

Center

Conditional Formatting 3
Connetions

Copy

Custom Sort...

= save
Save As
5 Open
D" Close

Info

Recent

New

Print

Save & Send

(3 onom_—+—1—

Exit

FIGURE 2-5

Cut

Decrease Font Size
Delete Cells... = Remeve Fackgraund Removal
Delete Shest Calumns

Delele Sheel Ruws

F-mail

Fill Culor »
Filter

Font

Font Color
rontsize

[Meatab] [Mew Grovp | [Rename.. |

Costomizstions [_Reset ~_J
Format Cells...
Format Paintzr =) g

FIGURE 2-6

Figure 2-7 shows the Developer tab on the Ribbon with its related icons.

www.it-ebooks.info

http://www.it-ebooks.info/

12

| LESSON 2 GETTING STARTED WITH MACROS

Code Controls

55_34 Expans

E 3 [Record Macro |‘.\E o & % Properties E
= =0 {5 Use Relative References Gl view Code

Visual Macros Insert Design Source
Basic ﬂ Macro Security - Mode & Run Dialag

Home Insert Page Layout Formulas Data Review View Developer —

_\‘[Map Properties :ﬂ[mport

ion Packs

d ‘; Refresh Data
XML

! Export

FIGURE 2-7

Using the Macro Recorder

The easiest way to create a macro is to record your worksheet actions using a valuable tool called
the Macro Recorder. All you need to do is turn on the Macro Recorder, perform the actions that
comprise the task you want to automate, and then turn off the Macro Recorder when you have fin-
ished your task. While the Macro Recorder is turned on, every action you do — selecting a cell,
entering a number, formatting a range, pretty much everything — is recorded and represented as

VBA code in a new macro. As you’ll

see, when you run the macro created by A Ei
the Macro Recorder, your task will be %G\frggetg iig‘ﬁ” 60%931
completed automatically, just as you did 3 |vombats |West 48521
it manua]]y. 4 Wombats |East 37883
5 |Wallabees | South 82943
: 6 |Widgets |Wwest 8010
The Mac.rf) Recorder comes in handy Bl Voo Soin ceoge
for repetitive (and sometimes mundane) 8 \Wallahees et 76751
common tasks that youd rather not BN Val aboes |East 29023
. 10 Widgsts | North 73585
have to keep manually doing over and 1 Widgets | Sauth 3371
over. For example, say you manage a | 12 Warlocks | East 40861
. 13 [Wallabees |WWest 91831
table of data every day, such as shownin [+
Figure 2-8, that shows how many items iz
your company sold in its East, West, FIGURE 2-8
North, and South regions.
Th day task at hand is t t th R
€ everyday task a and 1S to sor (] 1 |Region Item Count
table primarily by Region, then by Item, 2 East Wallabess | 29,023
3 |East Warlocks 40,681
then by Count. Your boss wants the Item T Wombals | 37 885
and Region columns to switch places, so 5 [Morth Widgsts 40,831
. . 6 [North Widgsts 72,585
that Reglon occupies cqlumn A and Item Tloouth [Waliabess| 52,043
occupies column B. To improve read- & |South Warlocks | 65,085
ability, the numbers in the Count column |2 30uth Wicgets 2,371
. 10 |WWest Wallabees 76,781
must be formatted with the thousands T West Walabees| 91.831
comma separator, and the headers for | 12 [West Widgsls 8,010
. 13 |West Wombats 48,521
Item, Region, and Count must be bolded. | 4|
Figure 2-9 shows the finished table, the 15
way your boss wants it. FIGURE 2-9

www.it-ebooks.info

http://www.it-ebooks.info/

Composing Your First Macro | 13

This is normally a six-step process, which is quite boring, but it’s part of your job responsibilities.

To complete the task you might:
1.
2.

column.
3
4,
5

6.

Insert a new column at column A.

Select range A1:C1 and format those cells as Bold.

Select the Region column, cut it, and paste it to empty column A, to the left of the Item

. Delete the now-empty column from where the Region column was cut.
Select range A1:C13 and sort in ascending order by Region, Item, and Count.

. Select range C2:C13 and format the numbers with the thousands comma separator.

Not only are these steps monotonous, but also an invitation to honest mistakes due to even-
tual human error. The good news is, if you perform the necessary steps perfectly for the Macro
Recorder, the task can be reduced to a simple mouse click or keyboard shortcut, with VBA doing

the grunt work for you.

%

Any time you create a macro, it’s wise to plan abead about why you are creat-
ing the macro, and what you want the macro to do. This is especially important
with complex macros, because you will want your macros to operate efficiently
and accurately, with just the code that’s necessary to get the job done properly.
By avoiding excessive code, your macros will run faster and be easier to edit

or troubleshoot. For example, get your workbook ready beforehand to avoid
unnecessary coded actions. Have the worksheet that you’ll be working on active,
with the range of interest already visible. Mistakes are recorded too! Practice the
steps first, so your macro is not longer than it needs to be.

Because you know what manual steps are required for this daily task, you are ready to create your
macro. The first thing to do is turn on the Macro Recorder. In Excel versions 2003 or before, click

the Record Macro button on
the Visual Basic toolbar as
shown in Figure 2-10. For
later Excel versions, click the
Record Macro button in the
Code section of the Developer
tab on the Ribbon, as shown
in Figure 2-11.

b | @ |Security... | g b Ig |6

Record Macro
FIGURE 2-10

ST e) = g
\) W .) v
J’@ v - Bookl - Microsoft Excel
J Home Insert Page Layout Formulas Data Review View Developer @ - g X
= ‘E Record Macro | ‘XE\’ _/'»‘ [Properties IE 5 Map Properties [J Import
L E Use Relative References = Cf]\}iew Code }g Expansion Packs <Lq‘ Export
Wisual Macros . Insert Design . Source .
Basic A Macro Security - Mode % Run Dialog “§ Refresh Data
Code Controls XML
Al | Record Macro *
A Record a macro, | E F G H | K
1 :! Each of the commands you perform =
2 will be saved into the macro so
3 that you can play them back again.
a4
5
W 4 » | Sheetl ~Sheet? ~Sheet3 ,¥J . I
Ready 73 |] e z

FIGURE 2-11

www.it-ebooks.info

http://www.it-ebooks.info/

14 |

LESSON 2 GETTING STARTED WITH MACROS

What you see next will look much like Figure 2-12. A small dialog box titled Record Macro will
appear, with default information that only needs your approval by clicking OK to start recording
your macro. Resist the temptation to accept the defaults because now’s the time to get into a few
good habits.

T TR

1 [ltem Region Count

2 |Widgsets Morth 40831 =
3 |Wombats |West 4g501| (el x)
4 [Wombats |East 37883| | Macroname:

5 |[wWalabees |South 87043 pragrer]
6 |Widgets Wiest 2010 Shaorkeut key: Store macro in!

7 |warlocks |South 85065 k]| [This Workbook v|
8 |wWallabees |West TETgq| | Reserintion: :

9 |vWallabees East 20023 Macro recorded 7/18/2010 by Thomas Urtis |
10 Widgets Morth T2E35

11 |Widgets | South 237
12 [Warlocks |East 406381

13 [Wallabees |WWest 91831

| 14 |

15
FIGURE 2-12

The Macro Recorder is an excellent teaching tool, and hardly a day goes by when I do not use it

in some way. VBA is just too voluminous a programming language to memorize its every keyword
and nuance. Often as not, I’ll record a macro just to look at the code it produces to learn the proper
syntax of a task dealing with some larger macro I am working on. You will find yourself using the
Macro Recorder in the same ways it’s a terrific source for learning VBA code, as Excel developers of
any skill level will attest.

For this example, the macro you are creating is one you will want to keep and use often. A little cus-
tomization is strongly recommended to help you down the road, when you’ll want to remember what
the macro does, why you created it, and what optional keyboard shortcut you assigned to run it.

In the Record Macro dialog box, give the macro a meaningful name. Macro names cannot contain
spaces and they cannot begin with a numeral. Because you are the person doing the sorting, and you
don’t want to make the macro name too long, naming it mySort gives the macro more meaning than
the default name of Macrol.

In Figure 2-12, notice the small box to the right of Ctrl+ in the Shortcut Key section. You can place
any letter of the alphabet in that field, which, when pressed with the Ctrl key, will be one method
(and a convenient one at that) by which you can run the macro.

www.it-ebooks.info

http://www.it-ebooks.info/

Composing Your First Macro | 15

@ A shortcut key is not mandatory; in fact, most of your macros will not have one
or need one. But if you do want to assign a shortcut key, get into the good habit
of assigning it with the Ctrl+Shift combination rather than with just the Ctrl
key. Excel has assigned almost all 26 letters of the alphabet to serve as shortcuts
with the Ctrl key for various tasks, and you will do well to avoid overriding that
built-in functionality. For example, Ctrl+C is typically the key combination you
use to copy text. Howeuver, if you assign the shortcut key Ctrl+C to your macro,
you will override the default for that key combination and will not be able to use
Ctrl+C to copy text.

To take advantage of the Shortcut Key option, click in the Shortcut Key field, press the Shift key,
and also press a key such as the letter S. You will have created the keyboard shortcut Cerl+Shift+S,
which will not interfere with any of Excel’s significant built-in keyboard shortcuts.

Most macros you record will be stored in the workbook you are working with. For now, you can
keep the default selection of This Workbook in the Store Macro In field.

Finally, in the Description field, enter a brief but meaningful explanation of what the macro does.
When you are finished making these minor changes to the Record Macro dialog box, it will look
similar to Figure 2-13. Go ahead and click OK, which will turn on the Macro Recorder, and you

can proceed to manually perform the steps you want to automate.

TR B e
1 |ltem Redion Count
2 |Widgets Morth 40931 :
3 |Wombats |West 48501 | [l [
4 |Wombats | East 37883 | Madro name:
5 |wallabees South g2043| | [mrsor |
§ |Widgets Wit &010 Shartout key: Store macks nd
7 Warlocks |South 65065 Cteshit+ s | [This orkbook v
§ |Wallabees WWest FE781| | Ressripkon:
9 |wallabees Fast 29003 | A e |
10 |Widgets Morth 72685
11 |[Widgets | South 2371 :]
12 |Warlocks |East 406871
13 |[Wallabees Wyest 91831
| 14 |
i
FIGURE 2-13

In versions 2003 and before, you will see a tiny floating toolbar while the Macro
Recorder is on. That is the Stop Recording toolbar, with a Stop Recording

button you will click when you are finished recording your actions. When you Stop Recording
have completed the steps to your task, turn off the Macro Recorder in version FIGURE 2-14

2003 by clicking the Stop Recording button, as shown in Figure 2-14.

www.it-ebooks.info

http://www.it-ebooks.info/

16 | LESSON2 GETTING STARTED WITH MACROS

If you are working in a later version of Excel, click the Stop Recording button from the Developer
tab in the Ribbon, as shown in Figure 2-15. Clicking the Stop Recording button ends the recording
session, and you will have created your macro.

I EECDE Baokl - Microsoft Excel L (=] B]
) =
- Home Insert Page Layout Formulas Data Review View Developer | @ — & X
| op Recording =3 P Properties f # Map Properties [Jf Impo
4 === | @ Stop Record |;"=1 Properti “7 Map Propert [Impart
=| =3 ﬁUse Relative References %J = Q"J\Jiew Code E'Q Expansion Packs (=) Export
Visual Macros Insert Design Source o,
Basic 8 Macro Security - Mode T Run Dialog “} Refresh Data
Code Controls XML
Al ‘ Stop Recording k Je | ¥
A B c D E F G H 1 L
1 =
2
3
FIGURE 2-15

HEY, MY STOP RECORDING BUTTON DISAPPEARED!

If you are using Excel version 2003 or before, the Stop Recording toolbar might
seem to suddenly disappear on you from time to time. This is almost always due

to unwittingly closing that toolbar by clicking the “X” close button on its title bar
instead of the Stop Recording button. It happens to the best of us. To show the Stop
Recording toolbar again, start to record a new macro, then from the worksheet
menu click View = Toolbars &> Stop Recording. Click the Stop Recording button to
end the macro, and the next time you record a macro, the Stop Recording toolbar
will be its normal visible self.

RUNNING A MACRO

You have many ways to run a macro, most of which are demonstrated in later lessons. As you will
see, the method(s) you choose for running your macros may depend on complex reasons such as the
workbook design, or may be based on a simpler factor such as what feels most intuitive and conve-
nient for you. To wrap up this lesson, following are a couple of commonly used options for running
your macros.

The Macro Dialog Box

When you create recorded macros, their names will appear listed in a T

dialog box called, appropriately enough, the Macro dialog box. To show 9 searty.. | B 3% b2 o
the Macro dialog box in version 2003 or before, click the Run Macro Run Macro

button on the Visual Basic toolbar as shown in Figure 2-16. The title of
that button, Run Macro, is a bit of a misnomer, because just by clicking

FIGURE 2-16

www.it-ebooks.info

http://www.it-ebooks.info/

Running a Macro | 17

it, you are not actually running a macro yet. All you’ll be doing is displaying the Macro dialog box,
from which you can run a macro but also edit and examine macros.

In versions later than 2003, the button to click is more logically labeled Macros, as shown in

Figure 2-17.
|7 - Bookl - Microsoft Excel (=] E
) - —
= Hefme Insert Page Layout Formulas Data Review View | Developer |® - 2 X

— @Vlew Code
Insert Design Source

‘ﬁ Use Relative References
Visual |Macros
- Mode @ Run Dialog

Basic A Macro Security
Code

‘ Record Matro fﬁ{ L\\//’ [%F Properties E Zp Map Properties 5 Import
| 58
&5 E % : <o

& Expansion Packs '-,1, Export
“’"-‘5 Refresh Data
Controls XML

~
=

View Macros (Alt+F8)

MEL

| View the list of macros, from which | E F G H
you can run, create, or delete a
macro.

@ Press F1 for more help.

Bw(n e

o

W 4+ v| Sheetl - Sheet? ~Sheetd ~¥J

Ready | 7 |

| AllL |
== s—0 +

FIGURE 2-17

Regardless of the Excel version, pressing Alt+F8 displays the Macro dialog

box — no mouse clicks needed.

Figure 2-18 shows the Macro dialog box with the one
and only mySort macro listed. As you create more
macros in this workbook, their names will be listed
in the Macro dialog box in alphabetical order. To run
your macro, select its name in the list and click the
Run button as indicated by the black arrows. You
could also run the macro by double-clicking its name
in the list.

Shortcut Key

Recall that you assigned the shortcut key
Ctrl+Shift+S to this macro at the start of the macro
recording process. Because you did that, you do not
need to bother with the Macro dialog box if you
don’t want to; you can run the mySort macro simply
by pressing Ctrl+Shift+S.

www.it-ebooks.info

|

Cancel
Step Inta

Create

Delete

Macros in: All Dpen Warkbooks

Y (o]

Description

Atrange the columns and sort ascending by Region, Ttem,
and Count. Bold headsrs and Format Count.

FIGURE 2-18

http://www.it-ebooks.info/

18 | LESSON2 GETTING STARTED WITH MACROS

TRYIT

In this lesson, you practice creating a recorded macro.

Lesson Requirements

For this lesson, you create a macro by turning on the Macro Recorder, copying a range of formula-
containing cells, and using Paste Special to convert the formulas in that range to values.

Step-by-Step

Start by establishing a situation where you have dynamic formulas in cells where you prefer to show
static values. In a fresh worksheet, select cell A1:D10, and type the formula =INT(RAND () *1000).
Press Ctrl+Enter, which will insert formulas in A1:D10 that return a random number between 0 and
199. Select any single cell to deselect range A1:D10.

Create a macro that copies the range of dynamic RaND numbers, and paste the numbers over the
range as values to obtain static numbers:

1. Turn on the Macro Recorder by clicking the Record Macro button.

2. In the Record Macro dialog box, name the macro valuesonly and assign it the shortcut
Ctrl+Shift+C.

Click OK to start recording your ValuesOnly macro.
Select range A1:D10.

Press Ctrl+C to copy the selected range.

Right-click within the selected range.

Left-click Paste Special, select Values, and click OK.

Press the Esc key to exit copy mode.

© 0N OU kAW

Click cell A1 to deselect all cells except Al.
10. Turn off the Macro Recorder by clicking the Stop Recording button.

11. Re-enter formulas in range A1:D10 and test your macro with the shortcut Ctrl+Shift+C, or
by displaying the Macro dialog box, selecting the valuesonly macro name in the list, and
clicking the Run button.

Once you run your macro, the formulas you entered will now be hard numbers.

To get the sample database files, you can download Lesson 2 from the book’s website at

WwWW . Wrox.com.

To view the video that accompanies this lesson, please select Lesson 2, available at
the following website: wuww.wrox . com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

Introducing the
Visual Basic Editor

In Lesson 2, you learned how to create a macro, and you saw a couple of easy ways to run

the macro you created. Now it’s time to view your macro and have a look at the environment
called the Visual Basic Editor (VBE), within which all macros and VBA procedures are stored.
Seeing where macros live and breathe will improve your understanding of the VBA program-
ming process, especially when you start to edit existing macros or create new macros without
the Macro Recorder.

WHAT IS THE VBE?

It’s fair to say that for many users of Excel, the worksheets, pivot tables, charts, and hundreds
of functions are all the tools they need to satisfactorily handle their spreadsheet activities. For
them, the familiar workbook environment is the only side of Excel they see, and understand-
ably the only side of Excel they are probably aware of.

But Excel has a separate, less visible environment working behind the scenes — the Visual
Basic Editor — which is interconnected with the workbook environment even if no program-
ming code exists in the workbook. Both environments are constantly but quietly working
together, sharing information back and forth about the entire workbook. The Visual Basic
Editor is a user-friendly development environment where programmed instructions are main-
tained in order to make your spreadsheet applications work.

www.it-ebooks.info

http://www.it-ebooks.info/

20 | LESSON 3

INTRODUCING THE VISUAL BASIC EDITOR

HOW TO GET INTO THE VBE

With Excel open, a fast and easy way to get into the Visual Basic Editor
is to press Alt+F11 on your keyboard. You can do this from any work- ;
sheet. It’s just as quick with your mouse too, by clicking the Visual Basic

Visual Basic

@ Security...

Wisual Basic Editar

Editor icon on the Visual Basic toolbar in versions up to 2003, as shown

in Figure 3-1, or the Visual Basic button from the Developer tab on the

FIGURE 3-1

Ribbon in later versions, as shown in Figure 3-2.

Bookl - Microsoft Excel

=

Home Insert

Visual | Macros
Basic I\ Macro Security

Code

Page Layout

. E ¥ Record Macro
= E Use Relative References

Formulas Data

"(‘E,' N 3 Properties

Insert Design

- Mode # Run Dialog

Controls

Review

&gl view Code

View Developer | @ - = X

E j Map Properties fﬁlmport
3 Expansion Packs @] Export
Source .

“§ Refresh Data

XML

Visual Basic (Alt+F11)

Launch the Visual Basic editor.

@ Press F1 for more help.

£

4
5

D 5

e

HES

[< » %] Sheetl Sheets Sheets ~td

Ready S

FIGURE 3-2

CAREFUL, THAT WAS *ALT*+F11!

The Ctrl key is commonly used in conjunction with other keys for keyboard short-
cuts. By force of habit, you might mistakenly press Ctrl+F11 instead of Alt+F11
when attempting to go to the VBE. However, pressing Ctrl+F11 has a curious result:
you won’t be taken to the VBE, but instead you will have created and find yourself
on an outdated type of sheet called a macro sheet, with the strange tab name of
Macrol. Prior to Excel version 97, macros were stored on macro sheets, which can
still be created, though they have no practical use with today’s Excel, and they no
longer hold any programming code. It’s OK to just delete the macro sheet if you cre-
ate one, and take another stab at the Alt key with F11 to get into the VBE.

UNDERSTANDING THE VBE

The Visual Basic Editor can show a number of different windows depending on what you want to
see or do. For the majority of work you’ll be doing with the help of this book, you’ll want to even-
tually become familiar with four windows: the Project Explorer window, the Code window, the
Properties window, and the Immediate window. Figure 3-3 shows what the VBE looks like with

these four windows.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the VBE | 21

#5 Microsoft Visual Basic - MacroExamples.dsm - Modulel (Code)] (=i s |
‘8 File Edit View Inset Format Debug Run Iools AddIns Window Help Type a question for help .. 8 x
EE-H s eaave s a M SFE R @ gi B X 2)
ki et X [[Generan =
=] i Option Explicit =l
(=% VBAProject (MacroExamples.xism) —
{5 Mirosoft Excel Objects Sub mySort () Code
i Sheet1 (Sheet1) :
. window
A columns and sort ascending by Region, Item, and Count.
i ThisWorkbook B and format Count.
=145 Modules .
© ¢ Module1 Reyboszd Shortootr TTrITSRITETs Project
‘Step 1 Explorer
Properties - Sheetl 5‘ 'Insert a new empty column at column A where the Region column will go. H
Columns ("A") .Insert WIndOW
Sheetl Waorksheet | =
Alphabetic |(:ahegnnzed| 'Step 2
Sheetl :HakE the
DisplayPageBreaks False and pasti:
DisplayRightToleft False
EnableAutoFiter False L
EnableCalculation [True Step 3
EnableFormatConditionsCal True belete ’:‘:--‘:-'-"-f which 1
EnableOutining False Columns ("C") . Delete
EnablePivotTable Fakse ==«
tion 0 - xINoRestriction:
Name Sheet1 Immediate
Sarollarea
Standardwidth 8.43
Visible -1 - wiSheetVisible
< |
Properties window Immediate window

The Project Explorer Window

The Project Explorer is a vertical pane on the left side of the VBE. It behaves similarly to
Windows Explorer, with folder icons that expand and collapse when clicked. If you do not see the
Project Explorer window in your VBE, press Ctrl+R, or from the VBE menu bar, click View =
Project Explorer. As the first item showing at the top of the Project Explorer window in Figure 3-3,
the name of the workbook I am using (in Excel terms, the VBAProject) is MacroExamples.xIsm.

VBA code is kept in objects known as modules, which are discussed later in further detail.
Figure 3-3 shows one module called Modulel. Double-clicking a module name in the Project
Explorer displays that module’s VBA code contents in the Code window, as you see in Figure 3-3.

The Code Window

The Code window is where the code for macros and VBA procedures is located. The VBE provides
separate code windows for each module. A good way to think of this is, for every object (worksheet,
module, and so on) you see listed in the Project Explorer, the VBE has provided a code window.
You will note that the drop-down in the upper right-hand corner of Figure 3-3 displays the name of
the macro that is currently showing in the Code window (mySort). As you create multiple macros,
you can use this drop-down to quickly move from one macro to another.

www.it-ebooks.info

http://www.it-ebooks.info/

22 | LESSON 3 INTRODUCING THE VISUAL BASIC EDITOR

The Properties Window

The Properties window is located in the left vertical pane near the bottom of the VBE. If you

do not see the Properties window in your VBE, press F4, or from the VBE menu bar click View
> Properties Window. This window displays a list of the properties and their assigned values of
whatever object is selected in the Project Explorer window. For example, in Figure 3-3, Sheet1 has
been selected and the Properties window shows you, among other details, that the Name property
for the selected object is Sheetl.

The Immediate Window

The Immediate window is located at the bottom of the VBE, usually below the Code window as
depicted in Figure 3-3. If you do not see the Immediate window in your VBE, press Ctrl+G, or
from the VBE menu bar, click View & Immediate Window. The name “Immediate” has nothing
to do with urgency, but rather with the notion that you can query a line of code and immediately
obtain its returned result, without having to run a macro to see what that code line does. This
comes in handy for code debugging tactics you will see in Lesson 17, but for now I just wanted to
point out the Immediate window to familiarize you with its name and location.

UNDERSTANDING MODULES

I touched on modules earlier but they are worth another mention. A module is a container for your

code. A single module may hold one or many macros, depending on the workbook and your prefer-
ence for how you manage your code. For smaller projects with maybe two or three macros, just one
module is sufficient. If you develop larger projects with dozens of macros, you will want to organize
them among several modules by theme or purpose.

Several types of modules exist:

> Standard Modules — These are the kind you have seen already, which hold macros you cre-
ate from scratch on your own or from the Macro Recorder.

> UserForm Modules — These belong to a custom user interface object called a userform,
which is covered in Lessons 18, 19, and 20.

> Class Modules — These contain the kind of VBA code that allows you to create your own
objects programmatically. Creating your own classes is very cool, and you learn about that
in Lesson 21.

» Worksheet Modules — These hold VBA code that looks and acts like macros, but to
make things interesting Microsoft refers to that code as a procedure instead of as a macro.
Worksheet-level procedures are tied to various actions called “events,” such as selecting a
range or entering a value in a cell.

> Workbook Module — Not to be outdone, the workbook itself has its own module, named by
default as ThisWorkbook, where code is maintained for handling workbook-level events.

The point is, several types of modules exist but the concept is the same — modules hold code for the
object(s) they serve.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Object Browser | 23

USING THE OBJECT BROWSER

The VBE offers a useful tool you should know about, called the Object Browser. This section gives
some background on the Object Browser and how you can use it to familiarize yourself with locat-
ing objects and their associated properties and methods.

The ability to program Excel is based on tapping into any of several libraries of objects in the
Microsoft Office objects model. For example, there is an Office library, a VBA library, and of
course, an Excel library. Some libraries have hundreds of objects, and each object has many prop-
erties, methods, and in some cases, associated events. The interwoven collection of object libraries
and their keyword kin is enormous. Fortunately, there is the Object Browser to guide your search
for information about objects and their properties for whatever library you are interested in.

To see the Object Browser in the VBE, press the F2 key or click View = Object Browser. It will look
similar to Figure 3-4 — it covers the area normally occupied by the Code window.

List of all Classes available for

Excel that you can select to browse.

This pane lists all Properties and Methods
that apply to whichever Class item you select.

ﬁ Microsoft Visual Basic - MacroExamples.xism - [Object Browser]
% Eile Edit ¥iew Insert Format Debug Run Toolf Add-Ins Window Help
EE-H ¢ RA0C o YERF R @ FIE O
Projeé VA roect] <All Libraries>| - o« | 2
= 4 =] li v]
E-&% VBAProject (1 scdsm) v
-5 Microsoft Excel Objects Classes) Members of ‘<globals="
: - Sheetl (Sheet1) @ i=globals= i~ [Abs -
Sheet2 (Sheet2) & AbaveAverage [|e& Activecell @
-BF) Sheet3 (Sheet3) 2 Action & ActiveChart
H -4 Thisworkbook ® Actions & ActivePrinter
E-E5 Modules & Addin S ActiveSheet
-+ Module1 1 Addins B ActiveWindow
5 Adjustments % ActiveWorkbook
5 AllowEditRange e Addins
Properties - Sheet3 | & AllowEditRanges =% AppActivate
Sheet3 Worksheet _.| 5 Application & Application
Alphabetic | categorized | & preas [Asc
] AutoCorrect & AscB
(iame) Sheet3 @ AutoFilter & AscW
[DisplayPageBreaks False] AutoRecover e Assistant
DisplayRightToLeft False @ Avxes o A
Enable AutoFilter False @ nds .o Beep
EnableCalculation True
EnableFormatConditionsC: True & AdsTille = Calculate
EnableOutining False & Border e Calendar
EnablePivotTable False & Borders = CallByName
[EnableSelection 0 - xdoRestrictions & BulletFormat2 = CBool
Sheet3 & CalculatedFields % CByte
ScrollArea 4 Calculateditems ~ [=® CCur -
Standardwidth 8.43 ZAll Librariess
\Visible -1 - xisheetvisible
FIGURE 3-4

To get a feel for the Object Browser, click the drop-down arrow next to <All Libraries> and select
Excel. When you do that, in the Classes pane, you will see the classes belonging to Excel. Click the
Application class and you will see the larger Members pane display the properties and methods
relating to the Application object. Click the activeWorkbook member and look at the bottom of
the Object Browser. You see that ActiveWorkbook is a property that itself is a Workbook object.

www.it-ebooks.info

http://www.it-ebooks.info/

24 | LESSON3 INTRODUCING THE VISUAL BASIC EDITOR

Following those steps, the Object Browser will look like Figure 3-5, with the black arrows pointing
to what you clicked. If you click the green Workbook link at the bottom, the Object Browser will
take you to the Workbook class, and display the properties and methods for workbook.

£ Microsoft Visual Basic - MacroExamples.xism - [Object Browser] i =R E
% File Edit View Inset Format Debug Run Tools Add-Ins| Window Help Type a question for help -8 X
E - 4B R4 m MR @ EIFES RS =2 6% %%
Project - VBAPraject x| X
= Excel ;-I 4 k) il
= B =
£ &% VBAProject (Macr) :I —I—I
1423 Microsoft Excel Objects Classes Members of ‘Application’
@ <globals> ~ | ActivateMicrosoftApp -
®] AboveAverage |] | Activecell B
1 Action E& ActiveChart
4] Thisorkbook S Actions E& ActiveEncryptionSession
B3 Modules) Addin ES' ActivePrinter
"4 Modulel ©) Addins ' ActiveSheet
2] Adjustments B ActiveWindow
) AllowEditRange =l ActiveWorkbook —
Properties - Sheet3 5‘) AllowEditRanges =% AddCustomList
Sheet3 Worksheet x| |@iApplicalion <———ptAddh
Aiphabetic |Cahegmzed &) Areas £ AfterCalculate)
2] AutoCorrect 5 AlertBeforeOverwriting
(Name) Sheet ® AutoFilter ' AltStartupPath
DisplayPageBreaks False] AutoRecover B AlwaysUseClearType
DisplayRightToLeft False
21 Aues E& AnswerWizard
EnableAutoFilter False @ A & Applicat
EnableCalculation True !s) pp. eation .
EnableFarmatConditionsci True) AxisTitle EE ArbitraryXMLSupportévailable
EnableOutiining False 2] Border 5 AskToUpdatelinks
EnablePivotTable False &) Borders S Assistance
EnableSelection 0 - xINoRestrictions & CalculatedFields 5! Assistant
Sheet3 ®] Calculateditems B& AutoCorrect
Scrollarea) CalculatedMember ~ |g& AutoFormatAsYouTypeReplaceHyperlinks -
tandardWidth a4 Property ActiveWorkbook As Workbook a
\Visible -1 - xisheetVisible read-only E
Wember of Excel Application -
3
FIGURE 3-5

With a class or member item selected, you can click the yellow Question Mark icon at the top of the
Object Browser to be taken to the Help file for that selected item.

The Object Browser has a Search feature in the drop-down field to the left of the Binoculars icon. If
you type a term you are interested in and click the Binoculars icon, the associated members of that
term will be displayed for the selected library.

To exit the Object Browser, click the lower of the two “X” close buttons near the top-right corner of
the VBE.

EXITING THE VBE

To exit the VBE and return to the worksheets, you can either press Alt+Q, or click the topmost “X”
close button at the top-right corner of the VBE.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 25

TRY IT

Because this lesson is an introduction to the Visual Basic Editor environment, there are no program-
ming techniques to try, but you can get a jump on your familiarity with the VBE by considering
these items:

1.

There are several ways to get into the VBE, but which way works best for you? As you’ve
seen, Alt+F11 works on all Excel versions, but if you are more of a mouse user than a key-
board user, there are several options depending on what’s easiest for you:

> In version 2003 you can click Tools = Macro = Visual Basic Editor, or you can keep
the Visual Basic toolbar visible, and click the Visual Basic Editor icon. You can also
right-click the workbook icon near the upper left corner of the Excel window (just
to the left of the File menu item), and select View Code, which will take you to that
workbook’s module in the VBE.

> In versions 2007 and 2010, you can click the Visual Basic Editor icon on the
Developer tab.

> In any version of Excel, you can right-click a worksheet tab and select “View Code,”
which will take you to that worksheet’s module in the VBE.

Take another look at the Object Browser and click around its classes and members. The VBA
object model is a vast library of information that no one would attempt to memorize, but the
idea here is to get a feel for the interwoven relationships among objects’ classes, properties,
and methods.

In the Project Explorer window, if you double-click an object such as a worksheet, work-
book, or module name, you will be taken directly to that object’s Code window. But also,
notice the pop-up menu when you right-click an object’s name in the Project Explorer. Go
ahead and click onto any of those menu items to get the gist of where they lead you and what
purpose they serve.

Get a bit of practice in with the Immediate window. If you were to enter some value into cell
A1, and then format cell A1 in bold font, you can enter these expressions in the Immediate
window and press Enter for each one:

? Range ("A1") .Value (will return whatever value you entered into A1).
? Range ("Al") .Font.Bold (will return True if you bolded A1, or False if you did not).

? Range ("Al") .ClearContents (will return True and clear the contents of cell Al).

There is no video to accompany this lesson.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working in the VBE

In Lesson 3, you took a bird’s eye view of the Visual Basic Editor, and you became familiar
with the names and locations of its most frequently used windows. In this lesson, you navigate
through those VBE windows for the purpose of demonstrating how to handle the kinds of
maintenance tasks you will often encounter in the VBE.

TOOLBARS I N TH E VB E a Microsoft Visual Basic - MacroExamples.xlsm - [ThisWorkbook (Code]]

i File Edit | View | Inset Format Debug Run Tools Add-Ins Wi
The first thing you may have noticed about Akl [E| o N T A=

. . . . Project - VBAProje| & Object Shift+F7 ————————
the VBE interface is that there is no Ribbon. - v e
The traditional VBE menu bar is pretty much SR YAy LotPesiion_ Cul-sne2
1 0 -5 Microsof aaa
the same interface for all versions of Excel

after 1997.

ral)

Object Browser 2]

=]
&1 Immediate Window Ctrl+G
El Locals Window

&

5 g . Watch Window
Because you will be spending more time e bl e
in the VBE, you’ll want convenient access B ProjectBploer iR
5 . P rties - ThisW| 4
to the toolbar icons relating to the work e
i S5 Toolbox
you’ll be doing. If you have not already Aphebetc [Goteg 125 01
done so, press Alt+F11 to get into the VBE, e e Toolbars o[e
and show the Edit and Standard toolbars et Mroonft e AL e
: H : ConfiictResolution 1-xlUserResolution | o SEmEEE
whose icons will soon come in handy. Comiae 1d] S
From the menu at the top of the VBE, click D ndObjecs 04 xDiplyshare Customize..
View = Toolbars = Edit and again View potioPrompiForConver Fase
> Toolbars @ Standard, as depicted in EncryptionProvider
EnvelopeVisible False
1 - Final False
Flgure 4 1‘ ForceFulCalculation False
_Hiuhl\uhﬁ:hanuesOnScreFa\sa ™ = 4 I
FIGURE 4-1

www.it-ebooks.info

http://www.it-ebooks.info/

28 | LESSON4 WORKINGIN THE VBE

MACROS AND MODULES

In Lesson 2, you used the Macro Recorder to create a macro named mySort. You learned how to
assign a shortcut key to the macro, and how to enter a brief description of what the macro does.
You also learned about a couple of ways to run the macro by using either the shortcut key or the
Macro dialog box. One thing you have not been shown yet is the macro itself, or even how to find it.

Locating Your Macros

When the Macro Recorder created the mySort macro in Lesson 2, it also created a module in which
to store the macro. If this module happens to be the first module of the workbook, as was the case
for mySort, the Macro Recorder will name the new module Modulel by default. If the Macro
Recorder creates another module after that, it assigns the default name of Module2, and so on.

In the Project Explorer window, expand the bolded VBAProject title (my Project workbook name is
MacroExamples.xlsm) and expand the yellow Modules folder to show the module named Modulel.
To see the VBA code in that module, you can double-click the module name, or you can right-click
the module name and choose View Code as shown in Figure 4-2.

£ Microsoft Visual Basic - MacroExamples.xism - [Sheetl (Code)) | =)
i Fle Edit View Inset Format Debug Run Tools Addlns Window Help Typea question for help B
ME-H % LBERIE > 0a R REFE RO BiT o b S |fEE|N =SS g% % %k
Project - VBAProject x| [(Generan | [tpeciarations) |
=R = Option Explicit =
= &4 VBAProject (MacroExamples.xism) —
48] Thisworkbook
E-£3 Modules
-t [P
[View Code
E& View Object
Properties - Modulel VBAProject Properties...
Module1 Module Insert 4 =
Alphabetic | categorized Import File. f
Module1 Export File...
jte X
Remove Modulel... =
sy Print. 1
v | Dockable Ll
T Hide s
= |l | L

The mySort macro will appear in the Code window for Modulel. Based on the steps you took while
recording the mysort macro in Chapter 2, Figure 4-3 shows the exact code that was produced by
Macro Recorder in Excel version 2003.

www.it-ebooks.info

http://www.it-ebooks.info/

Macros and Modules | 29

Sub mySort ()

'
' my3ort Macro

' Arrange the columns and sort ascending by Region, Item, and Count.
' Bold headers and format Count.
'
'
'

Kevhoard Shortcut: Ctrl+Shift+3

Coluwmns ("A:A™) .Select

Selection. Insert Shift:=xl1ToRight

Columns ("C:C") .3elect

Selection.Cut Destination:=Columns ("A:4i™)

Coluwnns ("C:CM) .Select

Selection.Delete Shift:=xlTolLeft

Range ("R1:C13") .Select

Selection.Sort Keyl:=Range ("AhZ"), Orderl:=xlliscending, FeyZ:=Range ("Bz") _
, DrderZ:=xlAscending, Keyi:=Range("C2"], Crderi:=xllscending, Header:= _
xlGuess, OrderCustom:=1, HNatchCase:=False, Orientation:=xlTopToBottom, _
Dacadptionl:=xl3ortNormal, Datadptionz:=xl3orcMorwal, Datadptioni:=
xl3ortNormal

Range ("C2:C013") .Select

Selection.NumberForwat = "#, ##0"

Range ("R1:C1™) .3elect

Selection.Font.Eold = True

End Sub

FIGURE 4-3

If you are using Excel version 2007 or 2010, your recorded code will look a
bit different from the 2003 version code. However, this macro produced by the
Macro Recorder in version 2003 will work just fine in those later versions.

Understanding the Code

All macros start with a sub statement (Sub is short for Subroutine, commonly referred to as a
macro) that includes the name of the macro, followed by a pair of parentheses. Here, the sub state-
ment is simply sub mySort ().

Because this macro was recorded, there is a series of comment lines below the sub statement that
the Macro Recorder wants you to know about. For example, you see the macro name, the descrip-
tion of the macro you entered into the Record Macro dialog box, and the notation that the shortcut
Ctrl+Shift+S has been assigned to this macro.

Comment lines start with an apostrophe, are green in color to help you identify them, and are not
executed as VBA code, as opposed to the other lines of VBA code that actually do something when
the macro is running.

The remaining lines in the macro are VBA statements, and they represent every action that was
taken while the Macro Recorder was on:

1. The first thing you did was select column A.
2. Next, you inserted a new column at column A.

3. Next, you selected column C, cut that column, and pasted it to column A.

www.it-ebooks.info

http://www.it-ebooks.info/

30 | LESSON4 WORKINGIN THE VBE

4. Next, you went back to select column C because it was empty, and you deleted it.
5. Next, you selected range A1:C13 where the table of data was.

6. Next, you sorted the selected range.

7. Next, you selected range C2:C13, which contained numbers you wanted to format.
8. Next, you formatted the selected cells with the thousands comma separator.

9. Next, you selected range A1:C1 where the column labels were.

10. Next, you formatted the selected range in order to Bold the font of those label cells.

11. Finally, you turned off the Macro Recorder, which produced the End sub line. All macros
end with the End Sub statement.

That’s quite a few “Nexts” in the explanation for what is going on! Fortunately, you can edit a
macro by typing your own descriptive comments, and you can consolidate a lot of the code so it
runs faster and looks cleaner.

Editing a Macro with Comments and Improvements to the Code

As good as the Macro Recorder is at teaching VBA code, it is woefully lacking in the efficiency
department with the volume of code it produces. To be fair, the Macro Recorder was never meant
to be a lean, mean coding machine. Its primary function, which it performs flawlessly, is to produce
VBA code that represents your every on-screen action.

It should be said, there is no law in the universe dictating that you must modify your every recorded
macro. Sometimes, for simple macros that do the job, leaving them in their original recorded state is
fine — if they work the way you want them to, you’ve won that round.

However, for the majority of VBA code that gets produced by the Macro Recorder, the superflu-
ous and inefficient nature of its excessive code will be impossible to ignore. Besides, when you send
your VBA workbook masterpieces to other users, you’ll want your code to look and act beyond the
beginner stage of recorded code.

You will find that editing a macro in the Code window is very similar to editing a
Word document. Of course, rules exist for proper syntax of VBA code lines, but
the principles of typing text, selecting words and deleting them with the Delete
key, pressing Enter to go to the next line down — all these word processor kinds
of behaviors with which you are familiar — will help make the macro edit pro-
cess an intuitive one.

A rule of thumb in VBA development is, don’t select or activate objects unless you need to. The
methods of Select and Activate are among the biggest culprits of slow, meandering macro exe-
cution. For example, the first two lines of code in the recorded macro are:

Columns ("A:A") .Select
Selection.Insert Shift:=x1ToRight

www.it-ebooks.info

http://www.it-ebooks.info/

Macros and Modules | 31

Those two lines can and should be consolidated into one line, bypassing the selection activity:

Columns ("A") .Insert Shift:=x1ToRight

Same with the next two statements...

Columns ("C:C") .Select

Selection.Cut Destination:=Columns ("A:A")
...which can be expressed more succinctly as

Columns ("C") .Cut Destination:=Columns("A")

You can see where I am going with this. In VBA, you can act directly upon most objects, most of the
time, without needing to select them. When you deleted column C, you never needed to touch it in
order for VBA to do the work for you because this...

Columns ("C:C") .Select
Selection.Delete Shift:=x1ToLeft
...can become this:

Columns ("C") .Delete Shift:=x1ToLeft

Figure 4-4 shows how the original 13 lines of code in the mySort macro have been reduced to a
much more readable and highly efficient six lines. Also notice how comments can be added for the
purpose of enhancing the organized look of the macro. Your comments will help you, and anyone
reading the macro, to understand what the code lines are doing, and why they are doing it.

Sub my3Sort()

' my3ort Macro
' Arrange the columns and sort ascending by Region, Item, and Count.
' Bold headers and format Count.

' Keyboard Shortcut: Ctrl+Shifc+s

'Step 1
'Insert & new ewpty coluwn at column A where the Region column will go.
Colwmms ("A") . Insert

'Step 2
'Make the "Region™ colwuwnn occupy coluwmn &, by cutting coluwn C and pasting it
'into the new ewpty coluwn A from Step 1.

Columns ("C™) .Cut Destination:=Columns("™L™)

'Step 3
'Delete column ©, which is now ewpty after Step 2.
Columns ("C™) .Delete

'Step 4
'Sort range A1:C13 by column A ("Region™), coluwmn B ("Itew'™), and column C ("Count'™).
Range ("A1:C13") .Sort Keyl:=Range ("AZ"), Orderl:=xliscending, Kevyi:=Range ("BZ"), _
Orderz:=xliscending, Key3:=Range("CZ"), Order3:=xliscending, Header:=xl¥Yes

'Step 5

'Format the nuwkbers in the Count colwen to show the thousands comna Separator.
Range ["CZ2:C13") .NunberFormat = "#, ##0"

'S3tep 6

'Bold the header labels of "Region®™, "Itewm™, and "Count™ in rahge Al:C1.
Range ("AL1:C1") .Font.EBold = True
End Zub

FIGURE 4-4

www.it-ebooks.info

http://www.it-ebooks.info/

32

LESSON 4 WORKING IN THE VBE

i You’ve now seen plenty of comments in the example macros, and how useful
comments can be in your VBA code. To enter a comment line of text, sim-

ply type in the apostrophe character, and everything you type after that, on

that same line, will be regarded as a comment and not executed as VBA code.
Usually, comments are written as stand alone lines of text, meaning the very first
character on that line is the apostrophe. However, some programmers prefer to
place comments on the same line as actual VBA code, for example:

Range(“A1”).Clear ‘Make cell A1 be empty for the next user.

In any case, comments will be green in color by default, and will not be executed
as VBA code.

Another way you can speed up your macros is to use the with statement when you are performing
multiple actions to the same object, such as to a range of cells. Suppose as part of your macro, you
need to clear a range of cells and format the range for the next user. If you use the Macro Recorder
to do this, here is the code you might get:

Range ("Al1:D8") .Select
Selection.Clear
Selection.Locked = False
Selection.FormulaHidden = False
Selection.Font.Bold = True
Selection.Font.Italic = True

Notice there are five lines of code that all start with the selection object, which refers to the
selected range of A1:D8. If this code was to run as the Macro Recorder produced it, VBA would
need to resolve the selection object for each line of code.

You can do two key edits to these lines of code by avoiding the select method altogether and refer-
ring to the range object only once at the beginning of a with structure. Between the with and End
With statements, every line of code that starts with a dot shall be evaluated by VBA as belonging
to the same range object, meaning the range reference need only be resolved once. Here is the con-
densed code using a with structure for greater efficiency:

With Range("Al1:D8")

.Clear

.Locked = False

.FormulaHidden = False

.Font.Bold = True

.Font.Italic = True
End With

www.it-ebooks.info

http://www.it-ebooks.info/

Macros and Modules | 33

Deleting a Macro

There will be many times when you have recorded or composed a macro that you don’t need any
more. Instead of having a useless macro hanging around doing no good, it’s better to delete it. To
delete a macro, you can select its entire code in the Code window (be sure you only select from and
including the sub line, to and including the End sub line) and press the Delete key.

By the way, you can delete a macro from outside the VBE. While on any worksheet, if you press
Alt+FS8 to call the Macro dialog box, you can select the macro name in the list and click the Delete
button.

Inserting a Module

With larger VBA projects, you’ll want to distribute your macros among two or more modules. With
large projects, you’ll be organizing your macros by some kind of theme or purpose. For example,
the macros in your company’s budget workbook that deal with reports might be placed in their
own module. Sometimes you will have no choice in the matter, because modules do have a limit as
to how much code they can individually support. To insert a new module, from the VBE menu bar,
click Insert & Module as shown in Figure 4-5.

£ Microsnft Visual Resir - MarmFrampledism - (Module? (Code]] [P ==
e [t Viow Isert | [omiot| Dzag Fun Tacl Adddns Windew lelp vpea queshanfer hoip .8 x
EE-E 4 eeee] | SEYR 8 pOashe=E -0 e%ui
Frojez: - VDAFrcjec: B usetom Cenzra) | [tzdiarations) 5 |
aE 6 4 Mocule
Cption Explicic =
EP ¥ Class Medule
O &5 Micesoft Excel € hileen Sub myvEert ()
I] Shees (Sh i
|~HE) shee? (Shee-?)
- B Shee 5 (Shee 3)
1 Thiswarkbcck
1224 Modues
Ll ectie
ers Tne meglon Solumn wall go.
Fropertes VBAProject x|
|vBAProject Froject =l
[Er—— -, JJ

FIGURE 4-5

You’ll see that your new module appears in the Project Explorer window. The entry cursor will be
blinking in the new Code window, all primed and ready for you to enter VBA code into your new
module, as depicted in Figure 4-6.

www.it-ebooks.info

http://www.it-ebooks.info/

34 | LESSON4 WORKING IN THE VBE

vﬁ Microsoft Visual Basic - MacroExamples.xlsm - [Module2 (Code]]

‘¥ File Edit View Inset Format Debug Run Tools Add-lns Window Help
EE-H ¥ EA 90 1 a W EFY R @ PR
Project - VBAProject x| [(General) <] [weciarations)
=l = Option Explicit
-8 VBAProject (MacroExamples.xism)
-5 Microsoft Excel Objects |
Sheetl (Sheet1)
Sheet2 (Sheet2)
Sheet3 (Sheet3)
4] Thisworkbaok
E-42 Modules
- Module 1
b2 Module2
Properties - Module2 il
Module2 Module ;I —
-
Alphabetic | Categorized | ==
=J= 4| | o
Module2
Immediate X
|
< | 3
4

FIGURE 4-6

Renaming a Module

You’ve noticed that the Macro Recorder assigned the default name of Macrol to the module it cre-
ated, and just now with Module2 you see how Excel continues to assign a sequential default name to
subsequent modules you insert. Yep, definitely a pattern going on here with the module names, but it
doesn’t mean those names need to stay that way.

A module name can be changed, and it makes a lot of sense to do so. This is especially true when
you have a complex workbook containing many macros in several modules, and you want the mod-
ule names to describe the overall themes of the macros they contain.

To change a module name, select it by clicking its original name in the Project Explorer. Notice

in the Properties window that the Name property of the selected module object is, as you would
expect, Module2. In the Properties window, use your mouse to select the entire module name prop-
erty, such as you see in Figure 4-7.

Now, it’s a simple task of typing over the selected Module2 text in the Properties window as you
enter whatever new name you want to give to that module. For this demonstration, name the mod-
ule Test. Just type the word Test and press Enter. The successful result is shown in Figure 4-8.

www.it-ebooks.info

http://www.it-ebooks.info/

Macros and Modules | 35

[a Microsoft Visual Basic - MacroExamples.xism - [Module2 (Code)]

=E)

i File Edit View Inset Format Debug Run Took Add-Ins Window Help

15 Microsoft Excel Objects

Sheet3 (Sheet3)
.48 ThisWorkbook
&5 Modules

iy8% Modulel

488 Module2

Module2 Module
Alphabetic |Cabego ized |

jodul

Type a question for help - -8 X

E-H 2B H90 0o BEEYE e EiR s e =2 4%5%%
Project - VBAPraject x| [(General ~ ~] [weciarations) =]
=N | = Option Explicit |
EXH ject (Macr xlsm) il

[rlix |_|<|

mo

FIGURE 4-7

= @ VBAProject (MacroExamples.dsm)
(1423 Microsoft Excel Objects

[#5 Microsoft Visual Basic - MacroExamples:dsm - [Test (Code]] [E=E >
‘ML Fle Edt View Inset Format Debug Run Tooks Add-ns Window Help Type a question for help .8 x
E-H fRA9e oo %EYE 6 PHEE R R Slekles
Project - VBAProject x| [(Generan ~ =] [tectarations) =
=N = Option Explicit =

Test Module —
phobet | categorized | | o
Test
x|
Jd | o]
c
FIGURE 4-8

www.it-ebooks.info

http://www.it-ebooks.info/

36 | LESSON4 WORKING IN THE VBE

Deleting a Module

An entire module can be deleted, and it’s wise to keep your projects uncluttered of unused module
objects if they have served their purpose and will no longer hold any macros. To delete a module,
right-click the module name in the Project Explorer, and from the pop-up menu, click Remove
[module name] as shown in Figure 4-9.

£ Microsoft Visual Basic - MacroBxamples.xlsm - [Test (Codel] [E=SEER
% File Edit View Inset Format Debug Run Tools Add-Ins Window Help Type a question for help -8 X

HE R ™ W NI B ST N A) PHERER Y ERIE Y R T
Project - VBAProject x| [(Generan ~| [Dectarations) |
== ki Option Explicit =

=& VBAProject (MacroExamples.dlsm)
(15 Microsoft Excel Objects

Sheet1 (Sheet1)

Sheet2 (sheet2)

Sheet3 (Sheet3)

-3%] ThisWorkbook

Modules

Ly Module1

lar

View Code
= View Object

Properties - Test : -
VBAProject Properties...

Test Module

4]

Insert »

Alphabeti
phabetc lcaﬁ - Import File... Ed | L

Test

Export File... diate

[»]

Remove Test...

@ Print..
v | Dockable

= Hide L

all

FIGURE 4-9

You will be prompted with a message to e — =5
confirm your intentions, along with a ques-
tion as to whether you want to export your
module elsewhere. In very remote instances
you will need to export a module, but per-
sonally, I have never come across a need to Yes No Cancel Help
do that. Although the default button on
the message is Yes, click the No button as
shown in Figure 4-10 to confirm the deletion FIGURE 4-10
of that module.

r l Do you want to export Test before removing it?

LOCKING AND PROTECTING THE VBE

The beauty of macros is that when they are properly constructed, you can count on them to do their
job. The last thing you want is for another user of your workbook to wander into the Visual Basic
Editor by mistake, and make any kind of keystroke in a Code window. Especially when other people
are using your workbook, you will want to protect your code.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 37

To limit access to the VBE, click Tools = VBAProject | veaproject - Project properties =)
Properties, which calls the VBAProject - Project Genersl | Frotection |
Properties dialog box. Click to select the Protection - Lock project

tab. Place a checkmark in the box next to Lock
Project for Viewing. Enter a password you will
remember, and confirm it as shown in Figure 4-11.

[V Lack project for wiewing

Click OK to exit the dialog box. For the locked P T
protection to take effect, you need to save the passnord |
workbook and close it. Now, each time the work-
book is reopened, the Visual Basic Editor will
require your password if you or anyone tries to
gain access to the VBE. ok |

Confirm password I

Cancel Help

FIGURE 4-11

TRY IT

In this lesson, you practice placing a macro into a new module. You type a short macro into
Notepad. The idea is to start getting accustomed to writing VBA code, and also to practice copying
a macro from outside of Excel (such as from a newsgroup or website) and pasting it into a new mod-
ule in Excel.

Lesson Requirements

None.

Step-by-Step

Place a macro from an external application into a new Excel module. In this exercise, Windows
Notepad is being used as the external application. To open Notepad, click the Start button at the
lower left corner of your screen, and from the Start menu select Programs (in later versions of
Windows it may be All Programs) = Accessories = Notepad.

1. Open Notepad, and type these four statements just as you see them, which is a VBA macro
named Example:

Sub Example ()

Range ("Al") .Value = "Hello"
MsgBox "You just entered Hello in cell Al."
End Sub

2. Open Excel.
3. Return to Notepad, select the Example macro you just composed, and press Ctrl+C.

4. Return to Excel and, from your worksheet, press Alt+F11. That will take you to the Visual
Basic Editor.

5. The left pane should be visible and titled Project - VBA Project. That is called the Project
Explorer. If it is not visible, press Ctrl+R to access it.

www.it-ebooks.info

http://www.it-ebooks.info/

38 | LESSON4 WORKINGIN THE VBE

6. Find the bold name of your workbook in the syntax “VBAProject (YourWorkbookName.xls).”
Click it once to select it.

i Microsoft Visual Basic for Applications - YourWorkbookiiame.xls N [l S|

i File Edit View Insert Format Debug Run Jools AddIns Window

Help Type a question for help ~

E-bl 4 @ma 9 » 1o NFY @

Project - VBAProject

487 ThisWorkbook

|VBAProject Project |
Aiphabetic | Categorized |
VBAProject

Immediate x|

FIGURE 4-12

7. From the menu bar, click Insert = Module.

8. A cursor will be blinking in the large white pane on the right, which is the new module. Press
Ctrl+V to paste the copied Example macro into your new module. Figure 4-13 shows the
macro that’s been copied into your new module.

“g Microsoft Visual Basic for Applications - YourWorkbookName.xls - [Modulel (Code)] = |EI|5|

% File Edit View Insert Format Debug Run Tools Add-Ins Window Help Type aquestion forhelp » - & %

HE-H s uBan 90 » s a M ¥FF > @QPiT v bbne FFE =2 s%% 5]

) j X

Project - VBAProject %] I‘Ge“em“ j Immple j

20 =
Option Explicit =

ER:H ject (YourWor xls) =

5 Microsoft Excel Objects Sub Example ()

Range ("R1"™) .Value = "Hello"

MsgBox "You just entered Hello in cell &1."
End Sub

|Module1 Module
‘Alphabetic Icﬂmmd |
Module 1

FIGURE 4-13

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 39

9. Press Alt+Q to return to the worksheet.
10. Press Alt+FS8 to display the Macro dialog box.

11. In the larger white box of that Macro dialog box you will see “Example”, as shown in
Figure 4-14. Double-click it, or single-click it (that is, select it) and click the Run button.
Either one of those two actions will run the Example macro.

Macro name:
IExample E Run
= Step Into |
Edit
Create |
Delete |
Macrog in: | All Open Workbooks j
Description
[==]
FIGURE 4-14

To get the sample database files, you can download Lesson 4 from the book’s website at
WWW . WXroxX.Ccom.

To view the video that accompanies this lesson, please select Lesson 4, available at
the following website: www.wrox . com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION Il
Diving Deeper into VBA

» LESSON 5: Object-oriented Programming — An Overview
» LESSON 6: Variables, Data Types, and Constants
» LESSON 7: Understanding Objects and Collections

» LESSON 8: Making Decisions with VBA

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Object-oriented
Programming — An Overview

In Lesson 1, you saw a brief historical synopsis of VBA. One particular facet of VBA’s
evolution that is worth more explanation is object-oriented programming, or OOP.

Object-oriented programming came about in the 1980s as a new concept in computer
programming. Its popularity grew over time, and with good reason — OOP’s original
precepts are at the core of today’s VBA programming language for Excel.

WHAT “OBJECT-ORIENTED PROGRAMMING” MEANS

Visual Basic for Applications is an object-oriented programming language. The basic concept
of object-oriented programming is that a software application (Excel in this case) consists of
various individual objects, each of which has its own set of features and uses. An Excel appli-
cation contains cells, worksheets, charts, pivot tables, drawing shapes — the list of Excel’s
objects is seemingly endless. Each object has its own set of features, which are called proper-
ties, and its own set of uses, called methods.

You can think of this concept just as you would the objects you encounter every day, such as
your computer, your car, or the refrigerator in your kitchen. Each of those objects has identify-
ing qualities, such as height, weight, and color. They each have their own distinct uses, such

as your computer for working with Excel, your car to transport you over long distances, and
your refrigerator to keep your perishable foods cold.

VBA objects also have their identifiable properties and methods of use. A worksheet cell is an
object, and among its describable features (its properties) are its address, its height, its for-
matted color, and so on. A workbook is also a VBA object, and among its usable features (its
methods) are its abilities to be opened, closed, and have a chart or pivot table added to it.

www.it-ebooks.info

http://www.it-ebooks.info/

44

LESSON 5 OBJECT-ORIENTED PROGRAMMING — AN OVERVIEW

Therefore, we can say that object-oriented programming, upon which VBA is based, is a style of
programming language that cares primarily about objects, and how those objects can be manipu-
lated based on their inherent qualities.

THE OBJECT MODEL

The Excel object model is the heart and soul of how VBA is used in Excel. While VBA is the pro-
gramming language for Excel, it is also the programming language for Office applications in Word,
Access, PowerPoint, and Outlook. Even though all these applications are programmable with VBA,
they have their own programming needs because they are different software applications and hence
are designed to serve different functions. Excel does not receive e-mails as Outlook does, and Word
does not produce reports from its own database tables as Access does.

Every VBA action you take in your Excel workbook sends a command through the Excel object
model. The object model is a large list of objects that relate to Excel, such as worksheets, cells,
ranges, and charts. The VBA code in your macro that adds a worksheet to the workbook will make
sense to Excel, because it is communicating with the objects that are recognized to be present in the
Excel object model. For example, that same macro to add a worksheet would not work in Outlook.
The Outlook object model does not include worksheets because Outlook is an application that
maintains e-mails and appointment calendars, not worksheets.

The object model of any VBA application is hierarchical by design. In the Excel object model, the
Application object is at the top of the model because it is the entire Excel application. Under the
Application object is a whole host of other objects, one of them being the workbook object. Under
Workbook is the Worksheet object, among many others, and under the Worksheet object are Range
and cell objects, and so on.

The result of this hierarchy is what drives the proper syntax for your VBA macros. For example, if
you want to enter the word “Hello” in cell A1 of Sheet1 of the workbook you are currently working
in, the line of code to handle that could be:

Application.ActiveWorkbook.Worksheets ("Sheetl") .Range("Al").Value = "Hello"

VBA is a smart language. It knows you are working in Excel if you are specifying a workbook
object. It also knows you are doing something in a workbook if you are specifying a Wworksheet
object. Therefore, the preceding line of code can be shortened to:

Worksheets ("Sheetl") .Range("Al").Value = "Hello"

And that can be shortened further if you are working on Sheet1 when the code line is executed. If the
parent Worksheet object is not specified, VBA’s default assumption is that you want the active work-
sheet to receive the word “Hello” in cell A1, and in that scenario the line of code would simply be:

Range("Al") .Value = "Hello"
A bit of theory on the subject of objects. In an object-oriented programming environment, VBA

regards as an Excel object pretty much any element of the Excel application you can think of,
whether it is a button, or a row, or a window — even the Excel application itself.

www.it-ebooks.info

http://www.it-ebooks.info/

The Object Model | 45

When you add an object to your workbook with VBA — for example, if you run a macro that cre-
ates a chart — VBA is at work behind the scenes, storing information about that chart object, and
assigning default values to its properties that were not specified in the macro. I mention this as a
piece of good news, because with VBA filling in the blanks as it does, it’s that much less about VBA
you need to learn in order to start writing advanced macros. This advantage will become clearer as
you progress into more complex programming techniques.

Properties

As noted earlier, VBA objects have inherent qualities, called properties, similar to any objects you may
deal with in the real world. Properties define what the object looks like and how it acts. If you own

a red bicycle, you can change its Color property by painting the bicycle a different color. For a ce11
object on a worksheet, you can change its color property by formatting the cell with a different color.

In VBA code, you refer to the property of an object by first referring to the object, then the property,
separated by a dot. Following are examples of a few of the many properties belonging to the cel1,
Worksheet, and Workbook objects:

> This line of code would format the active cell’s Locked property:

ActiveCell.Locked = True

> The Name property of the Worksheet object represents the worksheet’s tab name. For exam-
ple, this expression in the Immediate window would return the name of the active worksheet:

? ActiveSheet.Name

> This expression would change the Name property of the active worksheet to “Hello,” and
when executed would result in “Hello” being the active worksheet’s new tab name:

ActiveSheet.Name = "Hello"

> This expression will change the Color property of the active worksheet’s tab to yellow:

ActiveSheet.Tab.Color = vbYellow

> Workbooks have a saved property that indicates if the workbook has been saved since its
most recent change. For example, if you save your workbook and then enter the following
expression in the Immediate window, VBA will return True:

? ThisWorkbook.Saved
> 1If you were to make some change to the workbook, such as entering a number in a cell, and

immediately re-evaluate the expression ? ThisWorkbook.Saved, False would be returned
because VBA knows that the workbook has not been saved since it was last changed.

www.it-ebooks.info

http://www.it-ebooks.info/

46 | LESSON5 OBJECT-ORIENTED PROGRAMMING — AN OVERVIEW

Methods

Methods are actions that can be performed by objects. VBA objects have inherent behavioral abili-
ties. Following are examples of Excel objects and some of their methods:

>

The Range object of A1:D10 can have its cells’ contents cleared with the clearcontents
method:

Range ("Al1l:D10") .ClearContents

Workbooks and worksheets can be activated with the activate method:

Workbooks ("Bookl.xlsx") .Activate
Worksheets ("Sheet2") .Activate

Here’s a more complicated example, to call your attention to the fact that objects can contain
objects, not just properties. Suppose you have three pivot tables on Sheet1, and you only
want to refresh the pivot table named PivotTable2. As far as VBA is concerned, what you
really want to refresh is the PivotCache object of the PivotTable2 object of the Sheet1 work-
sheet object. This line of code would accomplish that, using the Refresh method:

Worksheets ("Sheetl") .PivotTables ("PivotTable2") .PivotCache.Refresh

This multiple-object syntax might look daunting at first, but you can take some
comfort in knowing that you've been writing VBA code in this manner since
Day 1. All objects (except the Application object, which is Excel itself) have a
Parent property, that is, another object to which they belong. In many cases,
you don’t need to specify the Parent object because it is inferred by default. For
example, if you are referring to cell A1 on your active worksheet, you do not
need to (though you could) express it as ActiveSheet.Range(“A1”) — you only
need to express it as Range(“A1”). In the preceding example, however, pivot
tables are embedded objects for which VBA requires you to specify the Parent
worksheet object. If all this talk of properties and methods is not clear yet, don’t
worry, it will all make perfect sense when you see the theory in action.

Collections

Some of the VBA programming you learn in later lessons will involve the concept of collections, and
it is a topic I’ll touch on here. In object-oriented programming, a Collection is an object that con-
tains a group of like objects. For example, there is a Worksheets collection object that is the entire
group of Worksheet objects in your workbook. Even if one worksheet contains hundreds of formu-
las and another worksheet is totally empty, both those worksheets are like objects because they are
both worksheets, and therefore they both are a part of the worksheets collection.

As you’ll see, invoking the collection object in your code is a terrific way to take some action
on all the objects in that collection, without needing to know anything specific about the col-
lected objects. For example, say you want to add some boilerplate text to every comment on your

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 47

worksheet. Employing a For..Each loop (loops are covered in Lesson 9) to edit every comment in
the comments collection would make the task simple, because each comment would belong to the
comments collection, and you’d be confident knowing you hit all comments without needing to
know what cells they are in.

@

A good rule of thumb in recognizing a Collections object is to notice that its
name ends with the letter “s,” as a pluralized form of its singular object item
name. Examples of this are the Names collection of individual Name objects, the
Charts collection of individual Chart objects, the Workbooks collection of indi-

vidual Workbook objects, and so on.

TRY IT

This lesson provided an overview of object-oriented programming. There are no programming
techniques to try based on the material in this lesson, but here are some important concepts to
keep in mind:

1.

2.

Excel is replete with objects, such as workbooks, worksheets, and cells, and each object has
its own set of properties that can be altered to suit your application project’s design.

If you should need to refer to an object’s container, such as when you refer to a worksheet in
another workbook, just use the object’s Parent property. All objects (except Application)
have a Parent property that is the object within which they are contained. For example,

if your active workbook object is Book2 but you want to refer to Sheet1 in Book1, you’d
precede the Sheet1 object with its parent Book1lobject name, like this: Workbooks(“Book1.
xlsm”).Worksheets(“Sheet1”).Range(“A1”).Value = “Hello”

The Application object indeed holds the highest order of Excel’s objects, but as you will
see, it also offers many useful methods and properties. The Application object provides the
ability to insert worksheet functions (SUM, AVERAGE, VLOOKUP, and so on), as well as com-
mands to control Excel’s display options for worksheet gridlines, tabs, and window sizes.

There is no video to accompany this lesson.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Variables, Data Types,
and Constants

Many of the macros you develop will involve the need for referencing an item you are work-
ing on without specifying that item by its name, amount, or location. This concept may
sound strange at first, but you will quickly discover with your macros that in many situations
it makes sense, and indeed is necessary, to manipulate or analyze data in one part of your
macro, and hold the results in virtual memory for later use.

WHAT IS A VARIABLE?

VBA stores data in memory using a variable. A variable is a name given by you, to which you
assign a piece of data that is stored in an area of the computer’s memory, allowing you to refer
to that data when you need to later in the macro. VBA handles the task of finding an appropri-
ate place in the computer’s memory to store your variable data, and dutifully retrieves the data
when you ask for it by its variable name.

Variables hold values of different data types (more on this later) that are specified when the
variable is declared. When you declare a variable, you do so by entering a declaration state-
ment that includes four keywords in a particular order:

1. The pim statement (VBA’s abbreviation for “Dimension”), which all variable declara-
tions start with.

2. The name of your variable, which you create, such as myvalue.

w

The word as.

4. The type of data being stored.

www.it-ebooks.info

http://www.it-ebooks.info/

50

LESSON 6 VARIABLES, DATA TYPES, AND CONSTANTS

One common data type is called Integer, which, as you will see in Table 6-1, refers to whole num-
bers within a certain range. Using the preceding four steps as a sequential construction guide, here is
a typical-looking variable declaration statement:

Dim myValue As Integer
You’ll soon see the enormous benefit that this kind of innocent-looking statement can have in your

macro. Although a few wrinkles exist in the variable declaration process, a variable declaration
statement will often look no more complicated than this.

You will find that editing a macro in the Code window is very similar to editing a
Word document. Of course, rules exist for proper syntax of VBA code lines, but
the principles of typing text, selecting words and deleting them with the Delete
key, pressing Enter to go to the next line down — all these word-processor kinds
of behaviors with which you are familiar — will help make the macro editing
process an intuitive one.

ASSIGNING VALUES TO VARIABLES

After the variable declaration statement, which might be the next code line or 100 code lines later in
your macro, depending on what you are doing, you will have a statement that assigns a value to the
myValue variable. Here’s an example of assigning the number in cell A1 to the myvalue variable:

myValue = Range("Al") .Value
The value you assign might be an actual value that is stored in a cell, as in the preceding example, or it

might be a value you create, again, depending on the task at hand. This notion will become clearer
with more examples you’ll be seeing throughout the book.

WHY YOU NEED VARIABLES

I mentioned earlier that in some situations, employing a variable will be a sensible option. Suppose
you have a number in cell A1 that you are referring to for several analytical purposes throughout
your macro. You could retrieve that number by referring to its A1 cell address every time, but that
would force Excel to look for the same cell address and to recommit the same number to memory
every time.

As a simplified example, here is a macro with four commands, all invoking the value in cell A1:

Sub WithoutVariable()

Range ("C3") .Value = Range("Al") .Value

Range ("D5") .Value = Range("Al") .Value / 12

Range ("E7") .Value = Range("Al") .Value * 365

MsgBox "The original value is " & Range("Al") .Value
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Data Types | 51

For VBA to execute this macro, it must go through the same behind-the-scenes gyrations four sepa-
rate times to satisfy each of the four commands that reference range A1. And if your workbook
design changes, where you move the number of interest from cell A1 to cell K3, you need to go into
the code, find each related code line, and change the cell reference from A1 to K3.

Fortunately, there is a better way to handle this kind of situation — by declaring a variable to refer
to the value in cell A1 just once, like this:

Sub WithvVariable ()

Dim myValue As Integer

myValue = Range("Al") .Value

Range ("C3") .Value = myValue

Range ("D5") .Value = myValue / 12

Range ("E7") .Value = myValue * 365

MsgBox "The original value is " & myValue
End Sub

By assigning the number value in cell A1 to the myvalue variable, you’ve increased your code’s
efficiency and its readability, and VBA will keep the number value in memory without having to
reevaluate cell Al. Also, if your cell of interest changes from A1 to some other cell, say cell K35,
you only need to edit the cell address in the assignment code line to refer to cell K5, like so:

myValue = Range("K5") .Value

As you’ve probably noticed in this situational example, a variable declaration is advisable, but it is
not an absolute requirement for the withoutvariable macro to function. However, as you will see
in the upcoming lessons, variable declaration will be a necessary practice for handling more com-
plex tasks that involve loops, object manipulation, and conditional decision-making. Don’t worry —
after you see a few examples of variables in action and start practicing with them on your own,
you’ll quickly get the hang of when and how to declare variables.

DATA TYPES

Simply stated, VBA’s role in life is to manipulate data in a way your computer can understand it. A
computer sees information only as a series of binary numbers such as Os and 1s — very differently
than how humans see information as numerals, symbols, and letters of the alphabet.

Your macros will inevitably manipulate data of varying types, such as text, or numbers, or range
objects. Part of VBA’s job is to bridge the communication gap between humans and computers,
by providing a method for telling the computer what type of data is being referred to in code.
When you specify a data type in VBA, you help the computer to know how it should regard your
data so that your macros will produce the results you’d expect, based on the types of data you are
manipulating.

Understanding the Different Data Types

Data types are the different kinds of ways you can store data in memory. Table 6-1 shows a list of
common data types, with their descriptions and memory usage.

www.it-ebooks.info

http://www.it-ebooks.info/

52 | LESSON 6 VARIABLES, DATA TYPES, AND CONSTANTS

TABLE 6-1: Data Types

DATA TYPE
Boolean
Byte

Currency

Date

Decimal

Double

Integer
Long

Object

Single

String

Variant

DESCRIPTION
True or False; 1 or O; On or Off.
An integer from O to 255.

A positive or negative number with up to 15 digits to the
left of the decimal point and up to 4 digits to the right of it.

A floating-point number with the date to the left of the
decimal point and the time to the right of it.

An unsigned integer scaled to the power of 10. The power
of 10 scaling factor specifies the number of digits to the
right of the decimal point, and ranges from O to 28.

A floating point number ranging in value from
—1.79769313486231E308 to —4.94065645841247E-324
for negative values and from 4.94065645841247E-324 to
1.79769313486232E308 for positive values.

An integer ranging from —32,768 to 32,767.
An integer ranging from —2,147,483,648 to 2,147,483,647.

A reference to an object, such as a range of cells, a chart,
a pivot table, a workbook, a worksheet, or any one of the
many other objects that are a part of the Excel application.

A floating-point number ranging in value from
—3.402823E38 to —1.401298E-45 for negative values and
from 1.401298E-45 to 3.402823E38 for positive values.

There are two kinds of strings: variable-length and fixed-
length.

A variable-length string can contain up to approximately
2 billion characters.

A fixed-length string can contain 1to approximately
64,000 characters.

Data type for all variables that are not explicitly declared
as some other type, which can contain any kind of data
except fixed-length String data.

www.it-ebooks.info

MEMORY
2 bytes
1 byte

8 bytes

8 bytes

12 bytes

8 bytes

2 bytes
4 bytes

4 bytes

4 bytes

For a variable-length
string, 10 bytes plus stor-
age for the string

For a fixed-length string,
the storage for the string

For containing numbers,
16 bytes

For containing charac-
ters, 22 bytes plus stor-
age for the characters

http://www.it-ebooks.info/

Data Types | 53

Declaring a Variable for Dates and Times

The pate data type is worth an extra look, because it is the data type with which variables for both
dates and times can be declared. You can assign values to a date variable by enclosing them in the

number sign character, with the value being recognizable to Excel as either a date or time. For
example:

myDate = #09 October 1958#

or

myDate = #October 9, 1958#
or

myTime = #9:10 PM#
or

myTime = #10/9/1958 9:10:00 PMi#

When entering dates, get into the good habit of entering the year as a full four-
digit number. The year 2029 is the dividing line in VBA for two-digit years belong-
ing to either the twentieth or twenty-first centuries. All two-digit years from 00

to and including 29 are regarded as belonging to the 2000s, and 30 to 99 are
regarded as belonging to the 1900s. For example, the expression 10/10/29 in Excel
is October 10, 2029, but 10/10/30 is regarded by Excel as October 10, 1930.

Declaring a Variable with the Proper Data Type

As you become more familiar with VBA, you’ll notice that different developers have their preferred
writing styles when declaring variables. For example, you can declare several variables on one line,
each separated by a comma, like this:

Dim myValuel as Integer, myValue2 as Integer, myValue3 as Integer

There is nothing wrong with that construction, but be careful not to make this common mistake:
Dim myValuel, myValue2, myValue3 as Integer

If you do not specify a data type after a variable name, such as in the latter case with myvaluel and

myValue2, VBA will assign the variant data type. Only the Value3 variable has been specified the

Integer data type. variant is a catch-all data type that is the most memory-intensive, and the least
helpful in understanding the purpose of its associated variables if anyone else should read your code.

www.it-ebooks.info

http://www.it-ebooks.info/

54 | LESSON 6 VARIABLES, DATA TYPES, AND CONSTANTS

The variant data type does have its place, for instance when dealing with arrays or conversions of
data types, but you should take care to specify the appropriate data types of all your variables. In so
doing, your macros will run faster, they’ll be easier to read, and they’ll be more reliable.

FORCING VARIABLE DECLARATION

Declaring your variables can only be a good thing. It takes a little extra thought and effort, but not
declaring your variables can cause a lot more trouble when reading or debugging your code. Macros
run faster and use less memory when all variables are properly declared.

You can tell if variable declaration is being enforced by seeing if the statement Option Explicit is
at the top of your module. If you do see the option Explicit statement, write a quick macro that
tries to call an undeclared variable, such as you see depicted in Figure 6-1. When you attempt to
run the macro, you’ll receive a compile error as shown in Figure 6-1, informing you a variable is not
defined. In this scenario, the error occurred because the myName variable was not declared with a
statement such as Dim myName as String.

a Microsoft Visual Basic - MacroBxamples.dsm [running] - [Module2 (Code)] ‘EIEIA'
% File Edit ¥iew [nset Format Debug Run Tools Add-Ins Window Help Type a question for help ~ -5 X
iHE-H a9 c » 1 aSBFFE O fiBokRe|=EE 8- 6% %%
[= LR x| [(Generan) =] [variabiepeciarationTest =]
Ell= 7] Option Explicit =l
E@ ject (Macr lesodsm) —
-5 Microsoft Excel Objects Sub VariableDeclarationTest ()
Sheet1 (Sheetl) "Tom Urtis"
Sheet2 (Sheet2) MegBox myName Microsoft Visual Basic g
Sheet3 (Sheet3) End Sub
i 4] ThisWorkbook
E1-£2§ Modules o Compile error;
w2 Module1
Loyl Module2 Variable not defined
Properties - Module2 x| ok Help
Module2 Module | 1
Alphabetic | Categorized j: =
=J= 4] | v
Module2
Immediate X
| | |
L
FIGURE 6-1

If you do not see the option Explicit statement at the top of your modules, go into the VBE and
from the menu bar, click Tools = Options as shown in Figure 6-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Forcing Variable Declaration | 55

-
E Microsoft Visual Basic - MacroExamples.dsm - [Module2 (Code]]

b= O |

i File Edit View Inset Formast Debug Run | Tools i&dd-lm Window Help Type a question for help - _ 8 x
A - % BRI o ﬂ@ References... =2 s nll
(General Additional Controls... j

=N =] E Macros... :I

ject (Macr xsm) Options...

icrosoft Excel Objects
VBAProject P rties...
Sheet1 (Sheett) R PEr IS
Sheet2 (Sheet2) Digital Signature...

Sheet3 (Sheet3)
3| ThisWorkbook
-5 Modules

"

ey Module2

Properties - Modulel
Modulel Module
Alphabetic ICategonzed I

< |

Module1
Immediate X
4| | =5
FIGURE 6-2

You will see the Options dialog box. On the Editor tab, select the option Require Variable
Declaration as shown in Figure 6-3, and click OK.

[

Options.

Editor I Editor Format | General | Docking |

r~Code Settings
[V Auto Syntax Check [V Auto Indent
¥ Require Variable Dedaration

Tab width: |4
¥ Auto List Members 1
¥ Auto Quick Info
¥ Auto Data Tips

 Window Settings

¥ Drag-and-Drop Text Editing
¥ Default to Full Module View
¥ Procedure Separator

QK I Cancel Help

FIGURE 6-3

Figure 6-4 shows the option Explicit statement at the top of the module, which will appear in
every new module you insert thereafter.

www.it-ebooks.info

http://www.it-ebooks.info/

56 | LESSON6 VARIABLES, DATA TYPES, AND CONSTANTS

[E Microsoft Visual Basic - MacroExamples.adsm - [Module2 (Code)] M‘
% File Edit View Insert Format Debug Run Tools Add-Ins Window Help Type a question for help - 8 X
HE =R I Y R R) fiE bk EEIO=2 6% % %L
Project - VBAProject 5' IIGeneraIJ j ItDecIaratlons) d
Ell= = Option Explicit —
RS ject (Macr xlsm) I

osoft Excel Objects
Sheet1 (Sheet1)
Sheet? (Sheet2)
Sheet3 (Sheet3)
4] ThisWorkbook
=25 Modules

ol

L2 Module2

Properties - Modulel x|
Modulel Module ;I
Alphabetic | categorized EIEE | | L'_I
Module1
Immediate z

ml

Jd |

FIGURE 6-4

UNDERSTANDING A VARIABLE’S SCOPE

Variables and constants (explained in the next section) do not live forever in memory. They have
a set lifetime and visibility within macros and modules. A variable’s lifetime begins when it is
declared, and ends when the macro that declared the variable completes its execution.

Local Macro Level Only

The visibility of a variable or constant also depends on how it is declared. If declared within a
macro, a variable can only be used by that macro. For example:

Sub Macrol ()

Dim intAdd As Integer, intSum As Integer
intAdd = 31

intSum = intAdd + 10

MsgBox intSum

End Sub

Module Level

It is possible for a variable to be visible and usable in more than one macro by having the declaration
statement at the top of the module instead of inside a particular macro. In Figure 6-5, both Macrol
and Macro2 can utilize the intSum and intadd variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Constants | 57

r
E Microsoft Visual Basic - MacroExamples.xdsm - [Module2 (Code)] lilgg
ie% File Edit View Inset Format Debug Run Tools Add-Ins Window Help Type a question for help _ 8 x
dl-H $B2BaRA9c > n o HBFTR @ éi.j_w‘g'ﬂ&,m =S\ 6% %%
[(Gensral) | [peciarations) =
= 3 i Cption Explicit =
E@ ject (Macr slem) Dim Intlhdd A= Integer, intSum As Integer
Microsoft Excel Objects
heetl (Sheetl) Sub Macrol()
heet2 (Sheet2) Intadd = 31
heet3 (Sheet3) intSum = InthAdd + 10
; ThisWorkbook M=gBox intSum
=425 Modules End Sub
¥ Module1
P4 odule2] Sub MacroZ ()
Inthkdd = 58
intS5um = IntAdd + 10
- MsgBox intSum
Properties - Module2 !l End Sub
Module2 Module |
- -
Alphabetic | categorized | == 4] | _'I_I
Module2
Immediate X/
a
=
41 | o

FIGURE 6-5

Application Level
Finally, you can declare the variables as public, which will make them visible to all macros in all

modules. You only need to place the statements at the top of one standard module, like so:

Public intAdd As Integer
Public intSum As Integer

CONSTANTS

A variable’s value may often change during a macro’s execution, but some macros are better served
with a reference to a particular value that will not change. A constant is a value in your macro that
does not change while the macro is running. Essentially, constants are variables that do not change.

When you declare a constant, you do so by entering a declaration statement that starts with the
Const statement, followed by the constant’s name you specify, then the data type, and finally the
value, all on one line. Here is an example:

Const myMonths as Integer = 12
It’s a good practice to use constants for the same reasons you would use a variable. Instead of hard-
coding the same value in your macro over and over, you define the constant just once and use the
reference as you need to. For example, your macro may be analyzing the company’s sales amounts,

and needing to factor in the sales tax at various points in the macro. This constant statement at the
start of the macro would allow you to reference the 8.25% sales tax:

Const SalesTax as Double = .0825

www.it-ebooks.info

http://www.it-ebooks.info/

58 | LESSON6 VARIABLES, DATA TYPES, AND CONSTANTS

Note that once you declare a constant in the macro, you cannot assign a different value to it later in

the macro. If you need the value to change during the macro, what you really need is a variable instead
of a constant.

Choosing the Scope and Lifetime of Your Constants

The scope and lifetime of constants are much the same as for variables:

> For the constant to be available only to a particular macro, declare the constant within that
macro.

> For the constant to be available only to the macros that are housed in the same module,
declare the constant at the top of that module, above and outside all macros.

> For the constant to be available to all macros in all modules, prefix the constant declaration
with the Public statement, and set it at the top of a standard module, above and outside all
macros. For example:
Public Const SalesTax as Double = .0825

In this lesson you practice creating a macro that includes a declared variable. Create a macro, with-
out using the Macro Recorder, in which you declare a variable for the string data type, and you
manipulate the string text with a few lines of practice code.

Lesson Requirements

None.

Step-by-Step
Create a macro that includes the following actions:
> Declare a string type variable.
> Assign text to the string variable.
> Populate a range of cells with the string variable’s text.

1. Open Excel and add a new workbook.

In your active worksheet, enter the text Hello in cell A1.

Press Alt+F11 to get into the Visual Basic Editor.

From the VBE menu, click Insert ©> Module.

M AWN

In the new module, type in the name of your macro as

Sub Test6

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 59

10.

1.

12.
13.

14.

Press the Enter key, which will cause Excel to place a set of parentheses after the Test6
macro name, and also will create the End Sub statement. Your macro so far will look

like this:

Sub Testé6 ()

End Sub

In the empty line between sub Test6 () and End Sub, type Dim myString As
string and press Enter.

Now is the time to define the mystring variable, by telling VBA that it shall be
equal to the value in cell A1, which is the word Hello you entered in Step 2. To do
that, type the following line of code into your macro and press Enter: mystring =
Range ("Al") .Value

With your string variable defined, try entering its defined text into a few cells, starting
with cell B3. If you combine the variable with a space and the word “World”, you can
programmatically enter the text “Hello World” into B3. To do that, type this line of code
into your macro and press Enter: Range ("B3") .Value = myString & " World!"

Just for fun, repeat the variable’s text three times in succession, which would be
HelloHelloHello, and tell VBA to enter that into cell B4. For the next line in your macro,
type Range ("B4") .Value = myString & myString & myStringand]mfssEnWL

As a third and final entry, show the text Hello and Goodbye in cell BS by typing
thﬁ]astﬁneOfcodeinu)yourlnacrO:Range("BS").Value = myString & " and
Goodbye". At this point, your macro is completed, and it will look like this:

Sub Testé6 ()

Dim myString As String

myString = Range("Al") .Value

Range("B3") .Value = myString & " World!"

Range ("B4") .Value = myString & myString & myString
Range ("B5") .Value = myString & " and Goodbye"

End Sub
Press Alt+Q to return to your worksheet. Macro 2lx]
Macro name:
Watch your new macro in action. Press [rests [en |
Alt+F8 to display the Macro dialog box. —_stpino_|
Select the Test6 macro name in the large e |
window as shown in Figure 6-6, and click the _aerte |
Run button. ookt |
LI Options... |
Macrosin: |All Open Workbooks j
Description
Cancel
FIGURE 6-6

www.it-ebooks.info

http://www.it-ebooks.info/

60 | LESSON6 VARIABLES, DATA TYPES, AND CONSTANTS

To get the sample database files, you can download Lesson 6 from the book’s website at

WwWw . Wrox.com.

To view the video that accompanies this lesson, please select Lesson 6, available at
the following website: vivw . wrox . com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

Understanding Objects
and Collections

Lesson 5 introduced the topic of collections, which are objects that contain a group of like
objects. This lesson adds some detail to the topic and goes over some programming techniques
to deal with the most common types of object collections you will encounter: workbooks,
worksheets, cells, and ranges.

WORKBOOKS

An Excel file is a workbook object. You might wonder how workbooks have a collection, see-
ing as you can only work in one workbook at a time, and even then you are usually manipulat-
ing objects at a lower level, such as worksheets or cells.

Do not confuse the application object with the workbook object. In VBA, the
Application object is at the very top of the food chain; there is nothing higher

than Application in the Excel object model. application represents the entire
Excel program, whereas Workbook represents an individual Excel file.

The workbooks collection contains the references to every Wworkbook object that is open in the
same instance of Excel. You will need to call upon the workbooks collection when you want
to do some task in every open workbook, or when you want to activate a particular workbook
whose name is not known.

Here is an example. In VBA, this will add a new workbook:

Workbooks.Add

www.it-ebooks.info

http://www.it-ebooks.info/

62

LESSON 7 UNDERSTANDING OBJECTS AND COLLECTIONS

When this code line is executed, the active workbook becomes the new workbook you added, same
as the effect of manually adding a new workbook from your existing one, when the workbook you
added becomes the active workbook.

What if your project calls for you to add two workbooks to the existing one, and you want to end
the macro with the first added workbook being the active one, instead of the last added workbook
being the active one? In your Workbooks collection, how do you specify which workbook object you
want to do something with, when you don’t know the names of any open workbooks?

VBA offers several methods to solve this problem, one being an ability to assign a variable to each
workbook you add, and then to activate the workbook whose variable you care about. For example,
this macro will add two workbooks and end with the first added workbook being the active one:

Sub AddWorkbooks ()

Dim WorkbookAddl As Workbook
Dim WorkbookAdd2 As Workbook

Set WorkbookAddl = Workbooks.Add
Set WorkbookAdd2 = Workbooks.Add
WorkbookAddl.Activate

End Sub

Workbook objects have a number of methods as you would expect, such as open, Save, and Cclose.
Lesson 9 delves into the practice of repeating actions with loops, but here’s a sneak peek at a loop
that saves and closes every workbook that is currently open in your copy of Excel, except for the
workbook you are working in. Notice what you don’t see, which is a concern about how many
workbooks are open, or what their names are; you only need to tell VBA to look for workbook
objects in the workbooks collection.

Sub CloseAllWorkbooks ()

Dim wkb As Workbook

For Each wkb In Workbooks

If wkb.Name <> ThisWorkbook.Name Then
wkb.Close SaveChanges:=True

End If

Next wkb

End Sub

WORKSHEETS

The worksheets collection allows you to refer to the Wworksheets objects’ names or index num-
bers, which is the numerical position of worksheets as you see their tabs in order from left to right.
Referring to names tends to be a safer practice, but as you saw with workbooks, and as you will
learn with looping techniques, a variable can be assigned to each worksheets object to access all
worksheets without caring where they are in the workbook or what their tab names are.

Say you want to add a new worksheet, and give it the name Test1. No problem there, but now you
are asked to add the new worksheet such that its placement shall be the last (rightmost) worksheet
in the workbook. You have no idea how many sheets exist already. You don’t know the name of the
last worksheet in order to reference its location but even if you did know that today, there could eas-
ily be a differently named worksheet in that index position tomorrow.

www.it-ebooks.info

http://www.it-ebooks.info/

Cells and Ranges | 63

This one-line macro will add a new worksheet, name it as you specify, and place it at the far right
end of the worksheets, which is the highest worksheet index number based on the count of existing
worksheets:

Sub WorksheetTestl ()
Worksheets.Add (After:=Worksheets (Worksheets.Count)) .Name = "Testl"
End Sub

You can place a worksheet relative to another worksheet’s name, this time adding a worksheet, and
placing it before Sheet2:

Sub WorksheetTest2 ()
Worksheets.Add (Before:=Worksheets ("Sheet2")) .Name = "Test2"
End Sub

The preceding examples will work without any problem, as long as the work-
book does not already contain a worksheet with the name Test1 or Test2. Excel
does not allow worksheets to be given duplicate names in the same workbook,
and attempting to do so will result in an error. You’ll learn about handling VBA
errors in Lesson 17.

You may want to relocate an existing worksheet from its current position to a particular index posi-
tion for the convenience of your workbook’s users. Suppose that during the course of your macro, you
want the active worksheet to occupy the number two worksheet index position — that is, to be the
worksheet that is located second from the left as you see the worksheet tabs. To accomplish this, you
can place the active worksheet after the first index worksheet, as shown in the following example.

@ A word of caution about the Wworksheets collection: there is a difference between
the sheets collection and the Worksheets collection. You probably know about
Chart sheets, and if your workbook has one, you need to be mindful to cycle
through the worksheets collection only if you are interested in manipulating work-
sheets. If you cycle through the sheets collection, all sheets, including a Chart
sheet (or outmoded Dialog Sheets or Macro sheets) will be included in the proce-
dure. If you only want to act on worksheets, specify the Worksheets collection.

CELLS AND RANGES

The rRange object is probably the most utilized object in VBA. A range can be a single cell or a range
of cells that spans any size area. A Range object, then, is a cell or block of cells that is contained on
a Worksheet object. Though a Range object can be a union of several noncontiguous blocks of cells,
it is always the case that a VBA Range object is contained on one worksheet. There is no such thing

as a Range object that includes cells on different worksheets.

www.it-ebooks.info

http://www.it-ebooks.info/

64

LESSON 7 UNDERSTANDING OBJECTS AND COLLECTIONS

A single cell is a range as far as VBA is concerned, and Activecell is the object name in VBA of
the single active cell on the active worksheet. There is no such object as “ActiveRange,” but there are
many ways to identify particular ranges, one of the most common being the selection object.

If you were to select any range of cells, and execute this line of code, all cells in that selection would
immediately contain the word “Hello™:

Selection.Value = "Hello"

You may be interested to know that named ranges are fair game for VBA to refer to and manipulate,
just like any other range. In fact there is a Names collection object for named ranges.

As an example, say you have previously named a range myRange. This line of code in a VBA macro
would place the word “Hello” in all cells in your named range:

Range ("myRange") .Value = "Hello"

As you have seen, you do not need to select your range in order to work with it. For most operations
on cells or ranges, you can refer to the range and its parent worksheet. The following line of code
can be executed from any worksheet in your workbook, as an example of establishing a bold format
for a range of cells on Sheetl.

Worksheets ("Sheetl") .Range("Al:D25") .Font.Bold = True

There are times when you will want to refer to all the cells on a worksheet, instead of limiting your
operation to a particular range. For example, suppose as part of your macro you want to clear the
contents of every cell on the worksheet. Starting with version 2007, clearing the contents of the
entire grid of worksheet cells can be expressed as Range ("2A1:XFD1048576") .ClearContents.
However, if the workbook is being used in a version of Excel prior to 2007, that same operation
could be expressed as Range ("A1:IV65536") .ClearContents. Fortunately, you can avoid errors
and confusion by using the ce1l1s object as shown in the following example, which refers to all
worksheet cells in whichever version of Excel is being used at the moment:

Cells.ClearContents

You can do some useful operations using the cel1s object when you want to involve the entire
worksheet. Suppose you have set up Sheetl as a template, with formatted ranges, labels, values,
and formulas, and you want Sheet2 to be established the same way. This line of code will copy the
Sheetl cells and paste them to Sheet2.

Worksheets ("Sheetl") .Cells.Copy Worksheets ("Sheet2") .Cells

SPECIALCELLS

An interesting brand of range objects is Excel’s group of SpecialCells. If you have not yet examined
SpecialCells, press the FS key to call the Go To dialog. Click the Special button and you will see
more than a dozen classifications of SpecialCells.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 65

Cells on your worksheet that contain comments are regarded by Excel as specialcells. So are cells
containing Data Validation, or cells that contain formulas, or cells that contain constants, such as
text or data you have manually entered. With the combinations of specialcells, the possibilities
are enormous for identifying various kinds of ranges based on all sorts of criteria.

Say in range A1:A10 you have some cells that contain formulas, some cells that contain numbers
you have manually entered, and some cells that contain nothing. If you want to select all individual
cells in range A1:A10 that contain formulas, and not include in your selection any of the other cells
in that range, this macro would do that:

Sub FindFormulas ()

Range ("Al:A10") .SpecialCells (x1CellTypeFormulas) .Select
End Sub

TRY IT

In this lesson you practice with the useful Intellisense tool to help you become familiar with the
properties and methods of VBA objects. VBA’s “IntelliSense” feature offers you VBA syntax assis-
tance in the VBE. You learn how to use it for the purpose of seeing a list of your objects’ properties
and methods in your VBE Code window.

Lesson Requirements

None.

Step-by-Step

VBA’s IntelliSense feature is an incredibly useful tool that helps you write your macros faster and
smarter. [use it all the time to help me write code in the proper VBA syntax. As you learned, VBA
has hundreds of objects and each object can have dozens of methods and properties. IntelliSense
can display a list of an object’s methods and properties while you are typing your code, and it can
quickly call the Help feature for a topic you select.

1. Open Excel and press Alt+F11 to go to the Visual Basic Editor.
2. If you have not already done so, from the VBE menu, click Tools = Options as shown in

Figure 7-1.

7] Microsoft Visua Applica
i File Edit View Insert Format Debug Run | Tools | Add-Ins Window Help
= = R L I R B4 References...

Project - VBAProject x| Additional Controls...
=] B Macros...
@ Solver (SOLVER.XLAM) Options...

585 VBAProject (Book1)
=425 Microsoft Excel Objects
Sheetl (Sheet1) Digital Signature...
Sheet2 (Sheet2)
Sheet3 (Sheet3)
&7 Thisworkbook

VBAProject Properties...

FIGURE 7-1

www.it-ebooks.info

http://www.it-ebooks.info/

66 | LESSON7 UNDERSTANDING OBJECTS AND COLLECTIONS

3.

In the Options dialog on the Editor tab, make sure there is a checkmark in the box next to
Auto List Members as shown in Figure 7-2, and click OK.

Options E
Editor | Edtor Format | General | Docking |
~Code Settings
¥ Auto Syntax Chedk ¥ Auto Indent
v Ri Variable Dedlarati
|¥ Require Variable Dedaration S lq—

[Auto List Members
¥ Auto Quick Info
[¥ Auto Data Tips

Window Settings —————————————
[Drag-and-Drop Text Editing
[¥ Default to Full Module View
[¥ Procedure Separator

0K | Cancel Help

FIGURE 7-2

Press Ctrl+G to be taken into the Immediate window.

Type in the question mark character, then press the spacebar, type the word Application, and
press the dot key on your keyboard. A list of the Application object’s members, properties,
and methods will be displayed, as shown in Figure 7-3.

ME-E B A 9 > 0 &k

Bt Solver (SOLVERXLAM)
B-&# VBAProject (Book1) —
423 Microsoft Excel Objects ? Application.
i Sheet1 (Sheet1) =S iActivateMicrosoftApp

Sheet2 (Sheet2) EH ActiveCell

Sheet3 (Sheet3) e ActiveChart

E @ ThisWorkbook & ActiveEncryptionSession
EF' ActivePrinter
EF' ActiveProtectedViewWindow
ES' ActiveSheet

FIGURE 7-3

Now, practice using IntelliSense. Press the N key and you will be taken to the first item in
the Application object’s list of members that begins with the letter N. In this case, that
member happens to be the Name property, which will be highlighted by selection as shown
in Figure 7-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 67

i File Edit Wiew Inset Format Debug Run Tools Add-Ins Window Help Type a question for help
HE =R N I A - £ Ot s%%

B2 Solver (SOLVERXLAM)
=-&i vBAProject (Book1) - -
=-2F Microsoft Excel Objects ? Application.n
Sheet1 (Sheett) o TR s s | -
Sheet2 (Sheet2) =5 Names
Sheet3 (Sheet3) B8 NetworkTemplatesPath
-] Thisworkbook =& New\Workboak
= NexdLetter
&' ODBCErmors
' ODBCTimeout

FIGURE 7-4

With the Name property item selected, either double-click it or press the Alt key to accept
and enter the Name property for the application object, and then press the Enter key.
The Immediate window will return the result “Microsoft Excel” as shown in Figure 7-5.

EE-H £ B8 9¢ » ook @ y 8 o=

Solver (SOLVERXLAM}
VBAProject (Book1) ——
£-&5 Microsoft Excel Objects ? Application.Name
Sheet1 (sheet1) Microsoft Excel
Sheet2 (Sheet2)

Sheet3 (Sheet3)

&] Thisworkbook

FIGURE 7-5

Continue to explore on your own. Press the Enter key in the Immediate window to start a
new line, enter the question mark character and press the spacebar, and scroll through the
member list of other objects such as ActiveWorkbook or Range. Keep in mind that many
objects are parents of other objects, so you can go two or more members deep to gather
some information. For example, the ActiveWorkbook object has a worksheets collec-
tion, and the Worksheets collection has a count property. Therefore, if you type the line
? activeworkbook.Worksheets.Count into the Immediate window, VBA will return the
number of worksheets the active workbook contains.

To view the video that accompanies this lesson, please select Lesson 7, available at
the following website: www.wrox . com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making Decisions with VBA

So far, all the macros you’ve created share a common trait of being executed line by line, start-
ing with the very first line of code below the sub name, and ending at the Endsub line. You
might think that this is the very purpose of a VBA macro, for all its code lines to be run in
sequence from start to finish. After all, isn’t that why VBA code is in a macro in the first place?

It turns out that VBA can do a lot more with your macros than just serve the purpose of exe-
cuting every line of code in them. You will encounter many instances when you’ll need to guide
the user into making a decision about whether to do one thing or another. There are also times
when you will want VBA to just go ahead and make a decision about something, without any
input from the user.

Depending on the decisions that get made during the course of a macro, you’ll want VBA to
execute only the code relating to the selected choice, while bypassing the alternative code relat-
ing to which choice was not selected. This lesson shows you how to ask the user for information
when the situation calls for it, and also how to simply let VBA do the decision-making on the
fly, in circumstances when the user does not even need to be involved in the decision process.

UNDERSTANDING LOGICAL OPERATORS

Logical operators are terms in VBA that you can use for evaluating or comparing a combina-
tion of individual expressions in order to make a decision in your macro, and for VBA to carry
out the code relating to that decision. The three most commonly used logical operators are
AND, OR, and NOT, and all three have the same logical effect in VBA as they do in Excel’s work-
sheet functions.

To understand how and why to use these logical operators in your macro, it’s important

to take a look at the conditions under which each one will yield a positive (True) result,

or a negative (False) result. A truth table is a good way to illustrate each logical operator’s
True or False outcome, depending on the combinations of all possible results from the VBA
expressions being compared. Once you understand the theory of logical operators, you will
see how to put them to practical use when your macros call for decisions to be made.

www.it-ebooks.info

http://www.it-ebooks.info/

70 | LESSON8 MAKING DECISIONS WITH VBA

AND

The aND logical operator performs a conjunction by comparing two expressions. The result of the
AND operation is True only if both conditions are True. If either or both conditions are False, the and
operation will evaluate to False.

For example, say you enter the number 500 in cell A1, and you enter the number 850 in cell B1. The
following statement with the AND operator will evaluate to True, because both conditions are true at
the same time:

Range ("Al") .Value > 300 AND Range("B1l").Value > 700

Keeping the same numbers in cells A1:B1, the following statement would evaluate to False, because
even though the first condition is True, the second condition is False:

Range ("Al") .Value > 300 AND Range("B1l") .Value >900

This next statement would also evaluate to False, because even though the second condition is True,
the first condition is False:

Range ("Al") .Value >620 AND Range("B1l") .Value > 700

The final possibility is if both conditions are False, with this statement for example, which would
evaluate to False:

Range ("Al") .Value <200 AND Range("B1l") .Value < 700

Table 8-1 summarizes each possible result of the anD logical operator more succinctly.

TABLE 8-1: Truth Table for the AND Logical Operator

EXPRESSION 1 EXPRESSION 2 LOGICAL RESULT
True True True
True False False
False True False
False False False

OR

The or operator performs a logical disjunction, whereby if either condition is True, or if both conditions
are True, the result is True. If both conditions are False, the or operation will result in False. For exam-
ple, using the same cell values as the previous AND example, with 500 in cell A1 and 850 in cell B1, you
can see how differently the four statements will evaluate, using OR instead of aND as the logical operator.

The first statement will evaluate to True, not necessarily because both conditions are True, but
because at least one condition is True:

Range ("Al") .Value > 300 OR Range("Bl1") .Value > 700

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Logical Operators | 71

The following statement would evaluate to True, on the strength of the first condition being True,
even though the second condition is False:

Range ("Al") .Value > 300 OR Range("B1l") .Value >900

This next statement would also evaluate to True because, despite the first condition being False, the
second condition is True:

Range ("Al") .Value >620 OR Range("B1l") .Value > 700

The final possibility is if both conditions are False, meaning that in this case, because neither condi-
tion is True, the statement would evaluate to False:

Range ("Al") .Value <200 OR Range("B1l").Value < 700

Table 8-2 summarizes each possible result of the or logical operator.

TABLE 8-2: Truth Table for the OR Logical Operator

EXPRESSION 1 EXPRESSION 2 LOGICAL RESULT
True True True
True False True
False True True
False False False

@ Careful! Comparing logical expressions does not mean you can compare the
impossible. Consider the following example:

Dim intNumber As Integer
intNumber = 0
MsgBox intNumber <= 5 Or 10 / intNumber > 5

Because it is impossible to divide a number by zero, this code will produce an
error even though the first condition evaluated to True.

NOT

The NoT operator performs logical negation. Similar to the negative sign in front of a worksheet for-
mula, the NOT operator will invert an expression’s True or False evaluation. For example, this line of
code will toggle as on or off the display of gridlines on the active worksheet:

ActiveWindow.DisplayGridlines = Not ActiveWindow.DisplayGridlines
The logic behind this use of the NOT operator is to make the status of an object’s property be opposite

of whatever its current status is. In this case, the DisplayGridlines property of the Activewindow
object can only be True (show the gridlines) or False (do not show the gridlines). Therefore, using the

www.it-ebooks.info

http://www.it-ebooks.info/

72

LESSON 8 MAKING DECISIONS WITH VBA

NOT operator in this way, you get the effect of toggling between showing and not showing the active
worksheet’s gridlines at each re-execution of this line of code.

Table 8-3 summarizes each possible result of the NoT logical operator.

TABLE 8-3: Truth Table for the OR Logical Operator

EXPRESSION LOGICAL RESULT
True False
False True

CHOOSING BETWEEN THIS OR THAT

This lesson began by mentioning that some code in your macros will need to be purposely bypassed.
Most computer programming languages, VBA included, provide for the flexibility of structuring your
code so that every command does not need to be run in every case. Many times, you will write macros
wherein you will want the program to run certain commands if the user clicks Yes, and alternative com-
mands if the user clicks No. All of the commands are a part of the macro code, but only one set of them
will execute.

If...Then

Among VBA’s arsenal of decision-making commands, the If..Then statement is probably the sim-
plest and most commonly utilized approach to structure your conditional scenarios. For example,
consider this line of code:

If Weekday (VBA.Date) = 6 Then MsgBox "Have a nice weekend!", , "Today is Friday!"

You may recall from your experience with Excel’s wEEKDAY worksheet function that to Excel, weekday
number 1 is Sunday, weekday number 2 is Monday, and so on. VBA would look at this line of code
and display the message box only if the line of code is being executed on a Friday because Friday is
weekday number 6. If the weekday is any day other than Friday, VBA bypasses this line of code.

@ In your prior VBA travels, you might have only seen an 1f statement with an
accompanying End If statement below it, and you might be wondering why
and how the previous example can be successfully executed without having or
needing an End 1f statement. The previous example could have been written in
“block” style like this:

If Weekday (VBA.Date) = 6 Then
MsgBox "Have a nice weekend!", , "Today is Friday!"
End If

When evaluating for a single condition, and the conditional code is one task as
shown in this example, you can write the entire 1f..Then statement as a single

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing Between This or That | 73

line of code as you saw. Some programmers prefer a single 1£ line for their one-
condition evaluations, and other programmers prefer the block style. It comes
down to a personal preference and whatever feels more intuitive to you.

If...Then...Else

More often than not, your evaluations will involve two or more conditions instead of just one. When
you have two conditions and each has its own set of tasks to carry out, you need to separate the two
conditions with the Else statement in a block 1f structure.

Expanding on the previous example, say you want to display a message box if today is Friday, but a
different message box if today is not Friday. Here is the format you would use in your macro:

If Weekday (VBA.Date) = 6 Then

MsgBox "Have a nice weekend!", , "Today is Friday!"

Else

MsgBox "Alas, today is not Friday.", , "Not Friday yet!"
End If

Notice that the Else statement stands alone on its own dedicated line, separating the two conditions’
respective commands. Only one condition can possibly evaluate to True in this example, because today
is either Friday or it is some day other than Friday. This block of code is designed to always be executed
such that only one of the message box commands would appear, but never both during the same run.

@ Here’s a design tip to speed up your programs. In a block 1f structure with multi-
ple conditions, VBA will look at each condition in turn, and basically stop at, and
execute the conditional code for, the first condition that is found to evaluate to
True. With two or three conditions, it might not be a big deal in which order you
set your conditions in the 1f structure. But sometimes you will be programming
for multiple conditions, and the point is, you will want VBA to execute its process
as efficiently as possible. A good habit to get into is to design your Tf structures
by setting the first condition to be the one that’s most likely to be the case. That
way, most of the time, the first condition will be the True condition and VBA will
not waste time evaluating the alternative unlikelier scenarios. With this in mind,
the previous example is a good opportunity to show how to make your code run
faster. You can see that the first condition dealt with the current weekday being
Friday. If you think about it, there is only one chance in seven that that will be the
case. Mostly, the macro will be run on one of the other days of the week. A better
way to write the 1f code is to consider which condition will be True more often
than the other condition(s). Six out of seven days will not be a Friday, so that con-
dition should be placed first, as shown in this example:

If Weekday (VBA.Date) <> 6 Then

MsgBox "Alas, today is not Friday.", , "Not Friday yet!"
Else

MsgBox "Have a nice weekend!", , "Today is Friday!"

End If

www.it-ebooks.info

http://www.it-ebooks.info/

74 |

LESSON 8 MAKING DECISIONS WITH VBA

If...Then...Elself

VBA provides an extended way to utilize the Tf..Then..Else conditional structure when more than
two conditions must be evaluated. Say you want to display a custom message for every day of the
traditional five-day work week. You’ll need a way to express your conditions in a single Tf structure
with five possible courses of action, depending on which day of the week the macro is run.

One way you can accomplish this is with an Tf..Then..E1seIf structure as shown in the following
example. Recall from the discussion about logical operators at the beginning of this lesson, that you
can evaluate two or more conditions in one line of code. Notice that the first five conditions coincide
with the five workdays from Monday to Friday. The final condition uses the or operator to identify
a weekend day of either Saturday or Sunday.

Sub WeekdayTest ()

'Monday

If Weekday (VBA.Date) = 2 Then

MsgBox "Ugghhh - - Back to work.", , "Today is Monday"

'Tuesday

ElseIf Weekday(VBA.Date) = 3 Then

MsgBox "At least it's not Monday anymore!", , "Today is Tuesday"
'Wednesday

ElseIf Weekday(VBA.Date) = 4 Then

MsgBox "Hey, we're halfway through the work week!", , "Today is Wednesday"
'Thursday

ElseIf Weekday(VBA.Date) = 5 Then

MsgBox "Looking forward to the weekend.", , "Today is Thursday"
'Friday

ElseIf Weekday(VBA.Date) = 6 Then

MsgBox "Have a nice weekend!", , "Today is Friday!"

'Saturday or Sunday
ElseIf Weekday (VBA.Date) = 7 Or Weekday(VBA.Date) = 1 Then
MsgBox "Hey, it's currently the weekend!", , "Today is a weekend day!"

End If

End Sub

Select Case

As you are fully aware, the world is a complicated place and your macros will sometimes need to
take into consideration not just one, two, or five courses of action, but possibly ten, hundreds, or
even thousands depending on the situation. There are also times when several possible different
conditions will require the same course of action. For these complex evaluations, the Select case
statement is a perfect solution.

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing Between This or That | 75

You will want to become familiar with select case. It is simple to use, and it is easier to follow
in your code than an extensive Tf structure. Similar to Tf and E1seIf keywords, you use the case
keyword in a Select Case structure to test for the True evaluation of a particular condition or set
of conditions. You can have as many Case statements as you want, and only the code associated
with the first case that evaluated to True will be executed.

The best way to understand select Case is to see it in action with a few examples. The following
macro named WeekdayTestSelectCase is actually the previous WeekdayTest macro, which accom-
plishes the same result, but uses select case instead of Tf..Then..ElseTIf:

Sub WeekdayTestSelectCase()
Select Case Weekday (VBA.Date)

Case 2 'Monday
MsgBox "Ugghhh - - Back to work.", , "Today is Monday"

Case 3 'Tuesday
MsgBox "At least it's not Monday anymore!", , "Today is Tuesday"

Case 4 'Wednesday
MsgBox "Hey, we're halfway through the work week!", , "Today is Wednesday"

Case 5 'Thursday
MsgBox "Looking forward to the weekend.", , "Today is Thursday"

Case 6 'Friday
MsgBox "Have a nice weekend!", , "Today is Friday!"

Case 1, 7 'Saturday or Sunday
MsgBox "Hey, it's currently the weekend!", , "Today is a weekend day!"

End Select
End Sub

You’ll notice less redundancy of each condition (each case), because the primary item of interest,
Weekday (VBA.Date), needs to be named only once in the select case statement, instead of in
every ElseIf statement. Also, each case is very clear, and the entire macro is just easier to read.

A useful tactic with select case is the ability to group several different conditions into a single
Case if it satisfies a particular test. For example, if your company operates its budget on a calendar
year basis, that means the months of January, February, and March belong to Quarter 1; April,
May, and June belong to Quarter 2, and so on.

With select case, you can group different conditions into the same case in order to arrive at a
common result. It is not just that January has a one-to-one association with Quarter 1, because the
months of February and March also comprise Quarter 1. If you want to produce a message box that
displays the current Quarter, this macro shows how to group the months into cases.

Sub CurrentQuarter ()

Select Case Month (VBA.Date)

Case 1 To 3: MsgBox "Quarter 1"
Case 4 To 6: MsgBox "Quarter 2"

www.it-ebooks.info

http://www.it-ebooks.info/

76

LESSON 8 MAKING DECISIONS WITH VBA

Case 7 To 9: MsgBox "Quarter 3"
Case 10 To 12: MsgBox "Quarter 4"
End Select

End Sub

As you can see, you don’t need 12 separate statements to handle each conditional month; you can
simply state the range of months using the To statement in each case. I put a new wrinkle in that
macro to point out a VBA feature, that being the colon character (:), which can be used to separate
multiple statements on the same line that would otherwise each require their own line. I don’t usu-
ally use the colon character this way, but sometimes it comes in handy by helping the readability of
small macros like this.

GETTING USERS TO MAKE DECISIONS

Thus far you have seen examples of VBA’s decision-making abilities that have not required any input
from the user. The time will come when you’ll either want or need information from the user in
order for decisions to be made that only the user can provide. Message boxes and TnputBoxes are
excellent tools to interact with your users in such situations.

Message Boxes

Up to this point in the book, you have seen many examples of code that include a message box. In
all those examples, the message box was a simple pop-up box that displayed an informational text
message, with an OK button for you to acknowledge the information.

Message boxes are flexible tools that allow you to customize the
buttons while asking questions directly to the users that will force
them to select one option or the other. Instead of OK, you can
display a Yes button and a No button on your message box, and
write the code that will be followed if the user clicks Yes, or the
user clicks No. An example of such a message box is shown in
Figure 8-1.

FIGURE 8-1

Say you have a macro to perform a task that your users should confirm they really want to do as a
final OK. Some macros are quite large and virtually irreversible, or the task at hand will alter the
workbook in a significant way. In the following simplified example, the active worksheet will be cop-
ied and placed before Sheetl, but only if the user first clicks the Yes button to confirm his intention for
this to happen. If the user clicks No, a friendly message box will advise the user that the macro will
not run because No was clicked.

Sub ConfirmExample ()

Select Case MsgBox(_

"Do you really want to copy this worksheet?", _
vbYesNo + vbQuestion,

"Please confirm...")

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Users to Make Decisions | 77

Case vbNo

MsgBox _

"No problem, this worksheet will not be copied.",
vbInformation, _

"You clicked No."

Exit Sub

Case vbYes

MsgBox _
"Great - - click OK to run the macro.", _
vbInformation, _

"Thanks for confirming."
ActiveSheet.Copy Before:=Sheets("Sheetl")

End Select
End Sub

As you look at the MsgBox line, note that the message box arguments are contained within paren-
theses. A message box has two mandatory arguments: the prompt, which is the text you place in
the body of the message box, and the button configuration. Other combinations of buttons include
OKCancel, YesNoCancel, and AbortRetryIgnore. The title of the message box is optional, but I
always enter it to offer a more customized experience for the user.

@ In the Try It section at the end of Lesson 7, you learned about VBA’s IntelliSense
feature. I recommend you activate IntelliSense if you have not already done so,
because when composing message boxes, you’ll be reminded of the available
arguments and their proper syntax while you are writing your code.

Input Boxes

When you need a piece of specific information from the user, such as a text string or a number, an
InputBox was made for the job. An InputBox looks like a distant cousin of a message box, with the
prompted text that tells the user what to do, OK and Cancel buttons (which cannot be reconfigured
as a message box’s buttons can), and an optional title argument.

An InputBox requires a prompt argument, and it provides a field wherein the user would enter the
kind of information as needed for the macro to continue. The entry would return a string type
variable. If no entry is made, that is, the text field is left empty, the TnputBox would return a null
string, which is usually regarded by VBA the same as if
the user clicked the Cancel button.

Insert how many rows below
Enter the number of rows to be inserted:
The following example uses an TnputBox to ask the user Gonca |
to enter a number to represent how many rows will be
inserted below the active cell’s row. Figure 8-2 shows what I
the InputBox looks like for this macro.

Sub InsertRows () FIGURE 8-2

'Declare the string variable for the InputBox entry.
Dim CountInsertRows As String
'Define the String variable as the InputBox entry.

www.it-ebooks.info

http://www.it-ebooks.info/

78 | LESSON 8 MAKING DECISIONS WITH VBA

CountInsertRows = InputBox(_

"Enter the number of rows to be inserted:", _

"Insert how many rows below the active cell?")

'Verify that a number was entered.

'The Val function returns the numbers contained in a string as a numeric value.
If CountInsertRows = "" Or Val (CountInsertRows) < 1 Then Exit Sub

'Insert as many rows as the number that was entered.

'The Resize property returns a Range object based on the number of rows

'and columns in the new range. The number that was entered in the InputBox
'represents how many rows shall be inserted. The count of columns, which is
'the other optional argument for Resize, need not be specified because it is
'only rows being inserted.

Rows (ActiveCell.Row + 1) .Resize(Val (CountInsertRows)) .Insert

End Sub

TRYIT

In this lesson, you write a macro that includes a single-line Tf statement, an If..Then structure, a
Select Case structure, a message box to ask the user a Yes or No question, and an InputBox to
accept a text entry from the user.

Lesson Requirements

For this lesson, the active worksheet is currently protected with a password, and you ask the work-
book’s users if they want to unprotect the worksheet. If they answer No, the macro will terminate.
If they answer Yes, the macro will proceed to ask them for the password. If the attempted password
is incorrect, the user will be informed of that, the worksheet will remain protected, and the macro

will terminate. If the attempted password is correct, the user will then be allowed to unprotect the
worksheet.

Step-by-Step

1.

Start by opening a new workbook and password protecting Sheet1 with the password
“hello” (without the quotes, all lowercase just as you see it here).

With your Sheet1 worksheet protected, press Alt+F11 to go to the Visual Basic Editor.
From the menu at the top of the VBE, click Insert = Module.

In the module you just created, type Sub PasswordTest and press Enter. VBA will automati-
cally place a pair of empty parentheses at the end of the sub line, followed by an empty line,
and the End sub line below that. Your macro will look like this so far:

Sub PasswordTest ()

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 79

10.

1.

12.

Begin a select Case structure with a Yes No Question message box to ask the users to con-
firm their intention to unprotect the worksheet:

Select Case MsgBox(_

"Do you want to unprotect the worksheet?",

vbYesNo + vbQuestion,
"Please confirm your intentions.")

Handle the case for a No answer by informing the user that the macro will not continue, and
then exit the macro with the Exit sub statement:
Case vbNo

MsgBox "No problem -- this macro will end.", vbInformation, "You clicked No."
Exit Sub

Handle the case for a Yes answer:

Case vbYes

Provide an InputBox for the user to enter the password. Declare a string type variable, and
define it as the text that will be entered into the InputBox.

Dim myPassword As String

'myPassword = _

InputBox ("Please enter the case-sensitive password:",
"A password is required to unprotect this worksheet.")

Here is an opportunity to add a single-line Tf statement to end the macro if the user clicks
Cancel, or clicks OK without entering anything into the InputBox. The pair of double quotes
with nothing between them is interpreted by VBA as a zero-length string.

If myPassword = "" Then Exit Sub

Begin an Tf..Then structure to determine if the TnputBox entry matches the password
“hello” that was used to protect the worksheet:

If myPassword <> "hello" Then

If the InputBox entry is anything other than “hello,” enter the code you would want exe-
cuted when an incorrect password is entered, which you can do with a friendly message box:

MsgBox _

"Sorry, " & myPassword & " is not the correct Password.",
vbCritical,

"Incorrect."

Enter your Else statement and supply the code to be executed only if the correct password is
entered:

Else

MsgBox _

"Thank you. Please click OK to unprotect the worksheet.",
vbInformation,

"You entered the correct password!!"
ActiveSheet.Unprotect "hello"

www.it-ebooks.info

http://www.it-ebooks.info/

80 | LESSON8 MAKING DECISIONS WITH VBA

13. End the 1f structure that determined if the TnputBox entry matched the password “hello”:

End If

14. End the select case structure for the users to confirm their intention of unprotecting the
worksheet:

End Select

15. Here is what the complete macro would look like:

Sub PasswordTest ()

'Ask the user if they want to unprotect the worksheet.
Select Case MsgBox(_

"Do you want to unprotect the worksheet?"

vbYesNo + vbQuestion,

"Please confirm your intentions.")

'Handle the case for a No answer by informing the user

'that the macro will not continue,

'and then exit the subroutine with the Exit Sub statement.

Case vbNo

MsgBox "No problem -- this macro will end.", vbInformation, "You clicked No."
Exit Sub

'Handle the case for a Yes answer by providing an InputBox
'for the user to enter the password.
Case vbYes

'Declare a String type variable.

Dim myPassword As String

'Define the String variable as the text that will be entered into the InputBox.
myPassword = _

InputBox ("Please enter the case-sensitive password:",

"A password is required to unprotect this worksheet.")

'A one-line If statement to end the macro if the user clicks Cancel,
'or clicks OK without entering anything into the InputBox.
If myPassword = "" Then Exit Sub

'If structure to determine if the InputBox entry matches the password "hello"
'that was used to protect the worksheet.
If myPassword <> "hello" Then

'The code line to be executed if an incorrect password is entered.
MsgBox _

"Sorry, " & myPassword & " is not the correct Password.",
vbCritical,

"Incorrect."

Else

'The code to execute only if the correct password is entered.
MsgBox _

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 81

"Thank you. Please click OK to unprotect the worksheet.", _
vbInformation,

"You entered the correct password!!"

ActiveSheet.Unprotect "hello"

'"End the If structure that determined if the InputBox entry
'matched the password "hello".
End If

'"End the Select Case structure for the users to confirm their intention
'of unprotecting the worksheet.

End Select

End Sub

To view the video that accompanies this lesson, please select Lesson 8, available at
tbefb”ouﬂngluebsﬁe:www.wrox.com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION I1I

Beyond the Macro Recorder:
Writing Your Own Code

» LESSON 9: Repeating Actions with Loops

» LESSON 10: Working with Arrays

» LESSON 11: Automating Procedures with Worksheet Events
» LESSON 12: Automating Procedures with Workbook Events
» LESSON 13: Using Embedded Controls

» LESSON 14: Programming Charts

» LESSON 15: Programming PivotTables and PivotCharts

» LESSON 16: User Defined Functions

» LESSON 17: Debugging Your Code

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Repeating Actions with Loops

Suppose you need to perform the same action, or the same sequence of several actions, many
times in your macro. For example, you may need to unhide all worksheets that are hidden,
or add 12 worksheets to your workbook and name them for each month of the year.

The fact is, you’ll encounter many circumstances for which a repetition of similar commands
is a necessary part of the job. In most cases it will be impractical, and sometimes downright
impossible, to write an individual command for each performance of the action. The need for
handling a repetitive set of commands efficiently is exactly what loops are made for.

WHAT IS A LOOP?

A loop is a method of performing a task more than once. You may need to copy each work-
sheet in your workbook and save it as the only worksheet in its own separate workbook. Or,
you may have a list of thousands of records and want to insert an empty row where the value
of a cell in column A is different than the value of the cell below it. Maybe your worksheet
has dozens of cells that contain comments, and you want to add the same preceding text to
every comment’s existing text without having to edit every comment one at a time.

Instead of doing these kinds of tasks manually, or recording an impractical (and sometimes
impossible) macro to handle the repetition, you can use loops to get the job done with less
code while keeping more flexible control over the number of necessary repetitions. In VBA,
a loop is a structure that executes one or more commands, and then cycles through the pro-
cess again within the structure, for as many times as you specify. Each cycle of executing the
loop structure’s command(s) is called an iteration.

www.it-ebooks.info

http://www.it-ebooks.info/

86 | LESSON9 REPEATING ACTIONS WITHLOOPS

@ Loops are great, but you're not obligated to use one just because you need to repeat
an action two or three times. You’ll come across situations that you know will
always require the same commands to be repeated the same way, for the same num-
ber of times. If you feel like coding each action separately, and you can live with the
longer code, go ahead and hard-code the separate commands if that’s what works
for you. Beyond three potential iterations, however, you really should go the loop
route. It’ll save you a lot of work, and the code will be easier to maintain.

The number of a loop’s iterations will depend on the nature of the task at hand. All loops fall into
one of two categories. A fixed-iteration loop executes a specified number of times that you hard-
code directly as a numeric expression. An indefinite loop executes a flexible number of times that is
usually defined by a logical expression.

For example, a fixed iteration loop dealing with a year’s worth of data might need to cycle through
12 iterations, one for each month. An indefinite loop might need to cycle through every worksheet
in your workbook, taking into consideration that because worksheets can be added or deleted at any
time, the exact count of worksheets can never be known in advance.

TYPES OF LOOPS

VBA provides several different looping structures, and at least one of them will be suited for any
looping requirement you’ll encounter. Table 9-1 shows an overview of the types of loops in VBA.

TABLE 9-1: Types of Loops in VBA

LOOP STRUCTURE CATEGORY EXPLANATION
For..Next Fixed Repeats an action for a specified number of times.
For..Each..Next Fixed Repeats an action upon an object in a Collection. For example,

you can perform a task for each worksheet in the workbook.

Do.While Indefinite Executes an action if the condition is True, and repeats the
action until the condition is False.

Do..Until Indefinite Executes an action if the condition is False, and repeats the
action until the condition is True.

Do..Loop..While Indefinite Executes an action once, and repeats the action while the con-
dition is True, until it is False.

Do..Loop..Until Indefinite Executes an action once, and repeats the action while the con-
dition is False, until it is True.

While..Wend Indefinite Same as the Do..While loop structure, still supported by VBA
but obsolete.

www.it-ebooks.info

http://www.it-ebooks.info/

Types of Loops | 87

For...Next

The For..Next loop structure is a simple and effective way to repeat an action for a specified number
of times. For example, if you want to add five new worksheets to your workbook, you could declare
an Integer type variable and repeat the action five times, like this:

Sub AddFiveWorksheets ()

'Declare your Integer or Long variable.
Dim intCounter As Integer

'Open the For loop structure.

For intCounter = 1 To 5

'Enter the command(s)that will be repeated.
Worksheets.Add

'Loop to the next iteration.

Next intCounter

End Sub

@ Although it is technically correct that the Next statement can stand alone, do
yourself a favor by getting into the good habit of including the variable in the
Next statement. For example, writing your code as Next intCounter instead of
just as Next will make it easier for you to read.

When VBA executes a For..Next loop, by default it increments by 1 the value of the declared
Integer or Long type variable. Because the objective was to add five worksheets, the easiest way
to keep a running count of the process is to iterate five times, just as if you were counting the
occurrence of each action from 1 to 5.

You can take advantage of the fixed nature of a For..Next loop by asking for the number of work-
sheets that are to be added. In the following example, an InputBox engages the user by asking for
a number that represents how many worksheets will be added:

Sub ForNextExample2 ()

'Declare your Integer or Long variables.

Dim MoreSheets As Integer, intCounter As Integer
'Define the MoreSheets variable with an InputBox.
MoreSheets = InputBox(_

"How many worksheets do you want to add?",
"Enter a number")

'Open the For loop structure.

For intCounter = 1 To MoreSheets

'Enter the command(s)that will be repeated.
Worksheets.Add

'Loop to the next iteration.

Next intCounter

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

88 | LESSON9 REPEATING ACTIONS WITHLOOPS

You don’t always need to start counting from the number 1 in a For..Next loop; you can pretty much
count from any number to any number. Suppose you want to hide rows 6, 7, and 8. A For..Next loop
to accomplish that task could look like this:

Sub ForNextExample3 ()

'Declare your Integer or Long variable.
Dim intCounter As Integer

'Open the For loop structure.

For intCounter = 6 To 8

'Enter the command(s)that will be repeated.
Rows (intCounter) .Hidden = True

'Loop to the next iteration.

Next intCounter

End Sub

For...Each...Next

The For..Each..Next loop executes an action for a fixed number of times just as the For..Next
construct does, but unlike For..Next, For..Each..Next does not keep a count along the way of how
many iterations it performs. The count of iterations is not important with For..Each..Next because
the objective is to execute an action for however many objects exist in a specified VBA collection.
Maybe there will be hundreds of iterations to occur; maybe there will be none.

Suppose that as part of your workbook project’s design, a particularly lengthy macro will run faster
and less confusingly for the user if all other Excel workbooks are closed. Naturally, you can never
know in advance if the user will have 10 other workbooks open in addition to yours, or if your
workbook is the only open workbook. A For..Each..Next loop would be the perfect way to save and
close all other workbooks that might be open, such as with this example:

Sub CloseWorkbooks ()

'Declare your object variable.

Dim wb As Workbook

'Open the For loop structure.

For Each wb In Workbooks

'"Enter the command(s)that will be repeated.
If wb.Name <> ThisWorkbook.Name Then
wb. Save

wb.Close

End If

'Loop to the next iteration.

Next wb

End Sub

Notice that an object variable is declared for Wworkbook, and the Workbooks collection is being evalu-
ated with an 1f structure for the presence of any and all workbooks that are named differently than
your workbook. The code will complete its mission with the same result of your workbook being the
only one that’s open, regardless of whether it was the only one open from the start, or whether 50
other workbooks had also been open at the time.

www.it-ebooks.info

http://www.it-ebooks.info/

Types of Loops | 89

One of Excel’s oddities is that you can hide any number of worksheets at the same time, but if you
have multiple worksheets that are hidden, you can unhide only one worksheet at a time. With this
macro as another example of a For..Each..Next loop, you can quickly unhide all worksheets at once:

Sub UnhideSheets ()

'Declare your object variable.
Dim ws As Worksheet

'Open a For Ech loop.

For Each ws In Worksheets
'Command (s) to be executed.
ws.Visible = x1SheetVisible
'Loop to the next iteration.
Next ws

End Sub

Exiting a For... Loop

Suppose your macro requires that you determine whether a particular workbook named Test.xIsx
happens to be open, and if so, you must close it. You might compose a macro with a loop that looks

like this:

Sub CloseOneWorkbook ()
'Declare your object variable.
Dim wb As Workbook

'Open a For Each loop.

For Each wb In Workbooks
'Command (s) to be executed.
If wb.Name = "Test.xlsx" Then
wb. Save

wb.Close

End If

'Loop to the next iteration.
Next wb

End Sub

Strictly speaking, the macro will work. But think for a moment — what if a few dozen workbooks
are open? In this case, you'd want the loop to do its job only up to the point of encountering the
Test.xlsx workbook.

In the preceding closeOneWorkbook example, even if the Test.xlsx workbook is found to be open and
then closed, the loop will still continue its appointed rounds after that by unnecessarily evaluating
each open workbook. This would be a waste of time and system resources. Instead, you should insert
the Exit For statement to stop the looping process in a For..Next or For..Each..Next loop when a
condition has been met and dealt with, and cannot be met thereafter.

Here is an example of how that macro should look, with the Exit For statement placed immedi-
ately before the End If statement:

Sub CloseOneWorkbookFaster ()
'Declare your object variable.
Dim wb As Workbook

For Each wb In Workbooks
'Command (s) to be executed.

www.it-ebooks.info

http://www.it-ebooks.info/

90 | LESSON9 REPEATING ACTIONS WITHLOOPS

If wb.Name = "Test.xlsx" Then

wb. Save

wb.Close

'Exit For statement to avoid needless iterations if the condition is met.
Exit For

End If

'Loop to the next iteration.

Next wb

End Sub

Looping In Reverse with Step

A common request that Excel users have is to insert an empty row when the value of a cell in some
particular column does not equal the value of the cell below it. In Figure 9-1, the table of data is

sorted by Region in column A, and the request is to visually separate the regions with an empty row
at each change in Region name.

: . . : Before After
Wheg inserting a series of rows like - 5 . . - = = -
this, it’s best to start looping from the 1 Region Item Count 1 |Region Item Count
2 East Wombats 116 2 East Wombats 116
bottom of the table, and work your way 3 east widgets 65 3 [East Widgets B4
: 4 East Wallabees 822 4 East Wallabees 822
up to the tOp. That means your numeric 5 |East Wallabees 456 5 East Wallabees 456
Trow reference in the loop Wlll be 6 |East Wombats 898 6 |East Wombats 898
. . . 7 |west Wallabees 605 7
decreasing and not increasing, because B |west Witches 781 B |west Walabees 605
: : : 9 |west Wallabees 990 9 ‘west Witches 781
YOU.I' startmg pOlIlt 1S row 18 (the last 10 \North ~ Wallabees 349 10 \west Wallabees 990
row of data) and your ending point is 11|North Wombats 493 11
12 \North Widgets 507 12 |North Wallabees 349
row 2 (the first row of data). 13 North Widgets Bad 13 North Wambats 493
14 |South Widgets 570 14 |North Widgets 507
Recall that when VBA executes a For... d5ilSouth |Widgets 323 15 |North [Widgets 644
L. 16 |South Wallabees 373 16
Next loop, by default it increments by 17 |South Wallabees 900 17 |South Widgets 570
h l f d 1 d 18 |South Widgets 962 18 |South Widgets 323
1 the value of your declared Integer 19 19 South Wallabees 373
] : 20 20 |South Wallabees 900
;)r Long type vamab_l;:. Wltl’i For..Next a 3 oot Wies e
00ps, you can specify an alternative FIGURE 9-1

increment or decrement value by using
the optional step keyword. You can step
forward or backward by as large a numeric value as you like.

In this example, each cell in column A is being evaluated one by one, from row 18 to row 2, so the
loop will step by a numeric factor of negative 1. Here is a macro that makes the “Before” image look
like the “After” image in Figure 9-1:

Sub InsertRows ()

'Declare your Integer or Long variable.
Dim xRow As Long

'Open a For Each loop.

For xRow = 18 To 3 Step -1

'Command (s) to be executed.

If Range("A" & xRow).Value <> Range("A" & xRow - 1) Then
Rows (xRow) .Resize (1) .Insert

End If

'Loop to the next iteration.

Next xRow

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Types of Loops | 91

Do...While

The Do statement is an extremely powerful tool with which to gain more flexibility in your loop-
ing structures. In a Do..While loop, you test for a condition that must be True before the loop will
execute. When the condition is True, the command(s) within the loop are executed.

As a simple example, the DowhileExample macro will produce five message boxes because the Do...
While loop tests for the condition that an Integer variable (named iCounter) has not exceeded the
number 5. Notice that the iCounter variable starts at 1 outside the loop and is increased by 1 inside
the loop.

Sub DoWhileExample ()
Dim iCounter As Integer
iCounter = 1

Do While iCounter <= 5

MsgBox "Hello world!", , iCounter
iCounter = iCounter + 1

Loop

End Sub

Applying this concept to a more practical activity, suppose you want to open all Excel workbooks
that are in a particular file path. The macro named openaliriles will do that using a Do..Loop
structure. The Dir function returns the first filename that matches the combination of the specified
pathname and an Excel workbook extension containing .x1s. Calling the pir function again would
open additional filenames until a filename is encountered that does not match the combination.

Sub OpenAllFiles()

Dim myFile As String, myPath As String
myPath = "C:\Your File Path\"

myFile = Dir (myPath & "*.xls*"

Do While myFile <> ""

Workbooks.Open myPath & myFile

myFile = Dir()

Loop

End Sub

Do...Until

When VBA runs a Do..Unti1 loop, it tests the logical condition you supply and executes the commands
within the loop as long as the condition evaluates to False. When VBA reaches the Loop statement, it
re-evaluates the condition and executes the looping commands only if the condition is still False.

This example demonstrates Do..Unt 11 by selecting the next worksheet based on the index number
from whatever current worksheet you are on. The wrinkle that is taken into consideration by the loop
is that the next highest index number worksheet might be hidden, and because you cannot select a hid-
den worksheet, the loop selects the next highest index number of a worksheet that is also visible.

Sub SelectSheet ()

'Declare an Integer type variable to handle the Index number property
'of whichever worksheet(s) are being evaluated in the current iteration.
Dim intWS As Integer

'Because you want to activate the next visible worksheet,

www.it-ebooks.info

http://www.it-ebooks.info/

92 | LESSON9 REPEATING ACTIONS WITH LOOPS

'as a starting point you need to know the next highest Index position

'from whatever worksheet is active at the time.

intWS = ActiveSheet.Index + 1

'If you are on the last worksheet, you'll have reached the end of the line,
'so define the intWS as the first Index worksheet.

If intWS>Worksheets.Count Then intWs = 1

'Open a Do Until loop that determines the next Index number,

'only considering visible worksheets.

Do Until Worksheets (intWS) .Visible = True

'Add a 1 to the intWS variable as you iterate to the next highest Index number.
intWS = intws + 1

If it turns out that the intWS Index variable reaches a number

'"that is greater than the count of worksheets in the workbook,

"the intWS number is set back to 1, which is the first Index position.If intWsS >
Worksheets.Count Then intWS = 1

'Loop to start evaluation again, until the proper Index number is found.
Loop

'Select the worksheet whose Index property matches the index number

"that has met all the criteria.

Worksheets (intWS) .Select

End Sub

For another example, suppose you want to update your AutoCorrect list easily and quickly. Say
you have a two-column table on your worksheet that occupies columns A and B. In column A,
you have listed frequently misspelled words, and in column B are the corrected words that you
want Excel to automatically display if you misspell any of those words. For example, in cell Al
you have entered “teh” (without the quotes) and in cell B1 you have entered the correction of
“the”(without the quotes). This macro, using a Do..Until loop, will handle each entry in column
A and continue to do so until the first empty cell is encountered, indicating the end of the list.

Sub AddCorrection()

'Declare a Long type variable to help looping through rows

'of the two-column list.Dim i As Long

'Declare two String type variables:

'one for thr original entry, and the other for the text string replacement.
Dim myMistake As String, myCorrection As String

'Establish the number 1 for the Long Variable, representing row 1

'which is the first row in the example list.

i=1

'Open a Do Until loop, telling VBA to stop looping when an empty cell

'is encountered in column A, indicating the end of the list.

Do Until IsEmpty(Cells(i, 1))

'Define the myMistake variable as the text contents of the cell in column
A.myMistake = Cells(i, 1).Value

'Define the myCorrection variable as the text contents of the cell in column B.
myCorrection = Cells(i, 2).Value

'VBA tells the Excel Application's AutoCorrect property to update itself with
'the two strings from columns A and B.

Application.AutoCorrect.AddReplacement What:=myMistake, Replacement:=myCorrection
'Add a 1 to the i variable in preparation for evaluating the next row in the list.
i=1i+1

'The Loop statement starts the process again for the next row in the list.

Loop

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Types of Loops | 93

@ This example introduces the cells range method to refer to a cell object. You
are already familiar with the Range ("A1") notation, but the cells method
offers more flexibility in VBA when referring to individual cells and ranges.
The cells method has two arguments: the first argument is row number,

and the second argument is column number. The syntax is ParentObject
.Cells (RowIndex, ColumnIndex). Forexample, the notation cells (2, 5)

is the same as Range ("E2") because for cell E2, column E is also regarded by
Excel as column 5, and the numeral 2 in “E2” refers to row 2. You'll be seeing
an increased use of the Cells method in this book because it is such an easier
and more efficient method of referring to dynamic ranges in VBA.

Do...Loop...While

To have VBA test the conditional statement after executing the commands within the loop, you
simply place the conditional statement after the Loop keyword. The Do..Loop..While syntax is:

Do
Command statements to be executed within the loop.
Loop While condition

When VBA executes the command(s) in a Do..Loop..While structure, it does so first, and then at the
Loop While line, it tests the logical condition. If the condition is True at that point, the loop iterates
again, and so on, until the condition evaluates to False.

A common request is to locate all cells in a worksheet that contain a particular value, similar to
clicking the Find Next button on the Find dialog box, and then do something to that cell or to the
cells around it. Suppose you have a worksheet filled with data and you want to find all cells that
contain the word “Hello.” These cells can be in any row or column.

For each of those cells where “Hello” is found, you want to place the word “Goodbye” in the cell of
the column to the immediate right. The following macro does just that, using a Do..Loop..ithile con-
struction that finds every cell containing “Hello” and identifies its address, so the loop can perform

only as many iterations as there are cells containing “Hello™:

Sub FindHello()

Dim HelloCell As Range, BeginningAddress As String

Set HelloCell = ActiveSheet.UsedRange.Find("Hello", LookIn:=x1Values)
If Not HelloCell Is Nothing Then

BeginningAddress = HelloCell.Address

Do

HelloCell.Offset (0, 1).Value = "Goodbye"

Set HelloCell = ActiveSheet.UsedRange.FindNext (HelloCell)

Loop While Not HelloCell Is Nothing And HelloCell.Address<>BeginningAddress
End If

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

94 | LESSON9 REPEATING ACTIONS WITHLOOPS

Do...Loop...Until

Similar in approach to the Do..Loop..While construct, the Do..Loop..Until loop tests its condition
after executing the loop’s statements. The unti1 keyword tells VBA that the statements within the
loop will be executed again, for as long as the logical condition evaluates to False. Once VBA tests
the condition as True, the loop’s iterations will stop, and the macro will resume with the line of code
following the Loop keyword.

This macro shows an example of a Do..Loop..Until structure, which creates 365 new worksheets, all
named with dates starting from the day you run the macro:

Sub YearSheets()

Dim i As Integer

i=0

Do

Sheets.Add (After:=Sheets (Sheets.Count)) .Name = Format (VBA.Date + i, "MM-DD-YYYY")
i=1+1

Loop Until i1 = 365

End Sub

While...Wend

While..Wend loops have become obsolete and are rarely used because they are not as robust as Do
and For loops. VBA still supports while..iwend loops for backward compatibility with prior versions
of Excel, and I am not aware of any plans by Microsoft to stop supporting while..Wend.

So, though I recommend you not bother learning how to build a while..wend loop, the fact is, they
are rather uncomplicated constructs and you should have some familiarity with how they look if
and when you see them in older code written by others. Here is an example of while..wend that uses
an InputBox that asks for a password, and keeps asking until the correct password is entered, or the
message box is cancelled:

Sub InputPassword()

While InputBox("Please enter password:", "Password required") <> "MyPassword"
If MsgBox(_

"Sorry, that is not correct.",

vbOKCancel, _

"Wrong password") _

= vbCancel Then End

Wend

MsgBox "Yes!! You entered the correct password!", vbOKOnly, "Thank you!"
End Sub

NESTING LOOPS

Your macros will eventually require that you enclose one loop structure inside another loop struc-
ture, referred to as nesting loops. For example, you may need to loop through a set of rows in a data
table, and each completed set of looped-through rows will represent a single iteration for a larger
loop construct for the columns in the table.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 95

When you nest loops, you need to be aware of a few important points:

> When you nest For..Next loops, each loop must have its own uniquely named counter
variable.

> When you nest For..Each..Next loops, each loop must have its own uniquely named object
(or element) variable.

> Ifyouuse an Exit For or Exit Do statement, only the loop that is currently executing will
terminate. If that loop is nested within a larger loop, the larger loop will still continue to
execute its iterations.

> I mentioned this earlier in this lesson, but it especially holds true with nested loops: I strongly

recommend you include the variable name in your Next statements.

Here is an example of a macro with a Do loop nested inside a For..Each..Next loop. This macro will
produce a list of six unique random numbers between 1 and 54, similar to a lottery drawing.

Sub PickSixLottery ()
'Declare the Range variables for the entire six-cell range,
'and for each individual cell in the six-cell range.

Dim RandomRange As Range, RandomCell As Range

'Identify the six-cell range where the randomly selected numbers will be listed.
Set RandomRange = Range("Al:A6")

'Before populating the six-cell list range, make sure all its cells are empty.
RandomRange.Clear

'Open a For...Each loop to cycle through each cell in range Al:A6.
For Each RandomCell In RandomRange

'Open a Do...Loop that enters a unique random number between 1 and 54

Do
RandomCell.Value = Int(54 * Rnd + 1)
Loop Until WorksheetFunction.CountIf (RandomRange, RandomCell.Value) = 1

'Tterate to the next cell until all six cells have been populated.
Next RandomCell

End Sub

TRY IT

In this lesson, you write a macro with a For..Next loop that adds 12 worksheets to a workbook, and
names each of them by month.

www.it-ebooks.info

http://www.it-ebooks.info/

96 | LESSON9 REPEATING ACTIONS WITHLOOPS

Lesson Requirements

For this lesson, you write a macro that uses a For..Next loop with an Integer type variable that adds
12 worksheets to your workbook, names each worksheet by calendar month (“January,” “February,”
and so on), and places the worksheets’ tabs in order of calendar month from left to right.

Step-by-Step

1.
2.
3.

Open a new workbook and press Alt+F11 to go to the Visual Basic Editor.
From the menu at the top of the VBE, click Insert = Module.

In the module you just created, type Sub LoopTwelveMonths and press Enter. VBA will
automatically place a pair of empty parentheses at the end of the sub line, followed by an
empty line, and the End sub line below that. Your macro will look like this so far:

Sub LoopTwelveMonths ()

End Sub

Declare an Integer type variable that will iterate 12 times, one for each month of
the year:

Dim intMonth As Integer

Open a For. . .Next loop that starts from 1 and ends at 12:

For intMonth = 1 To 12

With a one-line command, you can add each of the 12 worksheets in turn, while placing
their tabs one after another from left to right, and naming each tab by calendar month. The
DateSerial function is a good way to cycle through month names because it requires integer
values for the arguments of Year, Month, and Days, just like the DaTE worksheet function.
You can use any year, and any day that is not a number greater than 28. For the Month
argument, the intMonth variable is a perfect fit because it was declared as an Integer type.

Sheets.Add (After:=Sheets (Sheets.Count)) .Name =
Format (DateSerial (2011, intMonth, 1), "MMMM")

Enter the Next statement for the intMonth variable that will produce and name the next
month’s worksheet up to and including December:

Next intMonth

When completed, the macro will look like this, with comments that have been added to
explain each step:

Sub LoopTwelveMonths ()
'Declare an Integer type variable to iterate twelve times,

'one for each month of the year.
Dim intMonth As Integer

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 97

'Open a For...Next loop that starts from one and ends at twelve.
For intMonth = 1 To 12

'With a one-line command, you can add each of the twelve worksheets in turn,
'while placing their tabs one after another from left to right.

Sheets.Add (After:=Sheets (Sheets.Count)) .Name = _
Format (DateSerial (2011, intMonth, 1), "MMMM")

'The Next statement for the intMonth variable
'produces and names the next month worksheet.
Next intMonth

End Sub

To view the video that accompanies this lesson, please select Lesson 9, available at
the following website: wvww.wrox . com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Arrays

This lesson introduces you to arrays in VBA. As you will see, arrays are a very useful way to pro-
grammatically group and store many items of related data. Once you’ve collected your array of
data items, you can access any of the items individually, or access the group as a whole. Arrays can
help you accomplish various tasks in a logical and efficient manner, which is important to remem-
ber when you find yourself faced with some tasks for which arrays will be the only alternative.

WHAT IS AN ARRAY?

An array is like a variable on steroids. In addition to being a variable, an array also serves as a
holding container for a group of individual values, called elements, that are of the same data
type. You can populate the array yourself by specifying the known elements in your macro,

or you can let VBA populate the array during the course of the macro if you don’t know how
many elements the array will end up containing.

The concept of arrays can be challenging to grasp at first, so a real-world analogy might help.
Suppose you are a fan of classic movies, and you keep a CD library at home of perhaps 100
movies. Among those 100 movies are five that are your favorite classics. You can declare a
variable named myFavoriteMovies, and create a String array with this macro:

Sub FavoriteMovies ()

Dim myFavoriteMovies(l to 5) as String

myFavoriteMovies (1) = "Gone With The Wind"
myFavoriteMovies (2) = "Casablanca"
myFavoriteMovies (3) = "Citizen Kane"
myFavoriteMovies (4) = "Sunset Boulevard"
myFavoriteMovies (5) = "Modern Times"

MsgBox myFavoriteMovies(3)

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

100 | LESSON10 WORKING WITH ARRAYS

Elements in an array are variables, and you can refer to a specific element by its index number inside
the array. Because the array name is myFavoriteMovies, and the Message Box is referring to the
third element in that array, when you run this macro, the Message Box will display Citizen Kane.

You have created an array which is a collection of your favorite classic movies. You can loop through

each element in that collection — that is, each movie title — by referring to its index number inside
the myFavoriteMovies array. The following macro shows how to display each movie title element in a
Message Box.

Sub FavoriteMoviesLoop ()

Dim myFavoriteMovies(l To 5) As String
Dim intCounter As Integer

myFavoriteMovies (1) = "Gone With The Wind"
myFavoriteMovies (2) = "Casablanca"
myFavoriteMovies(3) = "Citizen Kane"
myFavoriteMovies (4) = "Sunset Boulevard"
myFavoriteMovies (5) = "Modern Times"

For intCounter = 1 To 5

MsgBox myFavoriteMovies (intCounter), ,
"Favorite #" & intCounter

Next intCounter

End Sub

If you would like to populate a range of cells with the elements of your array, this macro demonstrates
how to do that, listing the movie titles in range A1:AS.

Sub FavoriteMoviesRange ()

Dim myFavoriteMovies(l To 5) As String
Dim intCounter As Integer

myFavoriteMovies (1) = "Gone With The Wind"
myFavoriteMovies(2) = "Casablanca"
myFavoriteMovies(3) = "Citizen Kane"
myFavoriteMovies (4) = "Sunset Boulevard"
myFavoriteMovies(5) = "Modern Times"

For intCounter = 1 To 5
Cells (intCounter, 1).Value = myFavoriteMovies (intCounter)
Next intCounter

End Sub

VBA regards the array itself as one variable, but inside the array is a group of two or more elements
that you can work with separately. You can, and often will, refer to each element by its index num-
ber, which is its position in the array. This way, you can pick a particular element in the array to
work with based on its index number, or you can loop through all the index numbers one after the
other, in case your project calls for every element to be worked on.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is an Array? | 101

What Arrays Can Do for You

Arrays are often used for representing data in lists or tables, where each item in the list is of

the same data type. Some examples might be a list of your friends’ names, all of which would
be String data types, or a table of your city’s average daily temperatures by month, all of which
might be Double data types. Arrays offer you the versatility of storing and manipulating data
items through one array variable, which is much more efficient than assigning variables to every
element in the array.

Say you want to count how many Excel workbook filenames reside in a particular folder. You
don’t know how many total files are in that folder, or how many of those total files are Excel files.
With an array doing the job, you won’t need any worksheet cells to store the filenames. Instead,
you can programmatically compile into memory the count of Excel files, and the individual file-
names too, all of which you can retrieve later in your macro if need be.

The previous arrays of movie titles are an example of one-dimensional arrays. In the macro named
FavoriteMoviesRange, the five movies were listed in range A1:AS5. VBA regards this as a one-
dimensional array because the array elements stand by themselves in a table that is five rows deep
and one column wide.

Many arrays you deal with will have more than one dimension. A B c

. T . . . 1 |Gone With The Wind 1939
Figure 10-1 e)lipands on this list of c}assm movies by ad'dmg a s.econd S Casabianca 1902
column that lists the year each movie was released. This table is com- 3 |Citizen Kane 1941

dof i dt 1 At di : 1 Stri 4 |Sunset Boulevard 1950

posed of five rows and two columns. A two-dimensional String array 5 yogem tmes 1935
can be created by associating the movie title elements with their 6
respective year of release elements. FIGURE 10-1

The first item of business is to declare a String type variable for the array. The size of the array is
specified with the variable, to include the span of rows and columns that make up the array. For
example, with five rows and two columns, a variable named classics is declared with the state-
ment Dim Classics(l To 5, 1 To 2) As String. The following macro loops through rows 1 to
5 in column A and rows 1 to 5 in column B. Each value in the array is stored in memory with two
Integer type variables for collecting row and column data. Based on Figure 10-1, the Message Box
will return 1941 because Classics (3, 2) returns the string value of the element that occupies the
location of the array’s third row and second column.

Sub TwoDimensionalArray ()

Dim Classics(l To 5, 1 To 2) As String
Dim intRow As Integer, intColumn As Integer

For intRow = 1 To 5

For intColumn = 1 To 2

Classics(intRow, intColumn) = Cells(intRow, intColumn).Value
Next intColumn

Next intRow

MsgBox Classics (3, 2)

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

102

| LESSON10 WORKING WITH ARRAYS

Declaring Arrays

You declare an array the same way you typically declare variables. The variable declaration starts
with the Dim statement, followed by the array name and the data type. The array name ends with a
pair of parentheses to indicate that it’s an array, with the count of elements, if known, placed inside
the parentheses.

For example, the following statement declares an array named myDays, which will be populated
with all seven days of the week. Notice the data type is String, because weekday names are text val-
ues, such as “Sunday,” Monday,” and so on.

Dim myDays(6) As String

You can also declare arrays using the Public, Private, and static keywords, just as you can with
other variables, with the same results in terms of scope and visibility.

To declare an array as Public, place a statement like this at the top of your module:

Public MyArray(l) As String

With the public declaration, you can share an array across procedures. For example, if you run
either of the following two macros, the array elements of Hello and Goodbye will be displayed in a
Message Box.

Sub PublicArrayExample ()

'Fill the array MyArray with values.
MyArray(0) = "Hello"
MyArray(l) = "Goodbye"

'Run the TestPublicArrayExample macro to display MyArray.
Run "TestPublicArrayExample"

End Sub

Sub TestPublicArrayExample ()

'Display the values contained in the array MyArray.
Dim i As Integer

For 1 = 0 To UBound (MyArray, 1)

MsgBox MyArray (i)

Next 1

End Sub

You may have noticed the UBound statement in the preceding macro. You will
learn more about upper and lower boundaries in the upcoming section named
Boundaries in Arrays.

A static array is an array that is sized in the declaration statement. For example, the following
declaration statement declares an Integer array that has 11 rows and 11 columns:

Dim MyArray (10, 10) as Integer

www.it-ebooks.info

http://www.it-ebooks.info/

The Option Base Statement | 103

THE OPTION BASE STATEMENT

When learning arrays, it’s common for some head-scratching and confusion to accompany the con-
cept of zero-based numbering. In the declaration statement Dim myDays (6) As String, you might
wonder why the array shows the number 6 in parentheses, when there are seven days in a week.

In zero-based numbering, the first element of any array is represented by the default number of 0.
The second element is represented by the number 1, and so on. That is why an array of seven week-
day elements is represented by the number 6 in the statement Dim myDays (6) As String.

VBA does provide a way for specifying that the first element of the array be number 1, which is
more intuitive for most people. You can do this by placing the statement Option Base 1 at the top
of the module. Personally, I have never specified option Base 1 because I’'ve become accustomed to
VBA’s default settings.

Here’s a visual look at zero-based numbering in action. Figure 10-2

. : Element O ==p-| Bill
shows five text elements that you might manually place into an array
macro. Element 1 ==p| Bob

Note the element index numbers starting with the default of 0. In Element 2 = | Tom
the following macro, the array named Familyarray is populated Element 3 ==p| Mike
in the order of the pictured elements. Further, a variable named Element 4 ==p-| Jim
FamilyMember is assigned the element 2 item, which is actually the
third item in the list of names because the list starts at number 0.
Therefore, when the MsgBox FamilyMember command is executed, Tom will be displayed in the
Message Box because Tom occupies the element 2 position in the array named FamilyArray.

FIGURE 10-2

Sub ArrayTest ()

Dim FamilyArray () As Variant

Dim FamilyMember As String

FamilyArray = Array("Bill", "Bob", "Tom", "Mike", "Jim")
FamilyMember = FamilyArray(2)

MsgBox FamilyMember

End Sub

To test this concept a bit further, enter the statement Option Base 1 at the very top of the module.
When you run the ArrayTest macro again, you’ll see that FamilyArray (2) returns Bob, because
the array elements were counted starting at base number 1.

@ It’s a fair question to ask why VBA uses zero-based numbering in the first place.
It turns out, most other programming languages use zero-based numbering for
their arrays because of the way arrays are stored in memory. The topic is rather
complicated, but in simple English, the subscript (the numbers in the parentheses
following the array’s variable name) refers to an offset position in memory from
the array’s starting position. Therefore, the first element has a starting position
of 1, but the array’s subscript is translated into the offset memory address of 0.
The second element is offset at 1, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

104 | LESSON10 WORKING WITH ARRAYS

BOUNDARIES IN ARRAYS

Arrays have two boundaries: a lower boundary, which is the position of the first data element, and
an upper boundary representing the count of elements in the array. VBA keeps track of both bound-

aries’ values automatically, with the 1Bound and UBound functions.

@ When you declare an array, you can specify only the upper index boundary.

In the example, you have Dim myDays (6) As String but it could have been
written as Dim myDays (0 to 6) As String. The “0 to” does not need to be
present because the lower index boundary is always assumed to be 0 (or 1 if
Option Base 1 has been stated at the top of the module). Under the default
setting of Option Base 0, the number you include in the declaration (which
was 6 in this example) is the upper index number of the array, not the actual
number of elements.

Here is an example to demonstrate the LBound and UBound functions in practice. In this example,
you fill an array with a number of cell addresses, and the macro enters the word Hello in that array

of cell ranges.

Sub ArraySheets ()

'Declare your variables
Dim sheetName As Variant, i As Integer, TargetCell as Variant

'Populate the array yourself with the known worksheet names.
TargetCell = Array("aAl", "B5", "B7", "Cl1", "cl2", "D13", "Al2")

'Loop from the lower boundary (the first array element)
'to the upper boundary (last element) of your sheetName array.
For i1 = LBound(TargetCell) To UBound(TargetCell)

Range (TargetCell(i)) .Value = "Hello"

'Continue looping through the array elements to completion.
Next 1

'End the macro.

End Sub

DECLARING ARRAYS WITH FIXED ELEMENTS

Early in this lesson you saw this array declaration:

Dim myDays(6) As String

www.it-ebooks.info

http://www.it-ebooks.info/

Declaring Dynamic Arrays with ReDim and Preserve | 105

The ultimate objective of that declaration was to build an array A B &
containing the seven days of the week, and to transfer that list into 1 |sunday
range A1:A7, as depicted in Figure 10-3. 2 |Monday
3 |Tuesday
The macro to do that could look like the following one named 4 |Wednesday
.. . . 5 |Thursday
ArrayWeekdays. Characteristics of a fixed array include a set of ele- 6 |Friday
ments that remain constant, such as days of the week, where there will 7 |saturday
always be seven and their names will never change. The weekpAY func- 8
tion returns an integer from 1 to 7 that represents a day of the week. 190
For example, 1 represents Sunday, 2 represents Monday, and so on. If
FIGURE 10-3

you enter the function =wEEKDAY (5) in a cell, and custom format the
cell as popp, the cell will display Thursday.

The comments in the code explain what is happening, and why:

Sub ArrayWeekdays ()

'Declare the array variable for seven elements (from 0 to 6).
Dim myDays(6) As String

'Declare an Integer type variable to handle the seven indexed elements.
Dim intDay As Integer

'Start to loop through each array element starting at the default 0 lower boundary.
For intDay = 0 To 6

'For each array element, define the myDays String variable

'with its corresponding day of the week.

'There i1s no such thing as "Weekday 0", because Excel's Weekday function

'is numbered from 1 to 7,so the "+ 1" notation adds 1 to the intDays Integer
'variable which started at the lower bound of 0.

myDays (intDay) = Format (Weekday (intDay + 1), "DDDD")

'Cells in range Al:A7 are populated in turn with the weekday.
Range ("A" & intDay + 1).Value = myDays (intDay)

'The loop is continued through to conclusion.
Next intDay

'End of the macro.

End Sub

DECLARING DYNAMIC ARRAYS WITH REDIM AND PRESERVE

Unlike an array with a known fixed set of elements, some arrays are built programmatically during the
macro. These arrays are called “dynamic.” Earlier you read about populating an array with the count
of Excel workbook files that exist in a folder. In that case you’d have a “dynamic” array because the
file count is subject to change; you would not know ahead of time what the array’s size will be. With a
dynamic array, you can create an array that is as large or as small as you need to make it.

www.it-ebooks.info

http://www.it-ebooks.info/

106 | LESSON10 WORKING WITH ARRAYS

To attack the problem of an unknown count of elements, you can change the size of an array on the
fly with a pair of keywords called ReDim and Preserve. The ReDim statement is short for redimension,
a fancy term for resizing the array. When ReDim is used by itself to place an element in the array, it
releases whatever data was in the array at the time, and simply adds the element to a new empty array.

The Preserve statement is necessary to keep (preserve) the data that was in the array, and have the
incoming element be added to the existing data. In VBA terms, ReDim Preserve raises the array’s
upper boundary, while keeping the array elements you’ve accumulated.

The following macro named Selectedworksheets demonstrates ReDim Preserve in action. The
purpose of the array in this example is to collect the names of all worksheets that are concurrently
selected, such as when you press the Ctrl key and select a few worksheet tabs.

The comments in the code explain what each line of code is doing, so you can get a feel for how to
populate a dynamic array and display its elements (the worksheet names) in a Message Box.

Sub SelectedWorksheets ()
'Declare the array variable for an unknown count of elements.
Dim WhatSelected() As Variant

'Declare a variable for the Worksheet data type.
Dim wks As Worksheet

'Declare an Integer variable to handle the unknown count of selected worksheets.
Dim intSheet As Integer

'Start to loop through each selected worksheet.
For Each wks In ActiveWindow.SelectedSheets

'An index array element is assigned to each selected worksheet.
intSheet = intSheet + 1

'This macro is building an array as each selected worksheet is encountered.
'The Redim statement adds the newest selected worksheet to the growing array.
'The Preserve statement keeps (preserves) the existing array data,

'allowing the array to be resized with the addition of the next element.
ReDim Preserve WhatSelected(intSheet)

'The corresponding worksheet's tab name is identified with each selected sheet,
'and placed in the "WhatSelected" array for later retrieval.
WhatSelected (intSheet) = wks.Name

'The loop is continued to completion.
Next wks

'Looping through each element in the "WhatSelected" array that was just built,
'a message box displays the name of each corresponding selected worksheet.
For intSheet = 1 To UBound(WhatSelected)

MsgBox WhatSelected (intSheet)

Next intSheet

'"End of the macro.

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 107

TRY IT

In this lesson you verify whether a certain string element is part of an array.

You test whether a certain string element is in an array. At the end of the macro, you’ll show a
Message Box to confirm that the string element either was or was not found to exist in the array.

Like the example earlier in this lesson, say you have this list of names:

Bill
Bob
Tom
Mike

Jim

Now, say you want to test whether a certain string element is in that array, which in this example
you will enter into a worksheet cell. Enter a good-looking name like Tom into cell A1 of Sheet1. Put
the list of names in an array, and test to see whether “Tom” is among the elements in that list.

Lesson Requirements

To get the sample database files you can download Lesson 10 from the book’s website at

WWW.Wrox.com.

Step-by-Step

1.
2.
3.
4

5.

Open Excel and add a new workbook.
Press Alt+F11 to get into the Visual Basic Editor.
From the VBE menu, click Insert &> Module.

In the new module, type the name of your macro as
Sub TestArray
Press the Enter key, which will cause Excel to place a set of parentheses after the Testarray

macro name, and also will create the End Sub statement. Your macro so far will look like
this:

Sub TestArray ()

End Sub

For the first line of code, establish that Sheet2 is VeryHidden, as an example to demonstrate
the result of an element being found, or not found, in an array. If the element is found,
Sheet2 will be unhidden.

Worksheets ("Sheet2") .Visible = x1lSheetVeryHidden

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

108 | LESSON10 WORKING WITH ARRAYS

10.
1".

12.

For the second line of code, declare a variable for the array of names you’ll be creating, and
name the variable myArray. For the next line of code, assign the variable name to the array.
In this case, you know what the list of names contains so you can build the array yourself by
simply entering the individual names inside the parentheses. The two lines of code will look
like this:

Dim myArray As Variant
myArray = Array("Bill", "Bob", "Tom", "Mike", "Jim")

The next two lines of code would show the String type variable to represent the string ele-
ment you are attempting to verify, and then code to assign the string to that variable. The
String variable, named strverify, refers to a name you would enter into cell A1 of Sheet1 to
test the macro. For example:

Dim strVerify as String
strVerify = Worksheets ("Sheetl").Range("Al") .Value

You will need to declare two more variables. One of these variables will be an Integer type
variable, which will help you loop through each of the five elements in the array. The other
variable is a Boolean data type, which will help to characterize as True or False that the
string in cell A1 of Sheet1 is among the elements in the array.

Dim i as Integer, blnVerify as Boolean

Enter Tom in cell A1 of Sheetl.

Now, to see whether “Tom”exists in the array, loop through each element and compare it to
the string variable. If there is a match, exit the loop and alert the user by unhiding Sheet2. If
the String variable is not found, let the user know that as well, and keep Sheet2 hidden.

For 1 = LBound (myArray) To UBound (myArray)

If strVerify = myArray(i) Then
blnverify = True

MsgBox "Yes! " & myArray (i) & " is in the array!", , "Verified"
Worksheets ("Sheet2") .Visible = x1SheetVisible
Exit For

End IfNext i

If blnVerify = False Then _
MsgBox strVerify & " is not in the array.", , "No such animal."

Putting it all together, the macro would look like this:

Sub TestArray ()

'Establish that Sheet2 is VeryHidden.
Worksheets ("Sheet2") .Visible = x1lSheetVeryHidden

'Declare and assign a Variant type variable for the array.

Dim myArray As Variant
myArray = Array("Bill", "Bob", "Tom", "Mike", "Jim")

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 109

'Declare and assign a String type variable for the element being evaluated.
Dim strVerify as String
strVerify = Worksheets("Sheetl").Range("Al") .Value

'Declare the Integer and Boolean data type variables.
Dim i as Integer, blnVerify as Boolean

'Loop through each element starting with the first one (LBound)
'and continue as necessary through to the last element (UBound).
'If "Tom" is found, exit the loop and alert the user.

'If "Tom" is not found, alert the user of that as well.

For i1 = LBound(myArray) To UBound (myArray)
If strVerify = myArray(i) Then
blnverify = True

MsgBox "Yes! " & myArray(i) & " is in the array!", , "Verified"
Worksheets ("Sheet2") .Visible = x1SheetVisible

Exit For

End If

Next i

If blnVerify = False Then _
MsgBox strVerify & " is not in the array.", , "No such animal."

'End the macro.
End Sub

To view the video that accompanies this lesson, please select Lesson 10, available
at the following website: www.wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11

Automating Procedures
with Worksheet Events

For the most part, the macros you have seen in this book have been run by pressing a set of
shortcut keys, or by going to the Macro dialog box, selecting the macro name, and clicking the
Run button. You can take several other actions to run a macro, as you learn in future lessons.
The common theme of all these actions is that you have to manually do something, whatever it
may be, to run a macro.

The question becomes, can a VBA procedure simply know on its own when to run itself, and

then just go ahead and do so automatically, without you needing to “do something” to make

it run? The answer is yes, and it leads to the subject of event programming, which can greatly
enhance the customization and control of your workbooks.

So far, this book has used the term “macro” to refer to VBA subroutines. When
referring to event code, the term “procedure” is used to differentiate it from
macro code.

WHAT IS AN “EVENT”?

In the Excel object model, an event is something that happens to an object, and is recognized
by the computer so an appropriate action can be taken. Recall that the Excel application is
made up of objects, such as workbooks, worksheets, cells, charts, pivot tables, and so on. Even
the entire Excel application is an object.

Virtually everything you do in Excel is in some way invoking an event upon an object. A few
examples of events are as follows:

> Double-clicking a cell
> Adding a worksheet

www.it-ebooks.info

http://www.it-ebooks.info/

12 | LESSON 11 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

Activating a worksheet
Changing a cell value
Clicking a hyperlink
Right-clicking a cell

Y Y Y VY Y

Calculating a formula

With VBA’s event programming capabilities, you can tap into Excel’s recognition of when an event
occurs and what kind of event it is. This allows you to write VBA code that will execute based on which-
ever event(s) occur that you want to monitor. This book primarily concentrates on events at two levels:

» Worksheet-level events, which are introduced in this lesson.

» Workbook-level events, which are introduced in the next lesson.

WORKSHEET EVENTS — AN OVERVIEW

Worksheet-level events occur for a particular worksheet. As you might imagine, events occur when
something happens to a worksheet, such as entry of new data into a cell, or a formula being calculated,
or the worksheet being activated or deactivated. Event code that is associated with any particular work-
sheet has no direct effect on events that take place on other worksheets in that or any other workbook.

Where Does the Worksheet Event Code Go?

You’ve become familiar with the concept of modules as being containers for the macros that you or the
Macro Recorder creates. You’ll be pleased to know that each worksheet already comes with its own
built-in module, so you never need to create a module for any worksheet- or workbook-level procedure
code.

Worksheet event code always goes into the module of the worksheet for which you are monitoring the
event(s). Regardless of the Excel version you are using, the quickest and easiest way to go straight to a
worksheet’s module is to right-click its sheet tab, and select View Code, as shown in Figure 11-1.

] =~ B = Booel - Microzoft Exezl =[E 82
Feme | nset ragelaout romumr Lam Renew vew Deveops = @ o @@
B X Calibri o = i | Genera [A Selnsets E -
= A sl Z
B’ ML 2B RN W MR R bl 1 A
Fzste yles SOt & Fing B
S F || A =iwE pr] - B Femat- | v Filer- seiu -
iphoz rant S nugnmemt G| numosr & =5 remrg
AL - I | -
et 1 E T & 1 1 1 E
1 B ook b
3 Aename
El Mave or Copy.. 3
& G View Code
= g Drotect Shezh, ¥
6
= Tek Color »
7
g Hee
1 Select Al Shet: hd
M4 F M| sheerl e e 1K1 I k]
Ready | B | ==, 100% ()) ()

To access the worksheet’'s module quickly,
right-click the sheet tab and select View Code.

FIGURE 11-1

www.it-ebooks.info

http://www.it-ebooks.info/

Worksheet Events — an Overview | 113

Immediately after you select View Code, you are taken directly into the Visual Basic Editor, as

shown in Figure 11-2. Your mouse cursor will be blinking in the worksheet module’s Code window,
ready for you to start entering your event procedure code.

This is the Sheet1 worksheet module’s code window.

‘2 Microsoft Visual Basic for Applications - Book1 - [Sheet1 (Code)]

i _ ol x|
i@ File Edit View Insert Format Debug Run Tools Adddns | Window Help Type aquestion forhelp « _ @ X
ME-H & ama 96 » 0@ NEF Hep M o =g /é%”é”‘él
PR |IGeneraI) j Ill)eclaralions) j
|
Option Explicit =
g Solver (SOLVERXLAM) =i
=88 VBAProject (Book1)

Sheet2 (sheet2)
: Sheet3 (Sheet3)
*- &7 Thisworkbook

FIGURE 11-2

Immediately above the Code window are two fields with drop-down arrows. The field on the left is

the Object field, and when you click its drop-down arrow, you would select the worksheet object
item, as shown in Figure 11-3.

@ Microsoft Visual Basic for Applications - Book1 - [Sheetl (Code)]
i@ File Edit View Insert Format Debug Run Jools AddIns Window Help
EE-d s ann 9 > 1 ak &5 BTk

Project - VBAProject | [1General) | |(Declarations)
= B

(General)

B Solver (SOLVERXLAM)
1 & VBAProject (Book1)
=123 Microsoft Excel Objects
B Sheetd (Sheetl)
Sheet2 (Sheet2)
Sheet3 (sheets)
ThisWorkbook

FIGURE 11-3

www.it-ebooks.info

http://www.it-ebooks.info/

114 | LESSON 11 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

The field above the worksheet module’s Code window, and to the right of the Object field, is the

Procedure field. Click the Procedure field’s drop-down arrow for a list of the worksheet-level events
available to you, as shown in Figure 11-4.

i Microsoft Visual Basic for Applications - Book1 - [Sheet1 (Code)]

(o] x|
Flle Edit View Inset Format Debug Run Jools Adddns Window Help Typeaqueston forhelp ~ _ @ X
g ¥ B4 9 p o o@E W WE Eémagzgyizg@;i ,e}g;g/é
BufestRARrojeck [worksheet | [selectionChange (3 [—
= =
B51d Option Explicit [Activate N=f
% Solver (SOLVERXLAM) Ee!nrengthl\c‘b‘(‘:k [
1. & VBAProject (Book1) Private Sub Worksheet Selection{taiumte
13 Microsoft Excel Objects Change
BE] Sheet1 (Sheet1) End Sub Deactivate
- B8] Sheet2 (Sheet2) Follow Hyperiink
] Sheet3 (sheet3) PivotTableA fervalieChange
&) Thistorkbook PivotTableBeforeAlocateChanges
FivotTableBetoreCommiChanges
FivotTableBe foreDiscardChanges
PivotTabieCh: &

When you select an event from the Procedure field’s drop-down list, VBA
performs the valuable service of entering the procedure statement, with all its

argument parameters and an associated End Sub statement, right there in the
worksheet module for you.

Enabling and Disabling Events

The Excel application object has an EnableEvents property that is enabled by default. In some
cases you will need to temporarily disable events in your event procedure code, and then re-enable
them before the end of the procedure. This may sound strange at first, but the reason is that some
events can trigger themselves, and an infinite loop can occur if that happens.

For example, if you are monitoring data entry in a cell and you only want a number to be entered,
but a non-numeric entry is attempted, you would use the Worksheet_Change event to undo that
wrong entry by clearing the cell’s contents. However, VBA regards a cell’s contents being cleared as
a Change event, which would trigger another round of the same Change event procedure that was
already running. To avoid this, you would sandwich the relevant code in between statements that
disable and enable events, as shown in the following syntax example.

Application.EnableEvents = False

'your relevant code
Application.EnableEvents = True

Check out the Try It section at the end of this lesson — you will see two specific
examples of disabling and enabling events there!

www.it-ebooks.info

http://www.it-ebooks.info/

Examples of Common Worksheet Events | 115

@ In the preceding syntax example, the EnableEvents property of the Application
object was temporarily set to False with the statement

Application.EnableEvents = False
and then set back to True at the end of the macro with the statement
Application.EnableEvents = True

Keep in mind that the rpplication object covers all of Excel. For example, while a
macro is running with the EnableEvents property of the Application object set to
False, EnableEvents is disabled for all open workbooks in that instance of Excel,
not just for the workbook where the VBA code is being executed. Whatever prop-
erties of the application object you temporarily change, remember to reset those
properties back to their original settings before you exit your macro or procedure.

EXAMPLES OF COMMON WORKSHEET EVENTS

At the worksheet level, Excel version 2003 has nine events, and five more than that (associated with
pivot tables) for a total of 14 in versions 2007 and 2010. The most commonly used worksheet events
are the nine that are common to all versions of Excel from 2000 to 2010:

> Worksheet_Change
Worksheet_SelectionChange
Worksheet_BeforeDoubleClick
Worksheet_BeforeRightClick
Worksheet_FollowHyperlink
Worksheet_ Activate
Worksheet_ Deactivate

Worksheet_Calculate

Y Y Y Y Y VY VY Y

Worksheet_PivotTableUpdate

Worksheet_Change Event

The wWorksheet_Change event occurs when cells on the worksheet are changed by the user or by an
external link, such as a new value being entered into a cell, or the cell’s value being deleted. The fol-
lowing example places the current date in column C next to a changed cell in column B:

Private Sub Worksheet_Change (ByVal Target As Range)

If Target.Column <> 2 Then Exit Sub

Target.Offset (0, 1).Value = Format (VBA.Date, "MM/DD/YYYY")
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

116 | LESSON11 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

The worksheet_Change event is not triggered by a calculation change, such as a
formula returning a different value. Use the Worksheet_Calculate event to cap-
ture the changes to values in cells that contain formulas.

Worksheet_SelectionChange Event

The worksheet_SelectionChange event occurs when a cell is selected. The following code high-
lights the active cell with a yellow color every time a different cell is selected:

Private Sub Worksheet_SelectionChange (ByVal Target As Range)
Cells.Interior.ColorIndex = 0

Target.Interior.Color = vbYellow

End Sub

A word to the wise! This kind of code is fun and has its usefulness, but with each
change in cell selection, the Undo stack will be eliminated, essentially negating
the Undo feature.

Worksheet__BeforeDoubleClick Event

The worksheet_BeforeDoubleClick event is triggered by double-clicking a worksheet cell. The
cancel argument is optional and halts the ability to go into Edit mode for that cell from a double-click.

In this example, if you double-click a cell in range A1:C8, and the cell already contains a number or is
empty, the numeric value of that cell increases by 1. All other cells in the worksheet are unaffected.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, _
Cancel As Boolean)

If Intersect(Target, Range("Al:C8")) Is Nothing Then Exit Sub

If IsNumeric(Target.Value) = True Then

Cancel = True

Target.Value = Target.Value + 1

End If

End Sub

@ This event does not occur if you double-click the fill handle.

www.it-ebooks.info

http://www.it-ebooks.info/

Examples of Common Worksheet Events | 117

Worksheet_BeforeRightClick Event

The worksheet_BeforeRightClick event occurs when you right-click a worksheet cell. The
optional cancel argument halts the right-click pop-up menu from appearing. In the following
example, when you right-click a cell in column E, the current date and time are entered into that
cell, and column E’s width is autofitted:

Private Sub Worksheet_ BeforeRightClick(ByVal Target As Range, _
Cancel As Boolean)

If Target.Column <> 5 Then Exit Sub

Cancel = True

Target.Value = Format (VBA.Now, "MMM DD, YYYY, hh:mm AM/PM")
Columns (Target.Column) .AutoFit

End Sub

Worksheet_FollowHyperlink Event

TheWorksheet_FollowHyperlinkeventOCCurS A B c D E F G
when you click any hyperlink on the worksheet.
You learn more about command buttons in later
lessons, but as a sneak preview, Figure 11-5 shows
a command button embedded onto a worksheet.
The button is captioned with a website address
but the caption itself is plain text, not actually a
hyperlink. With the following code, when you click FIGURE 11-5
the command button, you are taken to that caption’s

website.

http:iiwww.wiley.com —<—

(R ER - SN SRR

Private Sub CommandButtonl_Click()
CommandButtonl.Parent.Parent.FollowHyperlink CommandButtonl.Caption

End Sub

@ The Wiorksheet_FollowHyperlink event is available as a worksheet-level event,
but in reality, it is more of a function of the entire workbook. Notice the first
three items in the statement: CommandButtonl .Parent .Parent. The parent of
the CommandButton is the worksheet upon which it resides, and the parent of that
worksheet is the workbook itself.

Worksheet_Activate Event

The worksheet_Activate event occurs when you go to a particular worksheet, typically by clicking
the worksheet’s tab, although any of the other methods of arriving at a worksheet will trigger the
Worksheet_Activate event. Suppose you have a worksheet with one or more pivot tables on it, and

www.it-ebooks.info

http://www.it-ebooks.info/

118 | LESSON11 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

every time you go to that worksheet, you want to know that the pivot tables are all refreshed and up
to date. The following event code accomplishes that task:

Private Sub Worksheet_Activate()

Dim intCounter As Integer

For intCounter = 1 To ActiveSheet.PivotTables.Count
ActiveSheet.PivotTables (intCounter) .PivotCache.Refresh
Next intCounter

End Sub

Worksheet__Deactivate Event

The Wworksheet_Deactivate event occurs when you activate a different worksheet than the one you
were on. Suppose there is a particular cell in a worksheet that you strongly prefer to have some value
entered into before the user exits that worksheet. The following Worksheet_bDeactivate event code
checks to see if cell A1 contains a value. If it does not, a Message Box alerts the users as a reminder
of that fact when they deactivate the worksheet.

Private Sub Worksheet_Deactivate()

If Len(Me.Range("Al").Value) = 0 Then _

MsgBox "FYI and reminder: you did not enter a value in cell Al" & vbCrLf & _
"in the worksheet named " & Me.Name & ".",
vbExclamation, _

"Cell Al should have some value in it!"
End Sub

Worksheet_Calculate Event

The worksheet_Calculate event occurs when the worksheet is recalculated. Suppose you have a
budget model and you want to monitor the bottom-line number for profit and loss, which is derived
by a formula in cell Z135. You could conditionally format the cell when its returned value is outside
an acceptable range, but chances are no one will see the formatting due to the location of the cell.

To give the budget model’s bottom-line number a boost in awareness, utilize the Worksheet_
Calculate event to make a Message Box pop up as a warning when the number in cell Z135
becomes lower than $1,000. Also, to make it fun, have a congratulatory message appear if the
profit number is greater than or equal to $5,000.

Private Sub Worksheet_Calculate()
If Range("z135").Value < 1000 Then

MsgBox "Profits are too low!!", vbExclamation, "Warning!!"

ElseIf Range("Z135").Value >= 5000 Then

MsgBox "Profits are TERRIFIC!!", vbExclamation, "Wow, good news!!"
End If

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 119

Worksheet_PivotTableUpdate Event

The worksheet_PivotTableUpdate event occurs after a pivot table is updated on a worksheet, such
as after a refresh. The following procedure is a simple example of the syntax for this event:
Private Sub Worksheet_PivotTableUpdate (ByVal Target As PivotTable)

MsgBox "The pivot table on this worksheet was just updated.", vbInformation, "FYI"
End Sub

TRY IT

In this lesson, you write a Worksheet_Change event that allows you to sum numbers as they are
entered into the same cell. You write a Worksheet_Change event for your worksheet, where any
cell in column A except for cell A1 will accept a number you enter, add it to whatever number was
already in that cell, and display the resulting sum. For example, if cell A9 currently holds the num-
ber 2 and you enter the number 3 in that cell, the resulting value of cell A9 will be 5.

Lesson Requirements

To get the sample database files you can download Lesson 11 from the book’s website at

WWW . WroxX.com.

Step-by-Step
1. Open a new workbook, right-click the Sheet1 tab, and select View Code.

2. Your cursor will be blinking in the Sheet1 worksheet module. Directly above that, click the
down arrow belonging to the Object list, and select Worksheet. This will produce the follow-
ing default lines of code in your worksheet module:

Private Sub Worksheet_SelectionChange (ByVal Target As Range)

End Sub

3. Itis really the Change event you are interested in composing, so take one of two actions:
ekherrnanuaﬂyedkthePrivate Sub Worksheet_SelectionChange (ByVal Target
As Range) statement by deleting the word selection, or click the down arrow above the
module for the Procedures list, select the Change item, and delete the default Private sSub
Worksheet_SelectionChange (ByVal Target As Range)suuanentanditsacamnpanyﬁ@
End Sub statement. At this point, the only procedure code you will see in your worksheet
module is this:

Private Sub Worksheet_Change (ByVal Target As Range)

End Sub

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

120 | LESSON 11 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

10.

1".

The event code will monitor column A but you will want the ability to enter some kind of
header label into cell A1. Begin the procedure by writing a line of code to exclude cell A1l
from the Change event:

If Target.Address = "$AS1" Then Exit Sub

Your next consideration is to limit the Change event to column A, to avoid imposing the
Change event onto the entire worksheet. Also, you will want the change event to be in effect
for only one cell at a time in column A. One statement can handle both considerations:

If Target.Column <> 1 Or Target.Cells.Count > 1 Then Exit Sub

Note that column A is the first (leftmost) column in the worksheet grid and is easily referred
to in VBA as Columns (1).

Pressing the Delete key triggers the change event. You might want to delete a cell’s contents
and start entering a new set of numbers in an empty cell, so allow yourself the luxury of exit-
ing the Change event if the Delete key is pressed:

If IsEmpty(Target) Then Exit Sub

Even though a number is supposed to be entered into column A, never assume that it will
always happen that way, because people make mistakes. Provide for the attempt at a non-
numeric entry and disallow it:

If IsNumeric(Target.Value) = False Then

Disable events because you are about to undo the non-numeric value; the tndo command
also triggers the change event:

Application.EnableEvents = False

Execute the undo action so the non-numeric entry is deleted:

Application.Undo

Enable events again:

Application.EnableEvents = True

Remind the user with a Message Box that only numbers are allowed, and exit the change
event procedure with the Exit Sub statement:

MsgBox "You entered a non-numeric value.",
vbExclamation, _

"Please: numbers only in column A!"

Exit Sub

End If

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 121

12.

13.

14.

15.

16.

17.

18.

19.

Now that all the reasonable safeguards have been met, declare two Double type variables:
one named 01dval for the numeric value that was in the cell before it was changed, and the
other variable named Newval for the numeric value that was just entered that triggered this
Change event:

Dim Oldval As Double, NewVal As Double

Define the Newval variable first, because it is the number that was just entered into the cell:

NewVal = Target.Value

Undo the entry in order to display the old (preceding) value. Again, this requires that you dis-
able events in order not to re-trigger the Change event while you are already in a Change event:

Application.EnableEvents = False

Execute Undo so the previous value is reestablished:

Application.Undo

Define the 01dval variable, which is possible to do now that the previous value has been
restored:

0ldval = Target.Value

Programmatically enter into the cell the sum of the previous value, plus the new last-entered
value, by referring to those two variables in an arithmetic equation just as you would if they
were numbers:

Target.Value = Oldval + NewVal

Enable events now that all the changes to the cell have been made:

Application.EnableEvents = True

When completed, the entire procedure will look like this, with comments that have been
added to explain each step:

Private Sub Worksheet_Change (ByVal Target As Range)

'Allow for a header label to be placed in cell Al.

If Target.Address = "$AS1" Then Exit Sub

'Only apply this effect to column A (column 1 in VBA-Speak) .

'At the same time, only allow one cell at a time to be changed.

If Target.Column <> 1 Or Target.Cells.Count > 1 Then Exit Sub
'Pressing the Delete key triggers the Change event.

'You might want to delete the cell's contents and start with

'an empty cell, so exit the Change event if the Delete key is pressed.
If IsEmpty(Target) Then Exit Sub

'Even though a number is *supposed* to be entered into column A,

www.it-ebooks.info

http://www.it-ebooks.info/

122 | LESSON 11 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

'never assume that will always happen because users do make mistakes.
'Provide for the attempt at a non-numeric entry and disallow it.

If IsNumeric(Target.Value) = False Then

'Disable events because you are about to undo the non-numeric value,
'and Undo also triggers the Change event.

Application.EnableEvents = False

'Execute the Undo so the non-numeric entry is deleted.
Application.Undo

'Enable events again.

Application.EnableEvents = True

'Remind the user with a Message Box that only numbers are allowed,
'and exit the Change event procedure with the Exit Sub statement.
MsgBox "You entered a non-numeric value.",

vbExclamation,

"Please: numbers only in column A!"

Exit Sub

End If

'Now that all the reasonable safeguards have been met,

'Declare two Double type variables:

'one named 0ldval for the numeric value that was in the cell

'before it got changed,

'and the other variable named NewVal for the numeric value

'that was just entered that triggered this Change event.

Dim Oldval As Double, NewVal As Double

'Define the NewVal variable first, as it is the number that

'was just entered into the cell.

NewVal = Target.Value

'Undo the entry in order to display the old (preceding) value.
'Again, this requires that you disable events in order to not
're-trigger the Change event while you are already in a Change event.
Application.EnableEvents = False

'Execute Undo so the previous value is re-established.
Application.Undo

'Define the 0ldval variable which is possible to do now that

'the previous value has been restored.

Oldval = Target.Value

'Programmatically enter into the cell the sum of the old previous value,
'plus the new last-entered value, by referring to those two variables
'in an arithmetic equation just as you would if they were numbers.
Target.Value = 0ldval + NewVal

'Enable events now that all the changes to the cell have been made.
Application.EnableEvents = True

End Sub

20. Press Alt+Q to return to the worksheet. Test the code by entering a series of numbers in any
single cell in column A other than cell A1.

To view the video that accompanies this lesson, please select Lesson 11, available
at the following website: www .wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

Automating Procedures with
Workbook Events

In Lesson 11, you learned about worksheet-level events and how they are triggered by
actions relating to individual worksheets. Workbooks themselves can also recognize and
respond to a number of events that take place at the workbook level. This lesson describes
how you can further customize your workbooks with VBA procedures for the most com-
monly used workbook events.

WORKBOOK EVENTS — AN OVERVIEW

Workbook events occur within a particular workbook. Many workbook events occur because
something happened to an object in the workbook, such as a worksheet — any worksheet —
that was activated, or a cell — any cell — that was changed. Other workbook events occur
because the workbook was imposed upon to do something, such as to open or close, or to be
saved or printed.

Unless the VBA code itself purposely refers to other workbooks, event procedures
at the workbook level affect only the workbook within which the code resides.

Where Does the Workbook Event Code Go?

You saw in Lesson 11 that each individual worksheet has its own module. Workbooks are
similar to worksheets in this respect, because a workbook is also an Excel object, and has its
own module already present and accounted for when the workbook is created.

www.it-ebooks.info

http://www.it-ebooks.info/

124 | LESSON12 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

Workbook-level event code always goes into the workbook module. You never
need to create a workbook module or a worksheet module; Excel creates those
modules automatically with every new workbook. If a workbook-level event
procedure is not in the workbook module (same as if a worksheet-level event
procedure is not in a worksheet module), VBA will not be able to execute the
event code.

To arrive at the Code window for your

workbook’s module, with whatever 2 e S ‘
version of Excel you are using, you can g = . BRI
press Alt+F11 to get into the Visual Basic [l il o [In Excel versions prior to 2007,
Editor. If you are using a version of Excel 1 B to access the workbook module quickly,

ot 1y gav [speli.. right-click the workbook icon to the left of
prior to 2007, such as version 2003, you il er— the File menu item, and select View Code.
can also access the workbook module e
quickly by right-clicking the Excel work- 0 EEEt : |

. G view Code

book icon near the top-left corner of the —E‘]
workbook window, and selecting View 11

Code. This option is shown in Figure 12-1. FIGURE 12-1

In the VBE, if you do not see the Project Explorer window, go ahead and make it visible by press-
ing Ctrl+R. In the Project Explorer, find your workbook name; it will be in bold font, with the text
VBAProject (YourWorkbookName.xlsm). Directly below that will be a yellow folder named
Microsoft Excel Objects. When that folder is expanded, the last item at the bottom of the list is the
workbook object, identified by its default name of Thisworkbook.

As shown in Figure 12-2, to get into the Code window of the workbook module, either double-
click the Thisworkbook object, or right-click it and select View Code. As soon as you do that, your
mouse cursor will be blinking in the workbook module’s Code window, ready for you to start enter-
ing your workbook-level event procedure code.

s Wirdow Help Typeaqestosforhep v

ek
o < 1%

Az rw o)

=] [1weeiarctiona)

|

To access the workbook’s module, either...

...double-click the ThisWorkbook object
or

...right-click the This Workbook object,
and select ViewCode.

7 vougbiz

T diee

FIGURE 12-2

www.it-ebooks.info

http://www.it-ebooks.info/

Workbook Events — An Overview | 125

Entering Workbook Event Code

Similar to the worksheet module Code window you saw in Lesson 11, two fields with drop-down
arrows are located above the workbook module’s Code window. The field on the left is the Object field,
and when you click its drop-down arrow, you select the Workbook object item, as shown in Figure 12-3.

icrosoft Visual Basic for Applications - Book1 - [ThisWorkbook (Code)]

i ~=lalx|
i@ File Edit View Insert Format Debug Run Tools Adddns Window Help Type aquestion forhelp = _ @ X
HE-H s one9c » ok yF BRoLav sxa_-2 s%2u]
Project - VBAProject [iGoneran =] [ectarations) |
3 lGeneraI) =
&% Solver (SOLVERXLAM) k

=& VBAProject (Book1)
-5 Microsoft Excel Objects

: Sheet1 (Sheet1)

Sheet2 (Sheet2)

Sheet3 (Sheet3)

FIGURE 12-3

The field above the workbook module’s Code window, and to the right of the Object field, is the
Procedure field. Click the Procedure field’s drop-down arrow for a list of the workbook-level events

available to you, as shown in Figure 12-4.

Zi Microsoft Visual Basic for Applications - Bookl - [ThisWorkbook (Code)]

=101 x|
Em File Edit View Insert Format Debug Run Tools Add-Ins Window Help peaquestonforhelp ~ _ & X
EE-d 4 0BaA 90 > 1 a K YF PRS0 ke & 2 snen]
oo T T
| . — [ctivate =H
Cption Explicit e [—
%t Solver (SOLVERXLAM)
i - |addinUninstall
1 & VBAProject (Book1) Private Sub Workbook Open() |Aftersave
(=3 Microsoft Excel Objects | ferxmiExport b
i Sheetl (Shestl) End Sub |AfterXmiimport
Sheet2 (Sheet2) BeforeClose
Sheet3 (Sheet3) BeforePrint
. @ ThisWarkbook BeforeSave
BeforeXmiExport
BeforeXmimport
Deactivate d

FIGURE 12-4

www.it-ebooks.info

http://www.it-ebooks.info/

126 | LESSON12 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

For convenience, just as with selecting worksheet-level event names, VBA will
place the complete workbook-level event statement, with all its arguments and
the accompanying End Sub statement, when you select a workbook-level event
name from the Procedure field.

EXAMPLES OF COMMON WORKBOOK EVENTS

At the workbook level, Excel version 2003 has 28 events, and 8 more than that (mostly associated
with pivot tables) for a total of 36 in versions 2007 and 2010. The most commonly used workbook-
level events are listed here, with examples of each on the following pages:

> Workbook_Open
Workbook_BeforeClose
Workbook_Activate
Workbook_Deactivate
Workbook_SheetChange
Workbook_SheetSelectionChange
Workbook_SheetBeforeDoubleClick
Workbook_SheetBeforeRightClick
Workbook_SheetPivotTableUpdate
Workbook_NewSheet

Workbook_ BeforePrint
Workbook_SheetActivate

Workbook_SheetDeactivate

Y Y Y VY Y VY VY VY Y VY VY VYYy

Workbook_BeforeSave

Workbook_Open Event

The workbook_Open event is triggered when the workbook opens, and is among the most popu-
lar and useful of all workbook-level events. The workbook_Open event is perfect for such tasks as
informing users about important features of your workbook, or generating a running list of users
who have accessed the workbook, or establishing a particular format setting that would be reset to
its original state with the Wworkbook_BeforeClose event.

Perhaps the users of your workbook would benefit from the Analysis ToolPak add-ins to be installed
for their Excel work. You can use the Wworkbook_Open event to verify if the Analysis ToolPak is

www.it-ebooks.info

http://www.it-ebooks.info/

Examples of Common Workbook Events | 127

installed, and if it isn’t, ask the users of your workbook if they would like you to install the Analysis
ToolPak add-ins for them.

This procedure uses a Yes/No message box to ask permission (which you should always do before
changing another person’s computer settings) to install add-ins, and if they click Yes, the Analysis
ToolPak add-ins are installed:

Private Sub Workbook_Open ()

If Not AddIns("Analysis ToolPak").Installed = True Then

Dim myConfirmation As Integer

myConfirmation = _

MsgBox ("I notice the Analysis ToolPak add-ins are not installed." & vbCrLf & _
"Would you like me to install them for you now?",

vbQuestion + vbYesNo, _

"Analysis ToolPak not installed")

If myConfirmation = vbNo Then

MsgBox "The ToolPak add-ins were not installed.", vbInformation, "You clicked No."
Else

AddIns ("Analysis ToolPak").Installed = True

AddIns ("Analysis ToolPak - VBA").Installed = True

MsgBox "The ToolPak add-ins have been installed.", _

vbInformation, _

"Thanks for confirming."

End If

End If

End Sub

Workbook_BeforeClose Event

The workbook_BeforeClose event is triggered just before the workbook closes. This event is often
used in conjunction with the workbook_Open event, to set a workbook back to its original state if
the workbook_Open event temporarily changed the user’s Excel settings.

The following example is one way to apply the workbook_BeforeClose event’s versatility. You can
tell Excel to save your workbook automatically when you close it, to avoid Excel’s prompt that asks
you if you want to save your changes.

Private Sub Workbook_BeforeClose (Cancel As Boolean)
ThisWorkbook. Save
End Sub

Workbook__Activate Event

The workbook_Activate event is triggered when the workbook is activated, such as when the work-
book is opened, or when you switch between that workbook and other open workbooks. In this
example, the following procedure maximizes the Excel window when you activate the workbook:

Private Sub Workbook_Activate ()
ActiveWindow.WindowState = xlMaximized
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

128 | LESSON12 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

Workbook_Deactivate Event

The Workbook_Deactivate event is triggered when the workbook loses focus, such as when a dif-
ferent Excel workbook is activated or when the workbook is closed. The following example prompts
a Message Box to alert you when the workbook is deactivated:

Private Sub Workbook_Deactivate ()

MsgBox "You are leaving " & Me.Name & "!!", _
vbInformation, _

"Just so you know..."

End Sub

Workbook_SheetChange Event

The workbook_sheetChange event is triggered when any cell’s contents are changed on any work-
sheet in the workbook. If you would like to keep a log of the date, time, sheet name, and address of
any cell that gets changed, this procedure accomplishes that, by listing information on a worksheet
named “Log™:

Private Sub Workbook_SheetChange (ByVal Sh As Object, ByVal Target As Range)
'The log sheet will hold the record of each sheet change,

'so do not monitor the Log sheet.

If Sh.Name = "Log" Then Exit Sub

'Declare a Long variable for the next available row on the Log sheet.
Dim NextRow As Long

'Assign the row number to the next empty row below that last row of data
"in column A.

NextRow = Worksheets("Log") .Cells(Rows.Count, 1).End(x1lUp).Row + 1

'In column A, enter the date of the changed cell.
Worksheets ("Log") .Cells (NextRow, 1).Value = VBA.Date

'In column B, enter the time of the changed cell.
Worksheets ("Log") .Cells (NextRow, 2).Value = VBA.Time

'In column C, enter the name of the worksheet holding the changed cell.
Worksheets ("Log") .Cells (NextRow, 3).Value = Sh.Name

'In column D, enter the address of the changed cell.
Worksheets ("Log") .Cells (NextRow, 4).Value = Target.Address

'Autofit the columns on the Log sheet, to make the information readable.
Worksheets ("Log") .Columns.AutoFit

End Sub

Workbook_SheetSelectionChange Event

The Workbook_sheetSelectionChange event is triggered when a different cell is selected on any
worksheet in the workbook. In Lesson 11, you saw an example of the Worksheet_SelectionChange
event whereby the active cell was continuously highlighted. If you are navigating through large
ranges of data on your worksheets, such as budgets or financial reports, you might find it useful to
visually identify more than just the active cell. The following procedure highlights the entire row
and column at each new cell selection:

Private Sub Workbook_SheetSelectionChange (ByVal Sh As Object, _

ByVal Target As Range)

Dim myRow As Long, myColumn As Long
myRow = Target.Row

www.it-ebooks.info

http://www.it-ebooks.info/

Examples of Common Workbook Events | 129

myColumn = Target.Column
Sh.Cells.Interior.ColorIndex = 0

Sh.Rows (myRow) . Interior.Color = vbGreen
Sh.Columns (myColumn) . Interior.Color = vbGreen
End Sub

Workbook _SheetBeforeDoubleClick Event

The workbook_SheetBeforeDoubleClick event is triggered when a cell on any worksheet is
about to be double-clicked. The double-click effect (usually getting into Edit mode) can be can-
celed with the cancel parameter.

Suppose you have a workbook wherein column A of every worksheet is reserved for the purpose
of placing checkmarks in cells. You do not want to deal with embedding possibly hundreds of real
checkbox objects, so a checkmark-looking character in a cell would suffice.

You can utilize the Workbook_DoubleClick event that would apply only to column A for any
worksheet. The following procedure toggles the effect of placing a checkmark in column A. If the
cell is empty, a checkmark is entered, and if a checkmark is present when the cell is double-clicked
again, the checkmark is removed. As you can see in the code, the “checkmark” is really a lower-
case letter “a” formatted in Marlett font.

Private Sub Workbook_SheetBeforeDoubleClick(ByVal Sh As Object, _
ByVal Target As Range, Cancel As Boolean)
If Target.Column <> 1 Then Exit Sub
Cancel = True

Target.Font.Name = "Marlett"
Target.HorizontalAlignment = xlCenter

If IsEmpty(Target) = True Then
Target.Value = "a"

Else

Target.Clear

End If

End Sub

Workbook_SheetBeforeRightClick Event

The workbook_SheetBeforeRightClick event is triggered when a cell on any worksheet is about to
be right-clicked. The right-click effect of the pop-up menu can be canceled with the cancel parameter.

Suppose you want to add a utility to your workbook that would allow you to quickly and easily
insert a row above any cell you right-click. A Message Box could ask if you want to insert a row,

and if you answer yes, a row would be inserted. The following procedure is an example of how that
can be handled:

Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, _
ByVal Target As Range, Cancel As Boolean)

If MsgBox("Do you want to insert a row here?", _

vbQuestion + vbYesNo, _

"Please confirm...") = vbYes Then

Cancel = True

ActiveCell.EntireRow. Insert

End If

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

130 | LESSON12 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

Workbook_SheetPivotTableUpdate Event

The sheetPivotTableUpdate event monitors all worksheets in the workbook that hold pivot tables.
This event code example informs you in real time which worksheet(s) with pivot tables have been
updated. Note that the Message Box identifies the worksheet name(s) with the sh.Name expression,
which is done by referring to the object argument of sh from the event’s set of parameters.

Private Sub Workbook_SheetPivotTableUpdate (ByVal Sh As Object,

ByVal Target As PivotTable)

MsgBox "The pivot table on sheet " & Sh.Name & " was updated.", , "FYI"
End Sub

Workbook_NewSheet Event

The workbook_NewSheet event is triggered when a new sheet is added to the workbook. To see this
event in action, suppose you do not want to formally protect the workbook, but you want to disal-
low the addition of any new worksheets. This event procedure promptly deletes a new sheet as soon
as it is added, with a message box informing the user that adding new sheets is not permitted:

Private Sub Workbook_ NewSheet (ByVal Sh As Object)

Dim asn As String

asn = ActiveSheet.Name

Application.EnableEvents = False

Application.DisplayAlerts = False

Sheets (ActiveSheet.Name) .Delete

MsgBox "New sheets are not allowed to be added.", vbCritical, "FYI"
Application.DisplayAlerts = True

Application.EnableEvents = True

End Sub

Workbook__BeforePrint Event

The workbook_BeforePrint event is triggered before a user attempts to print any portion of the
workbook. You can cancel the print job by setting the cancel parameter to True. If you want to
ensure that anything printed from that workbook will have the workbook’s full name in the footer
of every printed page, the following procedure accomplishes that:

Private Sub Workbook_BeforePrint (Cancel As Boolean)
Dim sht As Worksheet

For Each sht In ThisWorkbook.Sheets
sht.PageSetup.CenterFooter = ThisWorkbook.FullName
Next sht

End Sub

When you test the Workbook_BeforePrint procedure, you can use the
PrintPreview method instead of the printout method, which can save
you costs in paper and printer toner cartridges.

www.it-ebooks.info

http://www.it-ebooks.info/

Examples of Common Workbook Events | 131

Workbook_SheetActivate Event

The workbook_SheetActivate event is triggered when a sheet is activated in the workbook.
Suppose you want to always return to cell A1 whenever you activate any worksheet, regardless of
what cell you had selected the last time you were in that worksheet. The following procedure using
the Application.GoTo statement does just that:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)

If TypeName (Sh) = "Worksheet" Then Application.Goto Range("Al"), True
End Sub

@ This example illustrates the distinction between a Sheet object and a Worksheet
object — they are not necessarily the same things. Excel has several types of Sheet
objects: Worksheets, Chart sheets, Dialog sheets, and the obsolete Macro sheets. In
this example, a Chart sheet would create confusion for VBA because Chart sheets
do not contain cells. Only worksheets contain cells, which is why the TypeName

of Worksheet is the only Sheet object at which this procedure’s code is directed.

Workbook_SheetDeactivate Event

The workbook_SheetDeactivate event is triggered when a sheet loses focus, such as when a dif-
ferent sheet in the workbook is activated. If you have a workbook with tables of data on every
worksheet, and you want the tables to be sorted automatically by column A whenever you leave
the worksheet, this procedure does that:

Private Sub Workbook_SheetDeActivate(ByVal Sh As Object)
If TypeName (Sh) = "Worksheet" Then

Sh.Range("Al") .CurrentRegion.Sort Keyl:=Sh.Range("A2"), _
Orderl:=xl1Ascending, Header:=xlYes

End If

End Sub

Workbook__BeforeSave Event

The workbook_BeforeSave event is triggered just before the workbook is saved. You can set the
Cancel parameter to True to stop the workbook from being saved.

Suppose you want to limit the time period for a workbook to be saved. The following procedure
allows the workbook to be saved only between 9:00 AM and 5:00 PM:

Private Sub Workbook_ BeforeSave (ByVal SaveAsUI As Boolean, Cancel As Boolean)
If VBA.Time < TimeValue("09:00") _

Or VBA.Time > TimeValue("17:00") Then Cancel = True

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

132 | LESSON12 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

TRYIT

In this lesson you write a Workbook_BeforePrint workbook-level event that instructs Excel not to
print a particular range of confidential data that resides on a particular worksheet.

Lesson Requirements

To get the sample database files you can download Lesson 12 from the book’s website at

WwWw . Wrox.com.

Step-by-Step

1.

Open a new workbook and activate Sheet3. To prepare the worksheet for this demonstra-
tion, populate range A1:E20 with some sample data by selecting the range, typing the word
Hello, and pressing Ctrl+Enter.

On your keyboard, press Alt+F11 to go to the Visual Basic Editor, and then press Ctrl+R to
ensure that the Project Explorer window is visible.

Find the name of your workbook in the Project Explorer, and expand the folder named
Microsoft Excel Objects.

The last item at the bottom of the list of Microsoft Excel Objects is the workbook object, and
it is called ThiswWorkbook. Youw’ll want to access the Code window for the Thisworkbook
module, and to do that, you can either double-click the Thisworkbook object name, or right-
click it and select View Code.

The cursor will be blinking in the Code window of your workbook module. Directly above
that, click the down arrow belonging to the Object list, and select Workbook, which will
produce the following default lines of code in your workbook module:

Private Sub Workbook_Open ()

End Sub

In this example you will be writing a BeforePrint procedure, so click the other down arrow
above the Code window for the Procedure field, and select BeforepPrint. VBA will produce
these lines of code, which is just what you want:

Private Sub Workbook_BeforePrint (Cancel As Boolean)

End Sub
Though not imperative, unless you are planning to employ the Workbook_oOpen event, there’s

no reason to keep the default Private Sub Workbook_Open () and End Sub statements, so
go ahead and delete them if you like.

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 133

10.

1.

12.

13.

14.

15.

In this example, you have confidential data on Sheet3 only, so instruct Excel that it’s okay to
print anything on any worksheet other than Sheet3:

If ActiveSheet.Name <> "Sheet3" Then Exit Sub

Invoke the cancel argument to halt the print process when an attempt is made to print
Sheet3:

Cancel = True

Disable events because you actually will be printing something, but you don’t want to re-
trigger the BeforePrint event while you are already in it:

Application.EnableEvents = False

Your confidential data resides in range B5:D12. Temporarily format that range with three
semicolons to make those cells unable to display their contents:

Range ("B5:D12") .NumberFormat = ";;;"

Print the worksheet:

ActiveSheet.PrintOut

Restore the General format to the confidential range so the cells will be able to show their
contents after the print job:

Range ("B5:D12") .NumberFormat = "General"

Enable events again, now that the print job has been executed:

Application.EnableEvents = True

When completed, the entire procedure will look like this, with comments that have been
added to explain each step:

Private Sub Workbook_BeforePrint (Cancel As Boolean)
'You have confidential data on Sheet3 only,

'so any other sheet is OK to print anything.

If ActiveSheet.Name <> "Sheet3" Then Exit Sub

'Invoke the Cancel argument to halt the print process.
Cancel = True

'Disable events because you actually will print something
'but you don't want the BeforePrint event to kick in.
Application.EnableEvents = False

'Your confidential data resides in range B5:D12.
'Temporarily format that range with three semicolons
'to make those cells unable to display their contents.
Range ("B5:D12") .NumberFormat = ";;;"

'Print the worksheet.

www.it-ebooks.info

http://www.it-ebooks.info/

134 | LESSON12 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

ActiveSheet.PrintOut 'demo with PrintPreview

'Restore the General format to the confidential range

'so the cells will be able to show their contents

'after the print job.

Range ("B5:D12") .NumberFormat = "General"

'Enable events again, now that the print job has been executed.
Application.EnableEvents = True

End Sub

16. Press Alt+Q to return to the worksheet. Test the code by printing Sheet3, noting that the
printout will show an empty range of cells, representing the range of confidential data that
did not get printed.

To view the video that accompanies this lesson, please select Lesson 12, available
at the following website: www .wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

13

Using Embedded Controls

You’ve seen many ways to run macros, including using keyboard shortcuts, the Macro dia-
log box, and the Visual Basic Editor. This lesson shows you how to execute VBA code by
clicking a button or other object that you can place onto your worksheet to make your mac-
ros easier to run.

WORKING WITH FORMS CONTROLS AND ACTIVEX CONTROLS

A control is an object such as a Button, Label, TextBox, OptionButton, or CheckBox that you
can place onto a UserForm (covered in Lessons 18, 19, and 20) or embed onto a worksheet.
VBA supports these and more controls, which provide an intuitive way for you to run your
macros quickly and with minimal effort.

There are two generations of controls. Forms controls are the original controls that came with
Excel starting with version 5. Forms controls are still fully supported in all later versions of
Excel, including Excel 2010. Forms controls are more stable, simpler to use, and more inte-
grated with Excel. For example, you can place a Forms control onto a Chart sheet, but you
cannot do that with an ActiveX control.

Generally, ActiveX controls from the Control Toolbox are more flexible with their extensive
properties and events. You can customize their appearance, behavior, fonts, and other charac-
teristics. You can also control how different events are responded to when an ActiveX control is
associated with those events.

Forms controls have macros that are assigned to them. ActiveX controls run procedures that are
based on whatever event(s) they have been programmed to monitor. Not that ActiveX controls
look all the more scintillating, but Forms controls have an elementary appearance that will never
win them first prize in a beauty contest. But, both kinds of controls serve their purposes well as
Microsoft intended, and they are here to stay with Excel for the foreseeable future.

www.it-ebooks.info

http://www.it-ebooks.info/

136 | LESSON13 USING EMBEDDED CONTROLS

CHOOSING BETWEEN FORMS CONTROLS AND ACTIVEX CONTROLS

The primary differences between the two kinds of controls are in formatting and
events. You use Forms controls when you need simple interaction with VBA, such
as running a macro by clicking a button. They are also a good choice when you
don’t need VBA at all, but you want an Option Button or Check Box on your
sheet that will be linked to a cell. If you need to color your control, or format its
font type, or trigger a procedure based on mouse movement or keyboard activity,
ActiveX controls are better.

Be aware that ActiveX controls have a well-deserved reputation for being buggy
and not behaving as reliably as do Forms controls. Forms controls will give you
minimal problems, if any, but they are limited in what they can do. As you experi-
ment and work with each type, you’ll decide which kind of control works best for
your purposes.

3 Microsoft Excel - Book1

The Forms Toolbar

(4] Fle Edit | view | Insert Formast Took Dats FlashPaper Window Help
The easiest way to access Forms controls is $07 el seve i) b PRI AL N3
536 L Page Break Preview
through the Forms toolbar. How you get to n | Pereemewwss = | T | ¢
the Forms toolbar depends on your version of - [toskers H[] ctendra
Excel. For versions prior to Excel 2007, from - St <30
. . { & | Status Bar Borders
the worksheet menu, click View > Toolbars > e g i
Forms, as shown in Figure 13-1. 7 2 Comments Cortrol Tonlhox
% Cuskom Yiews, .. Drawing
The Forms toolbar is like any other toolbar that 0| O Fulseen Ext Design Mode
. . i1 |
you can dock at the top or sides of the window, 2| il — ‘
. . El]
or have floating on the window above the work- i Formus Aucting
tsheet. Flgu?e 13-2 shows the Forms toolbar and FIGURE 13-1
its control icons.
Check Box List Box
If you are using Excel version 2007 or 2010, the Group Box Scroll Bar

Forms and ActiveX controls are found by clicking
the Insert icon on the Developer tab of the Ribbon,
as shown in Figure 13-3.

M= |76 B S S

Label

Button
Option Button

FIGURE 13-2

Spinner

Combo Box

The Developer tab is a very useful item to place on your Ribbon. See the section
entitled “Accessing the VBA Environment” in Lesson 2 for the steps to display

the Developer tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Working With Forms Controls and ActiveX Controls | 137

- -
Home Inset Pagelayout Formulas Review View | Developer
E [Record Macro {?} =] = M’ [Properties @ j—l\ap Properties fﬁlmport
= (s) =", —
EERE [Use Relative References < == ol view Code “# Expansion Packs] Expart
Visual Macros Add-Ins COM Insert |Design Source o,
Basic A\ Macro Security Adddns || * |Mode T RunDialog % Refresh Data
Code Add-Ins i XML
AA34 - £ =fFsEe
- = -
A B c D e (A« 8 ablEEEA H]) K
1 ActiveX Controls
z =B~ EE 3
2 SHoA@z %
4
FIGURE 13-3

The most commonly used Forms control is the button. When you use a button, you have a
macro in mind that you have either already written or will write, which will be attached to
the button. The following steps are a common sequence of actions that you will take when

using a Forms button:

1.
Suppose you are negotiating rents, and you need to
frequently clear the range C4:F4 on a company bud-
get sheet. The macro you’d write is
Sub DeleteData()

Range("C4:F4") .Clear
End Sub

To make it easy to run that macro, you can assign it
to a Forms button. On the Forms toolbar, click the
Button icon. Press down your mouse’s left button,
then draw the button into cell B4. As soon as you
do, the Assign Macro dialog box appears, as shown
in Figure 13-4.

Create the macro that will be attached to the button.

Assign Macro

Macro name:
Sutton1 Click

21

New |

DeleteData

Macrosin: [Al Open Workbooks =l

Description

j Record...

FIGURE 13-4

Select the macro to be assigned to the button, and click OK.

Clear Cells as shown in Figure 13-5.

cells in range of C4:F4, as expected.

www.it-ebooks.info

With your new button selected, click it and delete the entire default caption. Type the caption

Select any worksheet cell to deselect the button. Click the button to verify that it clears the

http://www.it-ebooks.info/

138 | LESSON13 USING EMBEDDED CONTROLS

A B £ D E F G H

o

Widgets, Inc. Expense Log

3 Quarter1 Quarter 2 Quarter 3 Quarter4 Total

4 Rent —— —— L $23362 $68531 $66,276 $78,809 $236,978
5 Utilities $28,166 $64,728 $99216 $4,160 $196,270
6 Payroll $56,193 $97,457 $24,372 $85839 $262,861
7 |Office Supplies $66,540 $78,889 $22,349 $13,606 $181,384
8 Maintenance $35,135 $64,505 $36,173 $2,033 $137,846
5 Landscaping $14,088 $15934 $80,263 $27,142 $137,427
10 Total $222,484 $390,044 $328,649 $211,589 $1,152,766
il

FIGURE 13-5

Using Application.Caller with Forms Controls

One of the cool things about Forms controls is that you can apply a single macro to all of them and
gain information about which control was clicked. Once you know which button was clicked, you
can take specific action relating to that button.

Expanding on the previous example, suppose you want to place a button on each row of data, so
that when you click a button, the cells will be cleared in columns C:F of the row where the button
resides. It’s obvious that the original macro will apply only to the first button in the Rent row, so
here are the steps to have one macro serve many controls:

1. Modify the DeleteData macro as follows. For the button that was clicked, the cell holding
that button’s top-left corner is identified. The macro can now be a customization tool for
each individual button to which it is attached.

Sub DeleteData ()

Dim myRow As Long

myRow = _

ActiveSheet.Buttons (Application.Caller) .TopLeftCell.Row

Range (Cells (myRow, 3), Cells(myRow, 6)).Clear
End Sub

2. Recall that the original macro name is still attached to that button. Return to your worksheet
and right-click the button. Select Copy because you are copying the button and the macro to
which it is attached.

3. Select cell BS and press the Ctrl+V keys. Repeat that step for cells B6, B7, B8, and B9. Your
worksheet will resemble Figure 13-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Working With Forms Controls and ActiveX Controls | 139

A

%
o
o
m
-
@
]

1 Widgets, Inc. Expense Log

%

B

|

1Quarter 1 Quarter 2 Quarter 3 Quarter4 Total

4 |Rent ﬂl $23362 $68531 $66276 $78,809 $236978
5 |Utilities ﬂl $28,166 $64,728 $99216 $4160 $196,270
5 Payroll w $55193 $O7457 $24372 $85830 $262 861
7 Office Supplies w $66,540 $78,880 $22,340 $13606 $181,384
& Maintenance w $35135 $64505 $36173 $2,033 $137,846

5 |Landscaping L —=r<=® | g14088 515934 $80263 $27142 $137.427
10| Total _ clearcelis | $202.484 $3090,044 $328649 $211580 §1.152766
11

FIGURE 13-6

Test the macro by clicking the button on the Office Supplies row. When you click that
button, the macro will clear the cells in row 7, columns C:F, as shown in Figure 13-7.

A B C D E F G H

[

Widgets, Inc. Expense Log

3 Quarter 1 Quarter 2 Quarter 3 Quarter4 Total

2 Rent _ clearcels | §23362 568531 $66276 $78.800 $236.978
5 Utilities _ clearcelis | 528166 $64728 $99216 54160 $196270
s Payroll _ dearcels | $55193 SOTA57 $24372 $85830 $262,861
7 Office Supplies ﬂi $0
s Maintenance __Corcels | §35135 $64505 $36173 52,033 $137.846
5 Landscaping _ oeercells | $14088 $15934 $80263 $27.142 §137427
10 Total _ clearcels | $155044 $311155 5306300 $197,983 $971,382
11

FIGURE 13-7

Attaching a macro to an embedded object is not limited to Forms controls. You
can attach a macro to pretty much any Drawing shape or picture that you want
to embed onto your worksheet.

www.it-ebooks.info

http://www.it-ebooks.info/

140 | LESSON13 USING EMBEDDED CONTROLS

The Control Toolbox

Similar to the Forms toolbar, the Control Toolbox can be accessed in versions prior to Excel 2007
from the worksheet menu bar. Click View = Toolbars &> Control Toolbox, as shown in Figure 13-8.

The Control Toolbox itself is shown in Figure 13-9.

B3 Microsoft Excel - Book1

i3] Fle Edit | view | Insert Format Tools Data FlashPaper window Help
{5 i save] tomal B3 | Replace.,. == D Ful Screen | X
6] | Page Bresk Preview
aan Task Pane Chri+F1 P e
1
=u ‘ Toolbars 3 El Standard
3 Eormula Bar Formatting
4 Status Bar Borders
5 i A el |
[Header and Footer... Chart
7 23 Comments [control Toolbox
g
5 Cuskom Yiews.,. Crawing
10 || Full Sereen Exit Design Mode
| 1] Zoom... External Data
e Forms
13
14 Formula Auditing
FIGURE 13-8

FIGURE 13-9

Design Mode

Toggle Button
Command Button Scroll Bar
List Box

PEE L EEEFEE ER YIRS

Properties |Check Box
Option Button | Spin Button
Combo Box

| o

If you are using version 2007 or 2010, the Forms and ActiveX controls are
found by clicking the Insert icon on the Developer tab of the Ribbon, as shown

in Figure 13-3.

More than 100 additional ActiveX controls beyond what you see on the Control Toolbox are avail-

able. You might notice an icon named More Controls at the far right of the Control Toolbox tool-

bar, and in the lower-right corner of the
Insert icon in Excel 2007 and 2010.
That icon is pointed to in Figure 13-10,
and when expanded, reveals the addi-
tional ActiveX controls available for you
to embed, as indicated in Figure 13-11.

P Y S

More Controls
FIGURE 13-10

MEG P B2 83 AR

FIGURE 13-11

#ahoa! Taolbar Helper

i) WideaSoft Flexarray Control
-} WideaSoft FlexString Control
adbanner Class

Adobe POF Reader

Apple QuickTime Contral 2.0
Eehavior Ohject:

Elocker Ctrl Class

Calendar Control 11.0
COMMSYiew Class

CTreeiiew Control

DHTML Edit Carkrol for IES

129 controls

=

[E3

The odds are you’ll never need most of those controls, but it gives you a sense of

how much more functionality is available with ActiveX objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Working With Forms Controls and ActiveX Controls | 141

CommandButtons

The ActiveX CommandButton is the counterpart to the Forms control button. As with virtu-
ally every ActiveX object, the CommandButton has numerous properties through which you can
customize its appearance. Unlike Forms controls, an ActiveX object such as a CommandButton
responds to event code. There is no such thing as a macro being attached to a CommandButton.

From the Control Toolbox, draw a CommandButton onto your worksheet. Excel defaults to Design
Mode, allowing you to work with the ActiveX object you just created. Right-click the CommandButton
and select Properties, as shown in Figure 13-12. You can see the Design Mode icon is active.

EH9-© 5@ |- | [Ersving Toets
Home Insert Page Layout Formulas Data Review View Developer Format

= I Record Macro {‘f) = "\E,'i M (& Properties @ B Map Properties |
= 0 :ﬁ;g
= =2 [use Relative References & | oY | &gl View Code ‘& Expansion Packs
Visusl Macros AddIns COM | Insert |Design source .
Basic i\ Macro Security Adddns | = |Mode @ RunDialog %} Refresh Data
Code Add-Ins Controls XML
CommandButtonl - ﬁvl =EMBED("Forms.CommandButton.1","")
A B & D E F G H 1 J
1
2 O
3 CommandButton1
4
5 &
6 3 Copy
7 [Paste
g [Properties
g &l View Code
10
o CommandButton Object »
12 Grouping »
13 Order »
L ¥ Format Control..,
15

You will see the Properties window for the CommandButton, where you can modify a number of
properties. Change the Caption property of the CommandButton to CheckBox Checker, as shown
in Figure 13-13.

e D R e P o e)
=
L2
El &
2) CheckBox Checker (I
L= |commandButton1 commandsutton = |
5
(i Alphabetic | Categorized |
El [(Mame) CommandButtont
- Accelerator
8 lAutoLoad False
9 AutoSize False
10 IBackColor [aH3000000F&
& ackstyle 1- fmBackStyleOpaque
L CheckBox Chedker
12 [Enzbled True
13 Font Calibri
14 IForeCalor I 1800000128
e | IHeight 35.25
1= | eft 65.25
1o Locked True
17 Mouselcan (one)
18 MousePointer |0 - fmMousePointerDefault
B picture (None)
| = PicturePosition 7 - fmPicturePasitionAboveCenter
20 Placement F
21 PrintObject True
2 Shadow False
(23] [TakeFoausOnClick True
Rl [Top 32.25
24 Visible True
25 Width 17.75
2% Wordirap False
27
28

www.it-ebooks.info

http://www.it-ebooks.info/

142 |

LESSON 13 USING EMBEDDED CONTROLS

Draw a Label control and four CheckBoxes from the Control
Toolbox below the CommandButton. In Figure 13-14, I changed
the Label’s caption to Check Your Favorite Activities. I changed
each CheckBox’s caption to a different leisure activity.

Either double-click the CommandButton, or right-click it and
select View Code. Either way, you’ll be taken to the worksheet
module and the default Click event will be started for you with
the following entry:

Private Sub CommandButtonl_Click()

End Sub

W~ o W e

B | <=
RO 56 EREREE

20

A B E D E

CheckBox Checker

Check Your Favorite Activities

" Hiking
[~ camping
™ Movies

[Travel

FIGURE 13-14

VBA code for embedded ActiveX objects is almost always in the module of the

worksheet upon which the objects are embedded.

For this demonstration, when the CommandButton is clicked, it will evaluate every embedded
object on the worksheet. When the code comes across an ActiveX CheckBox, it will determine
whether the CheckBox is checked. At the end of the procedure, a Message Box will appear, con-
firming how many (if any) CheckBoxes were checked, and their captions. The entire code will

look as follows.

Private Sub CommandButtonl_Click()
'Evaluate which checkboxes are checked.

'Declare an Integer type variable to help
'count through the CheckBoxes, and an Object

'type variable to identify the kind of ActiveX control

' (checkboxes in this example) that are selected.
Dim intCounter As Integer, xObj As OLEObject
'Declare a String variable to list the captions
'of the selected checkboxes in a message box.
Dim strObj As String

'Start the Integer and String variables.
intCounter = 0
strObj = ""

For Each xObj In ActiveSheet.OLEObjects
If TypeName (xObj.Object) = "CheckBox" Then

If xObj.Object.Value = True Then

intCounter = intCounter + 1

strObj = strObj & xObj.Object.Caption & Chr(10)
End If

www.it-ebooks.info

http://www.it-ebooks.info/

Working With Forms Controls and ActiveX Controls | 143

End If
Next x0bj

'Advise the user of your findings.

If intCounter = 0 Then

MsgBox _

"There were no CheckBoxes selected.",
"Try to get out more often!"

Else

MsgBox _

"You selected " & intCounter & " CheckBox(es):" _
& vbCrLf & vbCrLf & _

strObj, , "Here is what you checked:"

End If

End Sub

Leave the VBE and return to the worksheet by pressing the Alt+Q keys. Click the Design Mode but-
ton to exit Design Mode. Figure 13-15 shows where the Design Mode icon is on the Developer tab.

HIE R M
Home Inset Pagelayout Formulas Data Review View | Developer

= ERecord Macro £0p = _‘.s__ 51 Properties T
) m ¢ =R :
g gi [Use Relative References =g === | ol view Code Bl
Visual Macros Addns COM Insert |Design Source o,
Basic A\ Macro Security Adddns - |iMode | § Run Dialog %R

Code Add-Ins Controls
013 - (& Design Mode |
FIGURE 13-15

With Design Mode now off, you can test the c1ick event code for the ActiveX CommandButton.
Figure 13-16 shows an example of the confirming Message Box when you click the
CommandButton.

A B c D E F G
1
2
3 CheckBox Checker
a
5
6
7 Check Your Favorite Activities
8
&l
10 .
= I iking zn
12
13 You selected 3 CheckBox(es):
¥ Camping
14 Camping
Movies
= Travel
o ¥ Movies
17
18 bl =
i) ¥ Travel
20
FIGURE 13-16

www.it-ebooks.info

http://www.it-ebooks.info/

144 | LESSON13 USING EMBEDDED CONTROLS

TRYIT

In this lesson, you attach a macro to a Forms button that will toggle certain columns as being visible or
hidden. Along the way, you learn a few tricks about faster methods for entering data into multiple cells.

Lesson Requirements

For this lesson, you place a Forms button on a worksheet that contains a hypothetical table of monthly
income activity for a department store’s clothing items. A macro will be attached to the button that,
when clicked, will toggle columns or rows as being hidden or visible, depending on how you want to
see the data. Upon each click of the button, the cycle of views will be to see the entire table’s detail,

see totals only by clothing item, or see totals only by month. This lesson also includes tips on fast data
entry by using the fill handle and shortcut keys. To get the sample database files you can download
Lesson 13 from the book’s website at www .wrox. com.

Step-by-Step

1. Open Excel and open a new workbook.

2. On your active worksheet, list the months of the year in range A B
A6:A17. You can do this quickly by entering January in cell A6, then -
selecting A6, and pointing your mouse over the fill handle, which is 3
the small black square in the lower-right corner of the selected cell. E
You know your mouse is hovering over the fill handle when the cursor ;ML
changes to a crosshairs, as indicated in Figure 13-17. Press your left 8

mouse button onto the fill handle, and drag your mouse down to cell ~ FIGURE 13-17
A17 as indicated in Figure 13-18. Release the mouse button, and the
12 months of the year will be filled into range A6:A17 as shown in Figure 13-19.

3. Enter some clothing items into BS:FS.

4. Enter sample numbers in range B6:F17. There is nothing special about the numbers; they are
just for demonstration purposes. To enter the numbers quickly as shown in Figure 13-20, do
the following;:

> Select range B6:F17. A B A 8
p i
> Type the formula : -
= INT(RAND()*1000). s [a]
5 5
> Press the Ctrl+Enter keys. e S e
> Press the Ctrl+C keys to copy - .
the range. 10 wlMay |
1 ufwe |
> Right-click somewhere in the - -
range B6:F17, and select 1 1 |September |
. Oclober |
Paste Special &> Values = OK. = = T
. 17 17
> Press the Esc key to exit Copy 18 T 15
mode. L B
FIGURE 13-18 FIGURE 13-19

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 145

In cell G5 enter Total and in cell A18 enter Total.

Select the column A header, which will select all of column A. Right-click onto any cell in

column A, select Column Width, enter 20, and click OK.

Quickly enter Sum functions for all rows and columns. Select range B6:G18, as shown in
Figure 13-21, and either double-click the Sum function icon or press the Alt+= keys.

Jackets Shoes Hats Dresses Shirts

January
February
March
April

May

June

July
August
September
October
November
December

wlsfa]a sz E]sE]s e][] fo[r []o [

FIGURE 13-20
Home| Inset Pagelayout = Formulas | Data Review View Developer

BN N - W e
£2 Usein Fo

Insert AutoSum Recently Flnanc\al chl:a\ Text Date & Lookup& Math More

Function = Used = - Time ~ Reference ~ & Trig ~ Functions =

Function Library
[summm:ﬂ v(‘ _fc‘ 130
A I - D E P N—c—

Managg[BF Create frc
Defined Nam

Jackeis Shoes Hats Dresses Shirts Total
January
February
March
April
May
June
July
August
September
October
November
December
Total

Gt]5 || | g |12 |ss] |5 o | | [oo = o

FIGURE 13-21

www.it-ebooks.info

http://www.it-ebooks.info/

146 | LESSON13 USING EMBEDDED CONTROLS

8. With range B6:G18 currently selected, right-click anywhere in the selection, select Format
Cells, and click the Number tab in the Format Cells dialog box. In the category pane select
Currency, set Decimal Places to 0, and click OK as indicated in Figure 13-22. Your final
result will resemble Figure 13-23, with different numbers because they were produced with
the RAND function, but all good enough for this lesson.

Format Cells 21x1
Number | signment | Font | Border | Rl | erotection |
Category:
General =] rsampl
Number T |
Accounting B) =
et Decimal places: |¥ 3
| Time: Symbol: | -
Percentage - I J
Fraction Negative numbers:

Scientific
[Text

Spedial (§1,234)
Custom (51,234

Currency formats are used for general monetary values, Use Accounting formats to align decimal
points in a column.

e

FIGURE 13-22

A B c D E F G H
1
2
3
4
5} Jackets Shoes Hats Dresses Shits ~ Total
6 |January $130 $442 $691 $770 $612 $2645
7 | February $669 $320 $834 $695 $687 $3205
& |March $831 $173 $338 $223 $657 $2222
3 |April $362 $464 $65 $207 $258 $1356
10 |May $652 $278 $127 $348 $300 $1,705
11 | June $225 $604 $855 $454 $141 $2279
12 | July $166 $394 $717 $117 $813 $2207
13 | August $927 $283 $569 $113 $780 $2,672
14 | September $56 $286 $385 $391 $794 $1912
15 | October $945 $184 $858 $923 §$326 $3.236
16 | November $440 §778 %220 $39 $899 $2,376
17 | December $302 $882 $424 %188 $304 $2100
18 | Total $5,705 $5,088 $6,083 $4,468 $6,571 $27,915
19
FIGURE 13-23

9. The task at hand is to create a macro that will be attached to a Forms button. Each time you
click the button, the macro will toggle to the next of three different views of the table: seeing
the entire table’s detail, seeing totals only by clothing item, or seeing totals only by month.
To get started, press Alt+F11 to go to the Visual Basic Editor.

10. From the VBE menu, click Insert & Module.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 147

1.

12.

13.

14.

15.

16.

17.

In your new module, type sub TogglevViews and press the Enter key. VBA will produce the
following two lines of code, with an empty row between them:

Sub ToggleViews ()

End Sub

Because the macro will hide and unhide rows and columns, turn off Screenupdating to keep
the screen from flickering:

Application.ScreenUpdating = False

Open a with structure that uses Application.Caller to identify the Forms button that was
clicked:

With ActiveSheet.Buttons (Application.Caller)

Toggle between views based on the button’s captions to determine which view is next in the
cycle:

If .Caption = "SHOW ALL" Then
With Range("A5:G18")
.EntireColumn.Hidden = False
.EntireRow.Hidden = False

End With

.Caption = "MONTH TOTALS"

ElseIf .Caption = "MONTH TOTALS" Then
Range("B:F") .EntireColumn.Hidden = True
.Caption = "ITEM TOTALS"

ElseIf .Caption = "ITEM TOTALS" Then
Range ("B:F") .EntireColumn.Hidden = False
Rows ("6:17") .Hidden = True

.Caption = "SHOW ALL"

End If 'for evaluating the button caption.

Close the with structure for Application.Caller:

End With

TunlScreenUpdating(nlagaﬁu

Application.ScreenUpdating = True
Your entire macro will look like this:
Sub ToggleViews ()

'Turn off ScreenUpdating.
Application.ScreenUpdating = False

'Open a With structure that uses Application.Caller

'to identify the Forms button that was clicked.
With ActiveSheet.Buttons (Application.Caller)

www.it-ebooks.info

http://www.it-ebooks.info/

148 | LESSON13 USING EMBEDDED CONTROLS

'Toggle between views based on the button's captions
'to determine which view is next in the cycle.

If .Caption = "SHOW ALL" Then
With Range("A5:G18")
.EntireColumn.Hidden = False
.EntireRow.Hidden = False

End With

.Caption = "MONTH TOTALS"

ElseIf .Caption = "MONTH TOTALS" Then
Range ("B:F") .EntireColumn.Hidden = True
.Caption = "ITEM TOTALS"

ElseIf .Caption = "ITEM TOTALS" Then
Range ("B:F") .EntireColumn.Hidden = False
Rows ("6:17") .Hidden = True

.Caption = "SHOW ALL"

End If 'for evaluating the button caption.

'Close the With structure for Application.Caller.
End With

'Turn ScreenUpdating on again.
Application.ScreenUpdating = True

End Sub

18. Press Alt+Q to return to the worksheet.

19. Draw a Forms button onto your worksheet at the top of column A. When you release the
mouse button you’ll see the Assign Macro dialog box. Select the macro named Toggleviews
and click the OK button as shown in Figure 13-24.

Macros in: |All Cpen Workbooks =l

Description

FIGURE 13-24

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 149

20. Make sure the button is totally within column A, as indicated in Figure 13-25. Right-click the
button and select Edit Text.

A B C D E [F G H
L e
2
3 % cut
4 B3 copy
5 B Paste shoes Hats Dresses Shirts Total
5 | January T $442 $591 770 S612 2,645
7 February $320 $834 $695 $687 $3.205
2 March Grouping " $173 §338 $223 8657 $2.222
9 April Order "| $464 365 $207 $258 $1356
10 May Assign Macro... $278 $127 $348 $300 $1,705
11 June % Format Control.. $604 $855 $454 5141 $2.279
12 July $166 $394 $717 $117 $813 $2207
13 August $927 $283 $569 $113 780 %2672
14 | September $56 $286 $385 §391 §794 $1,912
15 October $945 $184 $858 $923 3326 $3236
16 November $440 $778 $220 $39 $809 $2376
17 December $302 $882 $424 $188 $304 $2.100
13 Total $5705 $5,088 $6,083 $4468 $6571 $27,915
19

FIGURE 13-25

21. Change the button’s caption to SHOW ALL as seen in Figure 13-26.

A B € D E F G H
: -E SHOW ALL E—

S
3
a
5 Jackets Shoes Hats Dresses Shits Total
6 [January $130 %442 $691 $770 $612 $2,645
7 |February $669 $320 $834 %695 $687 $3,.205
8 |March $831 $173 $338 $223 $657 $2222
3 |April $362 $464 $65 $207 $258 $1,356
10 |May $652 $278 $127 $348 $300 $1,705
11 |June $225 $604 $855 $454 $141 $2279
12 | July $166 $394 $717 $117 $813 $2,207
13 | August $927 $283 $569 $113 $780 $2,672
14 | September $56 $286 $385 $391 $794 $1,912
15 | October 5945 $184 $858 $923 $326 $3,236
16 | November $440 §778 $220 $39 $899 $2376
17 | December $302 $882 424 $188 $304 $2,100
18 | Total $5,705 $5,088 $6,083 $4,468 $6,571 $27,915

15

FIGURE 13-26

22. Select any cell to deselect the button. Click the button once and nothing will change on the
sheet because all the columns and rows are already visible. You’ll see that the button’s cap-
tion changed to MONTH TOTALS. If you click the button again, you’ll see the month
names listed in column A, and their totals listed in column G. The button’s caption will read
ITEM TOTALS. Click the button again and you’ll see the clothing items named in row 3,
and their totals listed in row 18. The button’s caption reads SHOW ALL, and if you click the
button again, all rows and columns will be shown.

www.it-ebooks.info

http://www.it-ebooks.info/

150 | LESSON13 USING EMBEDDED CONTROLS

23. You can continue cycling through the table’s views in this manner, by clicking the Forms but-
ton for each view that you coded into the Toggleviews macro.

To view the video that accompanies this lesson, please select Lesson 13, available
at the following website: www.wrox.com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

14

Programming Charts

When I started to program Excel in the early 1990s, I remember being impressed with the
charting tools that came with Excel. They were very good back then, and today’s chart fea-
tures in Excel are downright awesome, rivaling — and usually surpassing — the charting
packages of any software application.

Because you are reading this book, chances are pretty good that you’ve manually created your

share of charts in Excel using the Chart Wizard or by selecting a chart type from the dozens of
choices on the Ribbon. You might also have played with the Macro Recorder to do some auto-
mation of chart creation. This lesson takes you past the Macro Recorder’s capabilities to show

how to create and manipulate embedded charts and chart sheets.

The topic of charting is one that can, and does, fill entire books. The myriad of chart types
and features that Excel makes available to you goes well beyond the scope of this lesson. What
this lesson does is to show you the syntaxes for several methods that work for embedded
charts and chart sheets, with a few different features and chart types represented in the pro-
gramming code. From the VBA examples in this lesson, you can expand your chart program-
ming skills by substituting the chart types and features shown for others that may be more
suited to the kinds of charts you want to develop.

@ In the examples, you might notice that the charts being created are declared as

a Chart type object variable, which makes it easier to refer to the charts when
you want to manipulate them in code. In any case, there are two separate object
models for charts. For a chart on its own chart sheet, it is a Chart object. For a
chart embedded on a worksheet, it is a ChartObject object. Chart sheets are a
member of the workbook’s Charts collection, and each Chartobject on a work-
sheet is a member of the worksheet’s Chartobjects collection.

www.it-ebooks.info

http://www.it-ebooks.info/

152 |

LESSON 14 PROGRAMMING CHARTS

ADDING A CHART TO A CHART SHEET

As you know, a chart sheet is a special kind of sheet in your workbook that contains only a chart.
If the chart is destined to be large and complicated, users often prefer such a chart be on its own
sheet so they can view its detail more easily.

Figure 14-1 shows a table of sales by month for a company that will be the source data for this chart
example. The table is on Sheetl and although you can correctly refer to the source range in your
code as A1:B13, I prefer using the currentRegion property to reduce the chances of entering the
wrong range reference in my code.

The following macro creates a column chart for a new chart sheet based on the data in Figure 14-1.
If the Location property of your Chart object has not been specified, as it has not been in this
macro, your chart will be created in its own chart sheet. The result of this new chart sheet is shown
in Figure 14-2.

Sub CreateChartSheet ()

'Declare your chart type object variable

Dim myChartl As Chart

'Set your variable to add a chart

Set myChartl = Charts.Add

'Define the new chart's source data
myChartl.SetSourceData _
Source:=Worksheets ("Sheetl") .Range ("Al") .CurrentRegion,
PlotBy:=x1Columns

'Define the type of chart

myChartl.ChartType = x1ColumnClustered

'Delete the legend because it is redundant with the chart title.
ActiveChart.Legend.Delete

End Sub
Eid9-&-F- Lesson 14 - Microsoft Dxcel CHIFTERIE 1 =T
m Home | Insert Pagelajout Formulss Data Review View Developer | Design Layout Format | o @ o @ R
S % aengosy vl ¢ == = | [General = A
;ﬂ Q- Rru- iKY = - | @ if fl
- & m- & A [BFomat~ | @2+ Finar- seear
Clipboard & Font Cells Cditing
Sales :
a0
R T om
1 Month Sales
2 |January 71605 -
3 |February 73632 o -
4 |March 90114
5 | April 87041 oo
6 May 63362
7 |June 73417 o
8 |July 46648 o0
9 |August 14292
10 September 62041 xn
11 October 65849
12 November = 37370 | oy reway waen sn oy i wy upiw awenm orims owsmo oo
iDECEI‘I‘IhE[73112 [14 4 b M| Chartt “Gheebi “Gheet? “Sheetl “Sheetd ¥l ke m “1—
14| Ready | ¥ | |pOE s O 0@ o
FIGURE 14-1 FIGURE 14-2

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Chart to a Chart Sheet | 153

O To change your default type of chart, right-click any chart in your workbook and
select Change Chart Type. In the Change Chart Type dialog box, select a chart

type, click the Set as Default Chart button, and click the OK button.

Simply executing the code line charts.add in the Immediate Window creates a new chart sheet.
If the active cell were within a table of data, your default type chart would occupy the new chart
sheet, representing the table, or more precisely, the data within the currentRegion property of
the selected cell. If you did not have any data selected at the time, a new chart sheet would still
be created, with a blank chart object looking like an empty canvas waiting to be supplied with

source data.

DID YOU KNOW...

If the active cell is within a table of data, or you have a range of data selected,
and you press the F11 key, a new chart sheet will be added to hold a chart that
represents the selected data. Some people find this to be an annoyance because
they have no interest in charts and don’t even know they touched the F11 key.

If you want to negate the effect of pressing the F11 key, you can place the fol-
lowing onkey procedures into the ThisWorkbook module. Some Excel users who
frequently use the F2 key to get into Edit mode nullify the F1 (Help) key in this
fashion as well.

Private Sub

Application.

End Sub

Private Sub

Application.

End Sub

Private Sub

Application.

End Sub

Private Sub

Application.

End Sub

Workbook_Open ()
OnKey " {Fll} n , nn

Workbook_Activate ()
onKey n {Fll} n , nn

Workbook_Deactivate ()
OnKey "{F11}"

Workbook_BeforeClose (Cancel As Boolean)
OnKey "{F11}"

www.it-ebooks.info

http://www.it-ebooks.info/

154 | LESSON 14 PROGRAMMING CHARTS

ADDING AN EMBEDDED CHART TO A WORKSHEET

When you embed a chart onto a worksheet, there is more to consider than when you create a chart
for its own chart sheet. When you embed a chart, you need to specify which worksheet you want the
chart to be on (handled by the Location property), and where on the worksheet you want the chart
to be placed. The following macro is an example of how to place a column chart into range D3:J20
of the active worksheet, close to the source range as shown in Figure 14-3.

Sub CreateChartSameSheet ()

'Declare an Object variable for the chart

'and for the embedded ChartObject.

Dim myChartl As Chart, chtl As ChartObject
'Declare a Range variable to specify what range
'"the chart will occupy, and on what worksheet.

Dim rngChartl As Range, DestinationSheet As String

'The chart will be placed on the active worksheet.
DestinationSheet = ActiveSheet.Name

'Add a new chart
Set myChartl = Charts.Add

'Specify the chart's location as the active worksheet.
Set myChartl = _

myChartl.Location _

(Where:=x1LocationAsObject, Name:=DestinationSheet)
'Define the new chart's source data

myChartl.SetSourceData _
Source:=Range ("Al") .CurrentRegion, PlotBy:=x1Columns

'Define the type of chart, in this case, a Column chart.
myChartl.ChartType = xlColumnClustered

'Activate the chart to identify its ChartObject.

'The (1) assumes this is the first (index #1) chart object
'on the worksheet.

ActiveSheet.ChartObjects (1) .Activate

Set chtl = ActiveChart.Parent

'Specify the range you want the chart to occupy.
Set rngChartl = Range("D3:J20")

chtl.Left = rngChartl.Left

chtl.wWidth = rngChartl.width

chtl.Top = rngChartl.Top

chtl.Height = rngChartl.Height

'Deselect the chart by selecting a cell.

Range ("Al") .Select
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Moving a Chart | 155

A B c D E F G H [1 K
1 Month Sales
2 |January 71605
3 |February 73632
4 |March 90114
5 | April 87041
6 |May 63362
7 |June 73417
8 |July 46648
9 |August 14292
10 | September 62041
11 | October 65849

November 37370
December 73112

56 ER

B e
G |~

o
=]

21

FIGURE 14-3

@ Onmne of the best practice items in VBA programming that I mention through-
out the book, and you will see posted in newsgroups ad nauseam, is to avoid
selecting or activating objects in your VBA code. In fact that is good advice...
most of the time. Sometimes, you need to select objects to refer reliably to them
or to manipulate them, and the preceding macro demonstrated two examples.
The ChartObject was activated to derive the actual name of the chart. Also,
the macro ended with cell A1 being selected. You could select any cell or any
object, but a cell — any cell — is the safest object to select after creating a new
embedded chart. Any code that is executed after adding a new chart will prob-
ably not execute correctly if the chart object is still selected. The most reliable
way to deselect a chart at the end of your macro is to select a cell.

MOVING A CHART

You can change the location of any chart, which you might be familiar with if you’ve right-clicked
a chart’s area and noticed the Move Chart menu item. The following scenarios show how to do this
with VBA.

To move a chart from a chart sheet to a worksheet, select the chart sheet programmatically and
specify the worksheet where you want the chart to be relocated. It’s usually a good idea to tell VBA
where on the worksheet you want the chart to go; otherwise, the chart is plopped down on the sheet

www.it-ebooks.info

http://www.it-ebooks.info/

156 | LESSON14 PROGRAMMING CHARTS

wherever VBA decides. That is why the code in the with structure specifies that cell C3 be the top-
left corner of the relocated chart.

Sub ChartSheetToWorksheet ()

'Chartl is the name of the chart sheet.

Sheets ("Chartl") .Select

'Move the chart to Sheetl

ActiveChart.Location Where:=xlLocationAsObject, Name:="Sheetl"

'Cell C3 is the top left corner location of the chart.
With Worksheets ("Sheetl")

ActiveChart.Parent.Left = .Range("C3").Left
ActiveChart.Parent.Top = .Range("C3").Top

End With

'Deselect the chart.
Range("Al") .Select

End Sub

To move a chart from a worksheet to a chart sheet, you need to determine the name or index num-
ber of your chart. If you have only one chart on the sheet, you know that chart’s index property is
1, but specifying the chart by its name is a safe way to go. The code is much simpler because a chart
sheet can contain only one chart, so you don’t need to specify a location on the chart sheet itself.

Sub EmbeddedChartToChartSheet ()

ActiveSheet.ChartObjects ("Chart 1").Activate
ActiveChart.Location Where:=xlLocationAsNewSheet, Name:="Chartl"
End Sub

To determine the name of any embedded chart quickly, select it and you’ll see its
name in the Name box.

To move an embedded chart from one worksheet to another, it’s the same concept of specifying
which chart to move, and which worksheet to move it to:

Sub EmbeddedChartToAnotherWorksheet ()

'Chart 5 is the name of the chart to move to Sheet2.
ActiveSheet.ChartObjects ("Chart 14").Activate
ActiveChart.Location Where:=x1LocationAsObject, Name:="Sheet2"

'Cell B6 is the top left corner location of the chart.
With Worksheets ("Sheet2")

ActiveChart.Parent.Left = .Range("B6").Left
ActiveChart.Parent.Top = .Range("B6") .Top

End With

'Deselect the chart.
Range("Al") .Select

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Looping through All Embedded Charts | 157

You can quickly move all chart sheets to their own workbook. For example, check out the follow-
ing example that creates a new workbook and relocates the chart sheets before Sheet1 in that new
workbook:

Sub ChartSheetsToWorkbook ()

'Declare variable for your active workbook name.
Dim myName As String

'Define the name of your workbook.

myName = ActiveWorkbook.Name

'Add a new Excel workbook.

Workbooks.Add 1

'Copy the chart sheets from your source workbook
'to the new workbook.
Workbooks (myName) .Charts.Move before:=Sheets (1)
End Sub

LOOPING THROUGH ALL EMBEDDED CHARTS

Suppose you want to do something to every embedded chart in your workbook. For example, if
some charts were originally created with different background colors, you might want to standard-
ize the look of all charts to have the same color scheme. The following macro shows how to loop
through every chart on every worksheet to format the chart area with a standard color of light blue:

Sub LoopAllEmbeddedCharts ()

'Turn off ScreenUpdating.
Application.ScreenUpdating = False

'Declare variables for worksheet and chart objects.
Dim wks As Worksheet, ChObj As ChartObject

'Open loop for every worksheet.
For Each wks In Worksheets

'Determine if the worksheet has at least one chart.
If wks.ChartObjects.Count > 0 Then

'If the worksheet has a chart, activate the worksheet.
wks.Activate

'Loop through each chart object.
For Each ChObj In ActiveSheet.ChartObjects

'Activate the chart
ChObj.Activate

'Color the chart area blue.
ActiveChart.ChartArea.Interior.ColorIndex = 8

'Deselect the active chart before proceeding to the

'next chart or the next worksheet.
Range ("Al") .Select

www.it-ebooks.info

http://www.it-ebooks.info/

158 | LESSON14 PROGRAMMING CHARTS

'Continue and close the loop for every chart on that sheet.
Next ChObj

'Close the If structure if the worksheet had no chart.
End If

'Continue and close the loop for every worksheet.
Next wks

"Turn on ScreenUpdating.
Application.ScreenUpdating = True

End Sub

If you have chart sheets to be looped through, the code must be different to take into account the
type of sheet to look for, because a chart sheet is a different type of sheet than a worksheet. This
macro accomplishes the same task of coloring the chart area, but for charts on chart sheets:

Sub LoopAllChartSheets ()

'Turn off ScreenUpdating.
Application.ScreenUpdating = False

'Declare an object variable for the Sheets collection.
Dim objSheet As Object

'Loop through all sheets, only looking for a chart sheet.
For Each objSheet In ActiveWorkbook.Sheets
If TypeOf objSheet Is Excel.Chart Then

'Activate the chart sheet.
objSheet.Activate

'Color the chart area blue.
ActiveChart.ChartArea.Interior.ColorIndex = 8

'Close the If structure and move on to the next sheet.
End If
Next objSheet

"Turn on ScreenUpdating.
Application.ScreenUpdating = True

End Sub

DELETING CHARTS

To delete all charts on a worksheet, you can execute this code line in the Immediate Window, or as
part of a macro:

If activesheet.ChartObjects.Count > 0 Then activesheet.ChartObjects.Delete

www.it-ebooks.info

http://www.it-ebooks.info/

Renaming a Chart | 159

To delete chart sheets, loop through each sheet starting with the last sheet, determine whether the
sheet is a chart sheet, and if so, delete it.

%

This loop starts from the last sheet and moves backward using the step -1
statement. It’s a wise practice to loop backwards when deleting sheets, rows, or
columns. Behind the scenes, VBA relies on the counts of objects in collections,
and where the objects are located relative to the others. Deleting objects starting
at the end and working your way to the beginning keeps VBA’s management of
those objects in order.

Sub DeleteChartSheets ()

'Turn off ScreenUpdating and the Alerts feature,
'so when you delete a sheet VBA does not warn you.
With Application

.ScreenUpdating = False

.DisplayAlerts = False

'Declare an object variable for the Sheets collection.
Dim objSheet As Object

'Loop through all sheets, only looking for a chart sheet.
'This loop starts from the last sheet and moves backward.
For Each objSheet In ActiveWorkbook.Sheets

If TypeOf objSheet Is Excel.Chart Then objSheet.Delete
Next objSheet

'Turn on ScreenUpdating and DisplayAlerts.
.DisplayAlerts = True

.ScreenUpdating = False

End With

End Sub

RENAMING A CHART

As you have surely noticed when creating objects such as charts, pivot tables, or drawing objects,
Excel has a refined knack for giving those objects the blandest default names imaginable. Suppose
you have three embedded charts on your worksheet. The following macro will change those charts’
names to something more meaningful:

Sub RenameCharts ()

With ActiveSheet

.ChartObjects (1) .Name = "Monthly Income"
.ChartObjects(2) .Name = "Monthly Expense"
.ChartObjects (3) .Name = "Net Profit"

End With

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

160 | LESSON14 PROGRAMMING CHARTS

TRYIT

In this lesson you create an embedded pie chart, position it near the source data, and give each leg-
end key a unique color. The pie will have four slices that will each be given a unique color, and will
each display their respective data labels.

Lesson Requirements

To get the sample database files you can download Lesson 14 from the book’s website at

WWW . Wrox . Ccom.

Step-by-Step

1. Insert a new worksheet and construct the simple table A 8 c Bl

R
as shown in Figure 14-4. : ey e
Quart Sal Percent
2. From your worksheet, press Alt+F11 to go to the .3; Q::ﬂ::.l 1::1,254 er;::;]
Visual Basic Editor. 5 |Quarter2 $326,580| 15%
6
3. From the VBE menu, click Insert &> Module. 7 |Quarter4 $745,698 35%
2 [Total | $2,149,775]
4. In your new module, enter the name of this macro, 2
which I am calling TryTtPiechart. Type Sub FIGURE 14-4

TryltPieChart, press the Enter key, and VBA will
produce the following code:

Sub TryItPieChart ()

End Sub

5. Declare the chartobiject variable.

Dim chtQuarters As ChartObject

6. Set the variable to the chart being added. Position the chart near the source data.

Set chtQuarters = _
ActiveSheet.ChartObjects.Add _
(Left:=240, Width:=340, Top:=5, Height:=240)

7. Define the range for this pie chart:

chtQuarters.Chart.SetSourceData Source:=Range("A3:B7")

8. Define the type of chart, which is a pie:

chtQuarters.Chart.ChartType = x1Pie

9. Activate the new chart to work with it:

ActiveSheet.ChartObjects (1) .Activate

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 161

10.

1.

12.

13.

14.

15.

Color the legend entries to identify each pie piece:

With ActiveChart.Legend

.LegendEntri
.LegendEntri
.LegendEntri
.LegendEntri
End With

es (1) .LegendKey.Interior.Color = vbYellow
es (2) .LegendKey.Interior.Color = vbCyan
es (3) .LegendKey.Interior.Color = vbRed

es (4) .LegendKey.Interior.Color = vbGreen

Add data labels to see the numbers in the pie slices:

ActiveChart.

Edit the chart

ActiveChart.

SeriesCollection(1l) .ApplyDataLabels

title’s text.

ChartTitle.Text = "Quarterly Sales"

Format the legend:

ActiveChart.
With Selecti
.Name = "Ari
.FontStyle =
.Size = 14
End With

Legend.Select
on.Font
al"

n BOld"

Deselect the chart by selecting a cell:

Range ("Al") .

Select

Press Alt+Q to return to the worksheet, and test your macro, which in its entirety will look as
follows. The result will look like Figure 14-5, with a pie chart settled near the source data.

Sub TryItPie

'Declare the
Dim chtQuart

'Set the var

Chart ()

ChartObject variable.
ers As ChartObject

iable to the chart being added.

'Position the chart near the source data.

Set chtQuart
ActiveSheet.

ers = _
ChartObjects.Add _

(Left:=240, Width:=340, Top:=5, Height:=240)

'Define the
chtQuarters.

'Define the
chtQuarters.

range for this pie chart.
Chart.SetSourceData Source:=Range("A3:B7")

type of chart, which is a pie.
Chart.ChartType = xlPie

'Activate the new chart to work with it.

ActiveSheet.

ChartObjects (1) .Activate

www.it-ebooks.info

http://www.it-ebooks.info/

162

LESSON 14 PROGRAMM

ING CHARTS

'Color the legend entries to identify each
With ActiveChart.Legend

.Color
.Color
.Color
.Color

pie piece.

= vbYellow
= vbCyan

= vbRed

= vbGreen

.LegendEntries (1) .LegendKey.Interior
.LegendEntries (2) .LegendKey.Interior
.LegendEntries(3) .LegendKey.Interior
.LegendEntries (4) .LegendKey.Interior
End With

'Add data labels to see the numbers in the pie slices.
ActiveChart.SeriesCollection (1) .ApplyDatalabels

'Edit the chart title's text
ActiveChart.ChartTitle.Text = "Quarterly Sales"

'Format the legend.
ActiveChart.Legend.Select
With Selection.Font

.Name = "Arial"
.FontStyle = "Bold"

.Size = 14
End With

'Deselect the chart by selecting a cell.
Range ("Al") .Select

End Sub
N e B R e e
1 |Quarterly Sales |
2 Quarterly Sales
3 |Quarter Sales Percent
4 |Quarter 1 $591,254| 28%
5 |Quarter 2 $326,589| 15%
& $745,608 REEIAED Quarter 1
7 |Quarter 4 $745,698 35% Quarter 2
g |Total $2,149,775
s = Quarter 3
10| $326,589 Quarter 4
=
il
13
@
ezl
2]
FIGURE 14-5

To view the video that accompanies this lesson, please select Lesson 14, available
at the following website: www.wrox.com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

15

Programming PivotTables
and PivotCharts

PivotTables are Excel’s most powerful feature. They are an amazing tool that can summarize
more than a million rows of data into concise, meaningful reports in a matter of seconds. You
can format the reports in many ways, and include an interactive chart to complement the
reports at no extra cost of time.

1l 1 1 A B [D 3 3 G
If you are not familiar with PlvotTabl.es, you are not TR T
alone. Surveys of Excel users worldwide have consis- S0 Wesl Jackels Quaer! 1832 6045
tently indicated that far less than half of those sur-

:
2
3 Store3 North Jackets Quarter 2 1028 3808
|4 Store7 West Pants Quarter 3 574 2127
. . . . 5
veyed said they use PivotTables, including people who | & sores som snns Quater1 217 504
7
8
9

Sloref South Jackels Quarler 4 2059 7628
use Excel throughout their entire workday. Because Sores Soh Jsckets Quarers 2179 6074
PivotTables are worth becoming familiar with, this Bl e 1 (et ot ouenert | Tooe| o8t
lesson starts with an overview of PivotTables and Bl
PivotCharts, followed by examples of how to create iS4 Noth onts. [Guarer {1247 4306
and manipulate them programmatically with VBA. oot e onts [Quaterd | T aee

17 Store2 East Jackets Quarter 4 440 1632
18 Stored North Jackets Quarter 1 1220 4521
|19 Store5 South Jackets Quarter 2 1203 4457
20 Store9 West Jackets Quarter 3 1244 4609
CR EATING A PIVOTTABLE REPO RT :71 Store 5 South Jackets Quarter 4 1292 4788
22 Slore 3 Noith Jackels Quarler 1 927 3434
23 Store 1 East Hats Quarter 2 2178 8067

Suppose you manage the clothing sales depart- 2iflores Souh lats Quaderd At

25 Slore 5 South Jackels Quarler 4 2512 9307

g S |26 Store 1 East Jackets Quarter 1 90 336

ment for a national department store. You receive Bl et e e oo Ss e
22 Store8 West Shirts Quarter 3 2081 771

tens of thousands of sa.les Fecords from your stores Sored Wed St Jwrers| et Tt
all over the country, with lists that look similar to 0 Sored East Scaves Quarer! 2617 9604
. . R . L. . 31 Storefi South Jackets Quarter 2 660 2447
Figure 15-1. With lists this large, it’s impossible to |32 Siore6 Soun Jackels Quarier3 2520 9367
. |33 Store8 West Jackets Quarter 4 586 2172
gain any meaningful insight into trends or marketing | Soe7 West Jackes Quatert 03 2530
.. g 0 35 Slored Noith Panls Quarler 2 1775 8577
opportunities unless you can organize the data in a % Storc2 East Hats Quater3 953 3531

[« | Sheet1 ~Sheet2 ~shests ~ shests ©J

summarized fashion.
FIGURE 15-1

www.it-ebooks.info

http://www.it-ebooks.info/

164 |

LESSON 15 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

y When locating a PivotTable on the same worksheet alongside the source table,

If you select a single cell anywhere in the list, such as cell E7, which is selected in Figure 15-2,
you can create a PivotTable by selecting the Insert tab and clicking the PivotTable icon. The
Create PivotTable dialog box will appear, with the Table Range field already filled in, as shown in
Figure 15-3. I chose to keep the PivotTable on the same worksheet as the source data, and for the
PivotTable’s top-left corner to occupy cell H4.

it’s best to have at least one empty column between the source table and
your PivotTable. It’s also a good idea to leave a few empty rows above the
PivotTable to leave room for the Report Filter area (what was called the Page
Area in version 2003).

T

Home Insert Page Layout Formulas Data Review View D|

PR oWl @

PivotTable| Table Picture Clip Shapes SmartArt Screenshot | Column Line Pie Bar
- Art - - - - - -

Tables Tllustrations Charts
Insert PivotTable Jx | 116
Summarize data using a PivotTable, D E [F G

PivotTables make it easy to arrange When Quanﬁty Revenue
and summarize complicated data ats Quarter 1 1632 6045
and drill down on details, sts Quarter 2 1028 3808

@ Press Fi formore help. 5 Quarter 3 574 2127
5 Store6 South Jackets Quarter 4 2059 7628
6 Store6 South Shirts Quarter 1 217 804
Z| Store8 West Hats Quarter 2 1161 430
g Store5 South Jackets Quarter 3 2179 8074
9 |Store3 North Pants Quarter 4 150 558

10 Store1 East Jackets Quarter 1 1695 6281
11 Store5 South Jackets Quarter 2 1595 5908
12 Store5 South Jackets Quarter 3 2152 7972
13 Store5 South Jackets Quarter 4 822 3048
14 Store4 North Shirts Quarter 1 1217 4508
15 Store 7 |West Shirts Quarter 2 2007 7434
16 Store4 North Hats Quarter 3 1767 6548
17 Store2 East Jackets Quarter 4 440 1632
18 Store4 North Jackets Quarter 1 1220 4521
19 Store5 South Jackets Quarter 2 1203 4457
20 Store9 West Jackets Quarter 3 1244 4609
21 Store5 South Jackets Quarter 4 1292 4788
22 Store3 North Jackets Quarter 1 927 3434
23 Store1 East Hats Quarter 2 2178 8067
24 Store5 South Hats Quarter 3 1563 5791
25 Store5 South Jackets Quarter 4 2512 9307

26 Store 1 East Jackets Quarter 1 90 336
27 Store3 North Hats Quarter 2 545 2020
28 Store8 |West Shirts Quarter 3 2081 7711
29 Store4 North Shirts Quarter 4 61 229
30 Store2 East Scarves Quarter 1 2617 9594
31 Store6 South Jackets Quarter 2 660 2447
32 Store6 South Jackets Quarter 3 2529 9367
33 Store8 West Jackets Quarter 4 586 2172
34 Store7 |West Jackets Quarter 1 683 2530
35 Store4 North Pants Quarter 2 1775 6577
36 Store2 East Hats Quarter 3 953 3531
M 4 b b | Sheetl Sheet? ~Sheet3 . Sheetd - tol

FIGURE 15-2

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a PivotTable Report | 165

@ 9--Fle Lessori15a - Microsoft Excel =T
vome [nert | Pogelaost Fmuss Doia Rewiew View Developer Qoou
PO EHEDP® o ghoT MO 2 4 Z7a QO
Polfsble Table | Picwre Cip Shapes Smartir Screenshol | Column Uine Me Bt Ares Scster O Header Wordist Signature Obied. | Enuation Symbol
at charte &g Line
Tobies nusttions Crans sparines Fines tet symbots
m e & us 5
F A B 3 e e [H [l J K L M U RV | G|
1 StorslD Reglon itsm When Quantity Revenus
2 Sloe9 Wesl Jackels Quarter! 1632 6045
|3 Store3 Momh Jackets Quarer2 1028 3308
4 Store7 West Panls Quarter3 574 2127
5 Sloed Souh Jackels Qualerd 2080 7628
|6 Store6 Souh Shits Quarter1 217 804
|7 Stoe8 West Has Quater2[__116] 430 e
6 Store5 Souh Jackets Quarer3 2170 8074 g
s Stored Noth Panls Quarterd 150 558 bt e gt
10 Slore 1 Easl Jackels Quarler1 1695 6281 rm’:‘m;:";“""‘“ =
11 Store5 Souh Jackels Quarer? 1505 5008
12/Store5 South Jackels Quarter3 2152 7972 et
1/Store 5 South Jackets Quarterd 822 3048 R =
14 Stored Nomh Shins Quareri 127 4508 Clucee yhare
15/Slore 7 Wesl Shils Qualer2 2007 7434 [
16 Store4 Moth Hats Quarerd 1767 6548 sl
17 Store2 East Jackels Quarterd 40 1632 e | |
18 Stored Nomh Jackets Quarter 1 1220 4521 [=
18 Store5 Souwth Jackets Quarer? 1203 4457
0 Slore9 Wesl Jackels Quarder3 1244 4809
21 Store5 Souh Jackets Quarterd 1202 4788
22 Store3 Norh Jackets Quarter 1 927 334
23 Sloe 1 East Hals Qualer? 2178 8067
24 Store5 Sowh Hats Quarterd 1563 5791
(25 Store 5 South Jackels Quarter 4 2512 9307
25 Store 1 East Jackets Quarter 1 20 336
27 Store3 Nomh Hats Quarler? 545 2020
28/Slore8 West Shils Qualer3 2081 7711
2 Stored Nomh Shits Quarter 4 61 229
|30 Store2 East Scarves Quarter 1 2617 9694
31/Store§ South Jackets Quarter2 660 2447
32 Store6 Sowth Jackets Quarterd 2520 9367
33 Slore8 Wes! Jackels Quarlerd 586 2172
34 Store7 West Jackets Quarter 1 683 2530
35 Stored Nomh Panis Quaer2 1775 6577
3% Sloe? East Hals Quarer3 953 3531 M
[14 4 » M| Sheeti . ‘Sheetd ,“Sheets . Sheetd 72 [] [}
FIGURE 15-3

Using Excel version 2010, when you click the OK button you’ll see an image similar to Figure 15-4,
with the representation of where the PivotTable will be, and the Field List at the right.

(Xl - -

Lessan 15a - Microsoft Excel

View Developer | Options | Design

Home Insert Page Layout Fomuias Data Review
PivatTable Name: Active Field: o3| % cuovpseeaion) RS [2 : = = [summarize vatues By 7.
o Options - | @ FiekdSetlings 1 | B GroupFeid | &4 7 gRegt | Reflesh Chgre 5 ProtTupte | [Fiekds, Hems, & Sets -
ProtTable sctiee Feld Group. Sort & Fiter Data Adtions Colcutatians
Ha - &
4 A B [3 b | € F | [0 [1] K L ™
1 StorsID Reglon Itsm When Quantity Ravenue
2 Slore9 Wesl Jackels Quarter 1 1632 6045
|3 Store3 Nomh Jackets Quarter2 1028 3808
| 4 Store7 West Pants Quarier 3 574 2127
s Slore6 South Jackels Quarterd 2050 7628
(6 Storaf South Shins Quarter 1 7 804
7| Wesl Hals Quarter 2 116 430 To build a report, choose fields from the
[a] South Jackets Quartter3 2170 8074 st
o Noth Panis Quarterd 150 558
10 S East Jackels Quarter 1 1695 6281
| South Jackets Quater? 1595 5908
12| South Jackets Quarter 3 2152 7472
B South Jackets Quarter 4 822 3048 "
|14 Noth Shits Quarter 1 1217 4508
15 S West Shils Quarter2 2007 7434
18 Noth Hats Quaterd 1767 G548
|17 Cast Jackets Quarter 4 440 1632
18 8 Moth Jackets Quarter 1 120 4621
18 South Jackets Quarter? 1203 4457
20| Wesl Jackels Quarer3 1244 4809 e
) South Jackets Quarterd 1292 4788 V Reporiflr 2 Conlabek
|22 North Jackets Quarier 1 927 3434
5 S East Hals CQuarer? 2178 8067
|24 South Hats CQuaterd 1563 5791
25 South Jackets Quarler 4 2512 9307
26| East Jackets Quarter 1 an 336
27| Noth Hats Quarter? 545 2020
2 S West Shils Quarer3 2081 7711 P —
e Morh Shits Quarterd 61 229 s 2D
130 East Ecarves Quarter 1 2617 9604
EnE South Jackets Quarter2 660 2447
32 South Jackels Quarterd 2520 9367
35 Store8 West Jackels Quarter4 586 2172
34 Store 7 West Jackets Quarter 1 683 2530
|35 Stored North Pants Quarter 2 1775 6577
3 Slore2 Easl Hals Quarter3 953 3531 -0
[P Sheets - Shest 7 Seeti 7 Greett 723 4T = TEE| 1 O e e
FIGURE 15-4

www.it-ebooks.info

http://www.it-ebooks.info/

166 | LESSON15 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

To create a PivotTable, complete the following steps:

1. Drag the Item field name from the Choose Fields to Add to Report pane down to the Report

Filter pane.

2. Drag the Region field name from the Choose Fields to Add to Report pane down to the Row

Labels pane.

Drag the Store ID field name from the Choose Fields to Add to Report pane down to the
Row Labels pane, below the Region field name.

Drag the When field name from the Choose Fields to Add to Report pane down to the
Column Labels pane.

5. Drag the Revenue field name from the Choose Fields to Add to Report pane down to the

Values pane.

Your worksheet will look similar to Figure 15-5, with a PivotTable that shows the summary of
Revenue by Quarter for each Region, with each Region showing the detail of its stores’ activities.
The source list could have been more than a million rows deep, and the process would still have
only taken Excel a couple of moments to produce the PivotTable report.

(= AR =T Lesson 154 - Miosolt Excel FivoiTable Tools Lom
“ Home'Imot Pogeltyout’ Fomilss | Deia’ | Reviow iew! Deszloper || Optins [IRERIo s @oa =
FVOtTaDIE Name: | Active Flel: - % Group Selection = B =]] [=) summarize values by +
PivotTablel0 Item - 4 Ungroup r-l ij ;‘ @ _‘—:‘ 3 ’i_‘{i @ j Show Values As % E ‘
- CH R 4] sot | Inset Refresh Change Data Clear Select Move - «f- | Field
5 Options = | 'y Field Sellings T3] Group Field A Slicarr. Sourcar o + PivotTable | [Fields, ems, & Sets - Buttons|Headers
PluotTanle Artive Fiela Group sort & Fiiter nata Actions Calcuiations Show
H2 - @ fe| ttem ~
| A B c D = r G H 1 il K L M | PivotTable Field List - %
1 StorelD Region ltem When Quantity Revenue s
|2 [Slie9 Wesl Jackels Quarler 1 1632 6045 tem T [(e X St
3 |Store3 North Jackets Quarter 2 1028 3808 [Steee 10
4 Store7 West Pants Quarterd 574 2127 Sum of Revenue. Column Labels - e emen
5 |Slore 6 South Jackels Quarler 4 2059 7628 Row Labels | ~|Quarter1 Quarter 2 Quarter 3 Quarter 4 Grand lotal = when
6 |Store6 South Shits Quarter 1 217 801 SEast 16311 2067 3531 1632 20541 D Quantity
7 |Stored West Hats Quarter 2 116 430 store 1 6617 8067 14684 [l Revenue
s |Store 5 South Jackets Quarter 3 2179 8074 store 2 9694 3531 1632 14857
9 |Store3 North Pants Quarter 4 150 558 =North 12463 12405 6548 787 32203
10|Store 1 East Jackets Quarter 1 1695 6281 Store 3 3434 5828 558 9820
11 | Store 5 South Jackets Quarter 2 1595 908 Stared 9029 ASTT 6548 279 22383
12|Store 5 South Jackets Quarter 3 2152 7972 =South 801 12812 31200 27 69591
13|Store 5 South Jackels Quarter 4 822 3048 Store 5 10365 21837 17143 29385 |7
sa|Store 4 North Shirts Quarter 1 1217 4508 Store 6 804 2aa7 9367 7678 20246
15/ Slore 7 West Shirls Quarler 2 2007 7434 Swest 8575 igea 117 22 33058
16|Storc 4 North Hats Quarter 3 1767 6548 Store 7 2530 7434 2127 12001
17 Store 2 LCast Jackets Quarter 4 440 1632 Sture & 430 7L 2172 10313
18 Slore 4 North Jackels Quarler 1 1220 4521 Storey 6045 as09 10654
19|Store 5 South Jackets Quarter 2 1203 4457 Grand Total 38153 41148 55730 29362 164393
20 |Store Y West Jackets Quarter 3 1244 4609 Drag fiekds between aceas below:
21 Store 5 South Jackets Quarter 4 1292 4788 ¥ Report Filter [Column Labels
22 Store3d North Jackets Quarter 1 927 3434 Tem ~ | [[when =
23 |Store 1 East Hats Quarter 2 2178 so6/
2a Store 5 South Hats Quarter 3 1563 5791
2 Slore 5 Soulh Jackels Quarler 4 2512 9307
26 Store 1 East Jackets Quarter 1 90 336
27| Store 3 North Hats Quarter 2 545 2020
28 Slore 8 Wesl Shirls Quarler 3 2081 Ll
29/Storc4 North Shins Quarter 4 61 229 R)
20 Slore2 Cast Scaves Quarter! 2617 9694 Beon szl com cfeversu
31 Store 6 South Jackets Quarter 2 660 2447
32 Store 6 South Jackets Quarter 3 2529 9367
33 |Btore 8 West Jackets Quarter 4 586 2172
34 Store 7 West Jackets Quarter 1 683 2030
35 Store4 North Pants Quarter 2 1775 6577
36 Slore2 East Hals Quarlerd U3 b3l Bl B avour i o
[4> M| Sheet1 /'Sheetz . Sheetd . Sheetd . ¥J_ LKl u] 1|

FIGURE 15-5

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a PivotTable Report | 167

Hiding the PivotTable Field List

For now, you are done with the PivotTable Field List, so to clear it off your screen, you can click the
“X” close button on its title bar, click its Ribbon icon on the PivotTable Tools Option tab, or you

can right-click anywhere on the PivotTable area and select Hide Field List, as shown in Figure 15-6.
When you want to see the Field List again, click the Field List Ribbon icon, or right-click anywhere
on the PivotTable area again and select Show Field List.

oft Excel PivotTable Tools ol R
Review View Develaper Options | Design o @ o & =
N F= ; -] F =
] 5 @ @ |i_1?‘ [iz] Summarize Values By n [y DESp f E
[3 4 =
El = [i8] show Values As ~ i e e _—
Insert | Refresh Change Data Clear Select Mave = PivotChart OLAP What-If Field +/- Field
Slicer = - Source > - - PivotTable [Fields, ltems, & Sets ~ ools = Analysis List |Buttons|Headers
L Filter Data Actions Caleulations Tools Show
v
F G H 1 J K L M | PivotTable Field List - X fe—
Revenue T T = « o . =l]
|calibi +/11 AT AT % v % o+ | Y 2l
6045 iienl o+ B | Choose fields to add to report:
B I =& A~ [Store ID
3808 - =
2127 Sum ~f Bauania loabumn tahale (<] [Region
| Ea Copy [Item
7628 Row| = Quarter 2 Quarter 3 Quarter 4 Grand Total o When
804 ogal B Format cell.. 8067 3531 1632 29541 Il Quantity
430 é Number Format... 8067 14684 ¥ Revenue
8074 ﬂl [Refresh | 3531 1632 14857
558 ENg < 12405 6548 787 32203
6281 q 5828 558 9820
| X Remoye “Sum of Revenue”
59808 q 6577 6548 229 22383
7972 @sp| | Summarize Values By 12812 31208 24771 69501
3048 § ShowValuesAs 10365 21837 17143 40345 |7
4508 @ value Field Settings... 2447 9367 7628 20246
7434 =wi PivotTable Options... 7864 14447 2172 33058
6548 (3] Hide Field List : 7434 2127 12091
1632 Stores 430 771 2172 10313
4521 Store 9 6045 4609 10654
4457 Grand Total 38153 41148 55730 29362 164393
4609 Drag fields between areas below:
4788 ¥ ReportFilter [Column Labels
3434 Item + | ['when -
8067
FIGURE 15-6

Using the Report Filter Area

Above the PivotTable’s Report area, you see a small filter-looking icon in cell 12, in what is called
the Report Filter area. The Item field name was dragged to that area in Step 1 of the process that
created this PivotTable. If you click the filter icon (clearly seen in Figure 15-8), you’ll see a unique
list of clothing items, of which you can select one or several in order to have the PivotTable show
only the data relating to the item(s) you select. In Figure 15-7, I selected the Hats item, and in
Figure 15-8, you can see how the PivotTable adjusts itself to show only the columns and rows where

data is present for the sale of hats.

www.it-ebooks.info

http://www.it-ebooks.info/

168 | LESSON15 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

E G H 1 i K L M N
Revenue
6045 Item (All) -
3808 [search Bl
2127
7628
804 ;Z‘:‘;‘E 5067 3531 1632 29541
430 - Scarves 8067 14684
8074 Shirts 3531 1632 14857
558 12405 6548 787 32203
6281 5828 558 9820
5908 6577 6548 229 22383
7972 12812 31204 24771 69591
3048 10365 21837 17143 49345
4508 2447 9367 7628 20246
7434 7864 14447 2172 33058
?g‘a‘g 01 Select Muttiple Items 7:33 ;;i - i;;’i;
4521 E ﬂi 4609 10654
4457 rana T soros 41148 55730 29362 164393
4609
4788
FIGURE 15-7
A B £ D E F G H [J K L M N
1 |StoreID Region Item When Quantity Revenue
2 |Store9 West Jackets Quarter 1 1632 6045 Item Hats T
3 Store3 North Jackets Quarter 2 1028 3808
I|Store 7 West Pants Quarter 3 574 2127 ISum of Rwenue!calumn Labels| ~
5 |Store6 South Jackets Quarter 4 2059 7628 Row Labels |~ Quarter2 Quarter 3 Grand Total
6 |Store 6 South Shirts Quarter 1 217 804 = East 8067 3531 11598
7 |Store8 West Hats Quarter 2 116 430 Store 1 8067 8067
8 Store5 South Jackets Quarter 3 2179 8074 Store 2 3531 3531
9 |Store3 North Pants Quarter 4 150 558 = North 2020 6548 8568
10 | Store 1 East Jackets Quarter 1 1695 6281 Store 3 2020 2020
11 | Store 5 South Jackets Quarter 2 1595 5908 Store 4 6548 6548
12 | Store 5 South Jackets Quarter 3 2152 7972 =South 5791 5791
13 | Store5 South Jackets Quarter 4 822 3048 Store 5 5791 5791
14 | Store 4 North Shirts Quarter 1 1217 4508 ='West 430 430
15 | Store 7 West Shirts Quarter 2 2007 7434 Store 8 430 430
16 | Store 4 North Hats Quarter 3 1767 6548 Grand Total 10517 15870 26387
17 |Store2 East Jackets Quarter 4 440 1632
18 | Store 4 North Jackets Quarter 1 1220 4521
19 | Store5 South Jackets Quarter 2 1203 4457
20 | Store9 West Jackets Quarter 3 1244 4609
21 |Store 5 South Jackets Quarter 4 1292 4788

FIGURE 15-8

Formatting Numbers in the Values Area

You can see that the numbers in the PivotTable’s Values area are unformatted. As an example of
formatting them as Currency, right-click any cell in the Values area and select Value Field Settings as
indicated in Figure 15-9. In the Value Field Settings dialog box, click the Number Format button as
shown in Figure 15-10.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a PivotTable Report | 169

F G H J] K L M

Revenue

6045 Item Hats T
3808
2127 Sum of Revenue Column Labels |~
7628 Row Labels | ~|Quarter2 Quarter 3 Grand Total

804 = East 8067 3531 11598

430 Store 1 8067 8067
8074 Store 2 3531 3531

558 =/North 2020 6548 8568
6281 Store 3 2020 2020
5908 Store 4 A
7972 = south Arl 1A S % 0 B
3048 stores BIES-A-T-RAS 21x
4508 = Waest I al - — Source Name: Revenue
7434 Store 8] Lopy Costombiame: [fumofReverue
6548 Grand Total EFormat Cells.. i
1632 Number Format... | Summarize Values By | show Values As |
4521 Refresh . Summarize value field by
4457 ot N Choose the type of calculation that you want to use to summarize
4609 ; i data from the selected field

emoye “Sum of Revenue”

gzgﬁ Summarize Values By » I
8067 show Values As » :
5791 Show Details ,
9307 Value Field Settings... 4—;—

336 PivotTable Options... | Mumber Fnrmat‘l OK I Cancel
‘;2‘3? Show Field List : i =

FIGURE 15-9 FIGURE 15-10

The familiar Format Cells dialog box will appear next. In Figure 15-11, I selected Currency with the
dollar sign symbol and no decimal places. After you click OK here, you then need to click the OK
button of the Value Field Settings dialog box, as shown in Figure 15-12.

Number |
Category:
General = rsampl
e o |
A i =
e Gecmalpisces: [T =] Value Field Settings 2=
| Time Symbol: [s = -
o e symbol: [=l Sroe(s feme
Fraction Megative numbers: B l_—
Scientific -
Text
ol Surnmarize Values By | Show Values A5 |
Custem Summarize value field by
Choose the type of calculation that you want to use to summarize
data from the selected field
Currency formats are used for general monetary values. Use Accounting formats to align decimal ;‘“nd + ;I
points in a column. roduc
Number Format E Cancel
I 7]
===t |
FIGURE 15-11 FIGURE 15-12

www.it-ebooks.info

http://www.it-ebooks.info/

170 | LESSON15 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

You will see the cells in the Values area

F

. Revenue
formatted as Currency. Recall that earlier, 6045 tem s E]
. . 3808 Scarc P
the item named Hats was selected in the ! |
. . 7628 Hats Quarter3 Grand Total
Report Filter area. Go ahead and click oo s s
the filter icon in cell 12, select the All item, 430 e sy
] R R R R 5074 Shirts §3,521 $2,521
and click OK, as indicated in Figure 15-13. £ sesm sase
. . 6281 52,020
You'll see that the PivotTable report is now 5900 soa Sosu
. . 7972 5 3
fully displayed, with all the Values area cells o e
formatted as Currency, including the cells = e
that had been hidden while the Hats item 648 | sucerasmi i S50 S8
was filtered. 2521 [T s
4457
4€09
4788

FIGURE 15-13

Why It’s Called a PivotTable

One of the most attractive features of a PivotTable is its ability to display the same data in whatever
row-and-column arrangement of your field names that you prefer. Just as the essence of a pivot is
to allow for the rotation or maneuver from a central point, you can rearrange your source data by
varying the location of your field names in the row and column areas of your PivotTable.

For example, since you have summarized the clothing stores by Revenue for each Region by
Quarter, you now want to look at the Quantity of each Item that was sold by Region. Reopen the
PivotTable Field List and pivot your data by dragging the Item field name out of the Report Filter
pane and into the Row Labels pane. Relocate the Regions field into the Column Headers pane.
Finally, in the Choose Fields to Add to Report pane, deselect Revenue and select Quantity. Your new
PivotTable report will look like Figure 15-14.

A B8 c o E F L] H J K L M N o | PrvotTable Field List X
1 StorelD Region Item When Quantity Revenue (5
2 Store9 West Jackets Quater1 1632 6045 honee 1 ot S e
|3 Store3 Morth Jackets Quarter2 1028 3808 []Store 10
4|Store7 West Pants Quarter3d 574 2127 [Eumot quantity Jcolum tabels - e
5 Store6 South Jackets Quarterd 2059 7628 Row Labels | ~|East North South West Grand Total Dlwhen
6 Store6 South Shirts Quarter 1 217 804 Hats. 3131 2312 1563 116 nn [Quantity
7 Store8 West Hats Quarter 2 116 430 Jackets 2225 3175 17003 4145 26548 ClReverue
8 Store5 South Jackets Quarter 3 2179 8074 Pants 1925 574 2499
9 Store3 Morth Pants Quarter 4 150 558 Scarves 2617 2617
10 Store1 East Jackets Quarter 1 1695 6281 Shirts 1278 217 4088 5583
11 Store5 South Jackets Quarter2 1595 5908 Grand Total 7973 8600 18783 8023 4369
12 Store5 South Jackets Quarter 3 2152 7972
13 Store5 South Jackets Quarter4 822 3048 |
14 Store4 North Shirts Quarter 1 1217 4508
15 Store 7 West Shirts Quarter 2 2007 7434
16 Store4 Morth Hats Quarter 3 1767 6548
17 Store2 East Jackets Quarter 4 440 1632
18 Stored4 North Jackets Quarter 1 1220 4521
19 Store5 South Jackets Quarter2 1203 4457 o 2 oo,
20 Store9 West Jackets Quarter 3 1244 4609 W Repoctfiter S| Colamn Labels
21 Store5 South Jackels Quarterd 1202 4788 Bten -
22 Store3 Morth Jackets Quarter 1 927 3434
23 Store1 East Hats Quarter 2 2178 8067
24 Store5 South Hats Quarter 3 1563 5791
25 Store5 South Jackets Quarter 4 2512 9307 Fl
26 Store1 East Jackets Quarter 1 90 336
27 Store3 North Hats. Quarter 2 545 2020
26 Store8 West Shirts Quarter 3 2081 77 0 RomLabels (B
23 Stored Morth Shits Quarter 4 81 229 Tem = | | Sumel Quantty ~
30 Store2 East Scarves Quarter 1 2617 9604
31 Store6 South Jackets Quarter 2 660 2447
32 Store6 South Jackets Quarter3 2529 9367
33 Store 8 West Jackets Quarter 4 586 2172
34 Store7 West Jackets Quarter 1 683 2530
35 Store4 North Pants Quarter 2 1775 6577
|36 Store2 East Hats Quarter 3 953 3531 7| [Defer Layout Lpdate. Updats
Wb 0| Sheetl Sheetz Sheets Sheetd) Il I 31} s

FIGURE 15-14

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a PivotChart | 171

CREATING A PIVOTCHART

Creating a PivotChart is very easy, only requir-
ing an extra mouse click. You can create a
PivotChart using either of two methods. One
method is right from the start, when you first
indicate to Excel that you want to create a

new PivotTable. The other method is to create
a PivotChart after you have already created a
PivotTable.

In Figure 15-15, notice that you can click the
arrow on the lower half of the PivotTable icon
on the Ribbon’s Insert tab, where an option is
there for you to select PivotChart. If you want a
PivotChart with your new PivotTable, just select
the PivotChart option, and a PivotChart will be
created as you build your PivotTable in the
PivotTable Field List.

le| Table

L
[fiZ PivotChart
A
Store ID
Store 9
Store 3
Store 7
Store 6
& |Store 6
| 7 |Store 8
g |Store &
9 |Store 3
10 | Store 1

PivotTable

(LR IR

HIEEAE |
Home|
)

=1k

Insert

Page Layout

Formulas

Tlustrations

Data Review

Pie

Wiew

Bar

Charts

]

e

Picture Clip Shapes SmartArt Screenshot | Column Line
Art - . - -

- %] 116
Insert PivotChart [C D E F G
Region ltem When Quantity Revenue
West Jackets Quarter 1 1632 6045
North Jackets Quarter 2 1028 3808
West Pants Quarter 3 574 2127
South Jackets Quarter 4 2059 7628
South Shirts Quarter 1 217 804
West Hats Quarter 2 1161 430
South Jackets Quarter 3 2179 8074
North Pants Quarter 4 150 558
East Jackets Quarter 1 1695 6281

FIGURE 15-15

If you create a PivotTable and later decide you'd like a PivotChart to go along with it, you can select
any cell in the PivotTable, click the Options tab in the PivotTable Tools section of the Ribbon, and

click the PivotChart icon as indicated in Figure 15-16. You will see the Insert Chart dialog box
appear, where you would select your preferred chart type. In Figure 15-17 I selected the Clustered
Column chart type, and then I clicked OK. The result is a PivotChart tied to the PivotTable as

shown in Figure 15-18.

oft Excel

PivofTable Tools
View Develaper Options | Design

Review

il Ly B [t2] Summarize Values By ~ la
g Ll @ @ @6 [68] show Values As ~ ‘ .
Insert | Refresh Change Data Clear Select Mave PivotChart OLAP
Slicer= | - Source - - - PivotTable | [Fields, Items, & Sets ~ Tools
L Filter Data Actions Caleulations Tools
F G H 1 1 K L M N
Revenue
6045
3808
2127 ISum of QuantiEIIColumn Labels |~
7628 Row Labels |~ East North South West Grand Total
804 Hats 3131 2312 1563 116 722
430 Jackets 2225 3175 17003 4145 26548
8074 Pants 1925 574 2499
558 Scarves 2617 2617
6281 shirts 1278 217 4088 5583
5908 Grand Total 7973 8690 18783 8923 44369
7972
3048

FIGURE 15-16

www.it-ebooks.

info

http://www.it-ebooks.info/

172 | LESSON15 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

2l
|ﬁ Templates Colunn
5])] 8 99 0
lex e
£ TR | L] A
[y Area : . - —
el TR
|t steck
@ Surface Line
- DDDDDED
%2 Bubble
Radar

allelel E
Manage Templates... | Setas Defat chart. | —
Zd
FIGURE 15-17
& | H [] T ETL © R
Sum of Quantity Column LabelsE
Row Labels Eﬁast North South West Grand Total
Hats 3131 2312 1563 116 7122
Jackets 2225 3175 17003 4145 26548
Pants 1925 574 2499
Scarves 2617 2617
Shirts 1278 217 4088 5583
Grand Total 7973 8690 18783 8923 44369
Sum of Quantity. I
18000
16000
14000
12000 Regon ¥
10000 W East
2000 H North
6000 = south
4000 W West
2000 -+
o4
Hats Jackets Pants Scarves Shirts L
Item -
FIGURE 15-18

As you can see, when it comes to PivotCharts, Excel does almost all the grunt work for you. All
you need to do is tell Excel that you want a PivotChart, and what type of chart you want, and your
chart will be produced with its accompanying PivotTable.

There is a lot more you can do with PivotCharts and PivotTables, like many
other topics, it’s one that can fill an entire book. My objective so far in the lesson
is to cover the basics of creating and working with PivotTables as a foundation
for the VBA examples in the next sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding PivotCaches | 173

PivotCharts are great — they are equipped with Field buttons so you can choose which items in
which fields you want to see. Whatever field setting you select on a PivotChart will make the same
change to its PivotTable. The following macro will toggle between showing and hiding the Field but-
tons on your PivotChart:

Sub ShowHidePivotChartFieldButtons ()

ActiveSheet.ChartObjects (1) .Activate

With ActiveChart

.HasPivotFields = Not .HasPivotFields
End With

Range ("Al") .Select

End Sub

UNDERSTANDING PIVOTCACHES

A PivotCache is an object that you do not see, as it is working behind the scenes when a new
PivotTable is created directly from the source data. The PivotCache is a container that holds a static
copy of the source data in memory.

PivotTables do not summarize data directly from the source data, but rather [& e
from the PivotCache that memorized a snapshot of the data. That is why, in = R
the native Excel environment not enhanced with VBA, if you change a piece e E——
of existing data in the source data range, the PivotTable report does not sort '
reflect that change until you refresh the PivotTable. X Remoye “sum of Quantity
Summarize Values By 3

Figure 15-19 shows the Refresh menu item when you right-click a cell that is Show Values 45 '
part of a PivotTable. The Refresh button actually refreshes the PivotCache. ;j 3:::?:':@@;
The PivotCache, though not seen, maintains the source data beforehand in a . ::V::::":ﬁ;ﬁ“"’"
static go-to container. Keeping the data in PivotCache memory makes pivot- -

FIGURE 15-19

ing and recalculations a snap, but the downside is extra workbook size and
less memory for other tasks.

When you create a PivotTable manually, Excel does not bother you with the PivotCache details. If
you were to create a PivotTable in VBA, you’d need to address the PivotCache issue in code. Suppose
you are creating a new PivotTable based on the original source data that has been shown in this les-
son. Your first step would be to program VBA to tell Excel four pieces of information:

1. You want to add a PivotCache to the workbook.
2. The location of the source data.

3. Based onitems 1 and 2, create the PivotTable.
4. Specify where the PivotTable will be placed.

www.it-ebooks.info

http://www.it-ebooks.info/

174 |

LESSON 15 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

Assuming that the worksheet holding the source data is the active sheet, and that you want the
PivotTable to be located next to the source data, the following single line of code would handle all
those instructions:

ThisWorkbook.PivotCaches.Add _

(SourceType:=x1Database,

SourceData:=Range ("Al") .CurrentRegion) .CreatePivotTable _
TableDestination:="R4C" & Range("Al").CurrentRegion.Columns.Count + 2

The notation "RAC" & Range ("Al") .CurrentRegion.Columns.Count + 2 s
translated as the worksheet cell that is on row 4 of the column that is two col-
umpns to the right of the last column in the source range. Recall from earlier in
the lesson that [recommend placing the top-left corner of the PivotTable on row
4, and with an empty column separating the source data and the new PivotTable.

The result you get is a PivotTable, but you’d never know by its appearance at the moment — a curi-
ous range of four cells that look as if they were formatted for thin borders. In this example, the four
cells are in range H4:15 as shown in Figure 15-20.

A B E D E E G H [J K L M N =
1 |StoreID Region Item When Quantity Revenue]
2 |Store9 West Jackets Quarter 1 1632 6045
3 |Stored North Jackets Quarter 2 1028 3808
1 Store7 West Pants Quarter 3 574 2127 \ [|
5 |Store6 South Jackets Quarter 4 2059 7628 \ | |
6 Store6 South Shirts Quarter 1 217 804
7 |Store8 West Hats Quarter 2 116 430
8 |Store5 South Jackets Quarter 3 2179 8074
9 |Store3 North Pants Quarter 4 150 558
10 |Store 1 East Jackets Quarter 1 1695 6281
11 Store5 South Jackets Quarter 2 1595 5908
12 |Store 5 South Jackets Quarter 3 2152 7972
13 |Store 5 South Jackets Quarter 4 8§22 3048 3
14 | Store 4 North Shirts Quarter 1 1217 4508
15 | Store 7 West Shirts Quarter 2 2007 7434
16 | Store 4 North Hats Quarter 3 1767 6548
17 |Store2 East Jackets Quarter 4 440 1632
18 |Store 4 North Jackets Quarter 1 1220 4521
19 Store 5 South Jackets Quarter 2 1203 4457
20 Store 9 West Jackets Quarter 3 1244 4609
21 Store 5 South Jackets Quarter 4 1292 4788
22 |Store 3 North Jackets Quarter 1 927 3434
23 |Store 1 East Hats Quarter 2 2178 8067
24 Store5 South Hats Quarter 3 1563 5791
25 Store5 South Jackets Quarter 4 2512 9307 B
26 |Store 1 East Jackets Quarter 1 90 336
27 | Store 3 North Hats Quarter 2 545 2020
28 Store 8 West Shirts Quarter 3 2081 71
29 | Store 4 North Shirts Quarter 4 61 229
30 |Store2 East Scarves Quarter 1 2617 9694
31 Store6 South Jackets Quarter 2 660 2447
32 Store6 South Jackets Quarter 3 2529 9367
33 | Store 8 West Jackets Quarter 4 586 2172
34 | Store 7 West Jackets Quarter 1 683 2530
35 | Store 4 North Pants Quarter 2 1775 6577
36 |Store2 East Hats Quarter 3 953 3531 -
4 4 » M| Sheetl . Sheet? . Sheet? . Sheetd ~¥J 4] il | a0l

FIGURE 15-20

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding PivotCaches | 175

The macro is just getting started but I wanted to show you in slow motion what is taking place
under the radar when a new PivotTable is created. Actually, with the preceding line of code exe-
cuted, you could select one of those four cells and the PivotTable Field List would appear, inviting
you to drag fields to your desired location as shown in Figure 15-21.

A B 2 D E F G H 1 J & PivotTable Field List - X

1 StorelD Region Item When Quantity Revenue '] -
2 Store9 West Jackets Quarter 1 1632 6045 [| SR S

3 Store3 Norh Jackets Quarter2 1028 3808 Dstor= 10

|4 |Store7 West Pants Quarter 3 574 2127 | | | ‘:‘I“;g“"

5 Store6 South Jackets Quarter 4 2059 7628 [[| gwh:n

6 Store6 South Shirts Quarter 1 217 804] Quantity

7 Store8 West Hats Quarter 2 116 430 [CIRevenue

g Store5 South Jackets Quarter 3 2179 8074

9 |Store3 North Pants Quarter 4 150 558

10 Store1 East Jackets Quarter 1 1695 6281

11 Store5 South Jackets Quarter 2 1595 5908

12 Store5 South Jackets Quarter 3 2152 7972

13 Store s South Jackets Quarter 4 822 3048 b

14 Store4 North Shirts Quarter 1 1217 4508

15 Store7 West Shirts Quarter 2 2007 7434

16 Store4 North Hats Quarter 3 1767 6548

17 Store2 East Jackets Quarter 4 440 1632

18 Store4 Morth Jackets Quarter 1 1220 4521

19|Store 5 South Jackets Quarter 2 1203 4457 E}agr'{”‘:::::';e" a’éﬁ%ﬁ"éﬁ:;umn S
20 Store9 West Jackets Quarter 3 1244 4609

21 Store 5 South Jackets Quarter 4 1292 4788

22 Store3 North Jackets Quarter 1 927 3434

23 Store1 East Hats Quarter 2 2178 8067

24 Store5 South Hats Quarter 3 1563 5791

25 Store 5 South Jackets Quarter 4 2512 9307 B

26 Store 1 East Jackets Quarter 1 90 336

27 Store3 North Hats Quarter 2 545 2020

28 Store8 West Shits Quarter 3 2081 7711 Bl Rowlabels i3I

29 Store4 North Shirts Quarter 4 61 229

30 Store2 East Scarves Quarter 1 2617 9694

31 Store6 South Jackets Quarter 2 660 2447

32 Store 6 South Jackets Quarter 3 2529 9367

33 Store8 West Jackets Quarter 4 586 2172

34 Store7 West Jackets Quarter 1 683 2530

35 Store4 North Pants Quarter 2 1775 6577

36 Store2 East Hats uarter 3 953 3531 -

H 4 » ¥| Sheet1 “sheet? ~sheet3 sh:e]m k7] [laf il | e
FIGURE 15-21

If you want your PivotTable’s PivotCache to refresh automatically when a cell in your source list
changes, the following Wworksheet_Change event will handle that. Note that the code uses the
PivotTable’s Index property for the first or only PivotTable on the worksheet to be refreshed.

Private Sub Worksheet_Change (ByVal Target As Range)

If Intersect(Target, Range("Al").CurrentRegion) Is Nothing _
Or Target.Cells.Count > 1 Then Exit Sub
ActiveSheet.PivotTables (1) .PivotCache.Refresh

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

176 | LESSON15 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

MANIPULATING PIVOTFIELDS IN VBA

PivotFields are the row and column areas that you place your field names into, depending on how
you want the PivotTable to display your data. The following pieces of VBA code perform the place-
ment of PivotFields as they were for the PivotTable that was manually created earlier in the lesson.
Two fields (Region and Store ID) are placed as row labels, and one field (When) is placed as a col-
umn label. The Revenue field is placed in the Values area, and the Report Filter area is populated by
the Items field.

With ActiveSheet.PivotTables (1)

'First (outer) row field
With .PivotFields ("Region")
.Orientation = x1RowField
.Position =1

End With

'Second (inner) row field
With .PivotFields("Store ID")
.Orientation = xlRowField
.Position = 2

End With

'Column field.

With .PivotFields ("When")
.Orientation = x1ColumnField
.Position = 1

End With

'Report Filter field

With .PivotFields("Item")
.Orientation = xlPageField
.Position = 1

End With

'Revenue in the Values field
.AddDataField ActiveSheet.PivotTables(1l) .PivotFields("Revenue"), _

"Sum of Amount", x1Sum

End With

Be sure to name your PivotFields correctly! They must be spelled the same way
in your code as they are in the header cells of your source list. If you misspell the
field names in your code, VBA will let you know with a run time error, because
the field names you'd be instructing VBA to manipulate do not exist.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a PivotTables Collection | 177

MANIPULATING PIVOTITEMS WITH VBA

PivotItems are programmable in PivotTables, and as an example, you can arrange to see just one
particular PivotTtem in a field. In a PivotTable that was created earlier in the lesson, a Region field
was added. Suppose you want to see activity only for the North PivotItem, and hide the South,
East, and West PivotTtems. The following macro will accomplish that.

Sub ShowSingleItem()

Dim objPivotField As PivotField

Dim objPivotItem As PivotItem

Set objPivotField = _
ActiveSheet.PivotTables (1) .PivotFields (Index:="Region")
For Each objPivotItem In objPivotField.PivotItems
If objPivotItem.Name = "North" Then
objPivotItem.Visible = True

Else

objPivotItem.Visible = False

End If

Next objPivotItem

End Sub

The following macro will show all the PivotItems:

Sub ShowAllItems ()

Dim objPivotField As PivotField

Dim objPivotItem As PivotItem

Set objPivotField = _
ActiveSheet.PivotTables (1) .PivotFields (Index:="Region")
For Each objPivotItem In objPivotField.PivotItems
objPivotItem.Visible = True

Next objPivotItem

End Sub

CREATING A PIVOTTABLES COLLECTION

PivotTables are objects for which there is a Collection object, just as there is for worksheets

and workbooks. As you might guess, the name of the collection object for PivotTables is
PivotTables, and you can loop through every PivotTable on a worksheet, or throughout the work-
book if you need to.

For example, if you have more than one PivotTable on a worksheet and they are tied to the same
source list that starts in cell A1, this Worksheet_Change event would refresh all PivotTables on that
worksheet automatically when the source data is changed:

Private Sub Worksheet_Change (ByVal Target As Range)

If Intersect(Target, Range("Al").CurrentRegion) Is Nothing _
Or Target.Cells.Count > 1 Then Exit Sub

Dim PT As PivotTable

For Each PT In ActiveSheet.PivotTables

PT.RefreshTable

Next PT

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

178 | LESSON15 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

Suppose you have several PivotTables on many different worksheets and you want to be confi-
dent that every PivotTable displays the current data from its respective source list. The following
Workbook_Open procedure will refresh every PivotTable in the workbook when the workbook opens:

Private Sub Workbook_Open ()

Dim wks As Worksheet, PT As PivotTable
For Each wks In Worksheets

For Each PT In wks.PivotTables
PT.RefreshTable

Next PT

Next wks

End Sub

You can avoid looping through all your PivotTables by using VBA’s Refreshall
method to refresh all PivotTables at once. The single line of code would be
ActiveWorkbook.Refreshall. The Refreshall method also refreshes all exter-
nal data ranges, such as web queries, for the specified workbook.

You might need to delete all the PivotTables on a worksheet. When you delete a PivotTable, what
you are really doing is clearing the cells that are occupied by the PivotTable. The following macro
will delete all the PivotTables on the active worksheet:

Sub DeleteAllPivotTables ()

Dim objPT As PivotTable, iCount As Integer

For iCount = ActiveSheet.PivotTables.Count To 1 Step -1
Set objPT = ActiveSheet.PivotTables (iCount)
objPT.PivotSelect ""

Selection.Clear

Next iCount

End Sub

TRY IT

In this lesson, you write a macro that adds a PivotChart to accompany an existing PivotTable. You
would like to create a PivotChart that will be located on the worksheet below the PivotTable.

Lesson Requirements

Your worksheet contains a list of source data, and you already have a PivotTable on your work-
sheet. The worksheet is shown in Figure 15-22 before the PivotChart has been added. To get the
sample database files you can download Lesson 15 from the book’s website at www.wrox. com.

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 179

A B € D E F H 1 Il K L M N
1 StorelD Region Item When Quantity Revenue
2 Store9 West Jackets Quarter 1 1832 6045
3 Store3d North Jackets Quarter 2 1028 3808
4 Store7 West Pants Quarter 3 574 2127 Sum of An When |~
5 Store6 South Jackets Quarter4 2059 7628 Region| - |Store 1D~ [Quarter 1 Quarter 2 Quarter 3 Quarter 4 |Grand Total
6 Store6 South Shirts Quarter 1 217 804 SEast |[Storel $6,617 $8,067 $14,684|
7 Store8 West Hats Quarter 2 116 430 store 2 59,694 63,531 51632] 14,857
8 Store5 South Jackets Quarter 3 2179 8074 East Total $16,311 $8,067 53,531 £1,632 $29,541
9 Store3d North Pants Quarter 4 150 558 =North |Store3 53,434 $5,828 $558 $9,820
10 Store1 East Jackets Quarter 1 1695 6281 Store 4 $4,521 $6,577 $11,056 $229| $22,383
11 Store5 South Jackets Quarter 2 1585 5908 North Total $7,955 $12,405 $11,056 $787| $32,203
12 Store5 South Jackets Quarter 3 2152 7972 =south |Store5 $10,365 521,837 $17,143| $49,345
13 Store5 South Jackets Quarter 4 822 3048 Store 6 4804 $2447 $9,367 $7,628 $20,246
14 Store4 North Shirts Quarter 3 1217 4508 South Total 5804 512,812 $31,204 524,771 $69,591
15 Store 7 West Shirts Quarter 1 5555 7434 SWest |Store7 $9,964. 52,127 $12,091
16 Stored North Hats Quarter 3 1767 6548 Store 8 $430 $7,711 $2172 $10,313
17 Store2 East Hats Quarter 4 440 1632 Store 9 56,045 $4,609 $10,654|
18 Store4 MNorth Jackets Quarter 1 1220 4521 West Total $16,009 $430 $14,447 $2,172] $33,058
19 Store5 South Jackets Quarter2 1203 4457 Grand Total $41,079 §33,714 560,238 $29,362| 5164,393
20 Store9 West Jackets Quarter 3 1244 4609
21 Store5 South Jackets Quarter 4 1292 4788
22 Store3 North Jackets Quarter 1 927 3434
23 Store 1 East Hats Quarter 2 2178 8067
24 Store5 South Hats Quarter 3 1563 5791
25 Store5 South Jackets Quarter 4 2512 9307
26 Store1 East Jackets Quarter 1 887 336
27 Store3 North Hats Quarter 2 9987 2020
28 Stored West Shirts Quarter 3 2081 7
29 Stored4 North Shirts Quarter 4 61 229
30 Store2 East Scarves Quarter 1 2617 9694
31 Store6 South Jackets Quarter2 660 2447
32 Store6 South Jackets Quarter 3 2529 9367
33 Store8 West Jackets Quarter 4 586 2172
34 Store7 West Jackets Quarter 1 683 2530
35 Store4 North Pants Quarter 2 1775 6577
136 Store2 East Hats Quarter 3 953 3531
4 4 » M| Sheetl . Sheet2 - Sheet3 ~ Sheetd . %d M4l m

FIGURE 15-22

Step-by-Step

1.
2.
3.
4

Activate the worksheet that contains the source data list and PivotTable.

Press Alt+F11 to go to the Visual Basic Editor.

From the menu bar, click Insert == Module.

In the new module, enter Sub CreatePivotChart and press the Enter key. VBA will produce

the following lines of code for you:

Sub CreatePivotChart ()

End Sub

Turn off ScreenUpdating to help your macro run faster by not refreshing the screen as objects
in the code are created and manipulated.

Application.ScreenUpdating

False

Declare an object variable for the existing PivotTable:

Dim objPT As PivotTable

www.it-ebooks.info

http://www.it-ebooks.info/

180 | LESSON15 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

7. Set the object variable for the first (index #1) PivotTable:

Set objPT = ActiveSheet.PivotTables (1)

8. Select the PivotTable:

objPT.PivotSelect ""

9. Add the chart:
Charts.Add

10. Place the chart onto the PivotTable’s worksheet:

ActiveChart.Location Where:=xlLocationAsObject,
Name:=0bjPT.Parent.Name

11. Position the PivotChart so its top-left corner occupies cell H23, a few rows below the
PivotTable:

ActiveChart.Parent.Left = Range("H23").Left
ActiveChart.Parent.Top = Range("H23") .Top
12. Deselect the PivotChart:

Range ("Al") .Select

13. Turn on ScreenUpdating:

Application.ScreenUpdating = True

14. When you have completed the macro, it will look as follows:

Sub CreatePivotChart ()

'"Turn off ScreenUpdating.
Application.ScreenUpdating = False

'Declare an Object variable for the existing PivotTable.

Dim objPT As PivotTable

'Set the Object variable for the first (index #1) PivotTable.
Set objPT = ActiveSheet.PivotTables (1)

'Select the PivotTable.
objPT.PivotSelect ""

' Add the chart.
Charts.Add

'Place it on the PivotTable's worksheet.

ActiveChart.Location Where:=xlLocationAsObject,
Name:=0bjPT.Parent.Name

www.it-ebooks.info

http://www.it-ebooks.info/

Try It | 181

15.

'Position the PivotChart so its top left corner

'occupies cell H23,

ActiveChart.Parent.Left = Range("H23") .Left
ActiveChart.Parent.Top

'Deselect the PivotChart.
Range ("Al") .Select

'Turn on ScreenUpdating.
Application.ScreenUpdating =

End Sub

True

Range ("H23") .Top

a few rows below the PivotTable.

Press Alt+Q to return to your worksheet and test your macro. Figure 15-23 shows what the
worksheet should look like with the PivotChart added right where it was specified in VBA.

A B ©
1 StorelD Region [lem
2 Store9 West Jackets
3 Store3 North Jackets
4 Store7 West Pants
5 Store6 South Jackets
6 Store6 South Shirts
7 Store8 West Hats
8 Store5 South Jackets
9 Store3 North Pants
10 Store1 East Jackets
11 Store5 South Jackets
12 Store5 South Jackets
13 Store5 South Jackets
14 Store 4 North Shirts
15 Store 7 West Shirts
16 Store4 North Hats
17 Store2 East Hats
18 Stored North Jackets
15 Store5 South Jackets
20 Store9 West Jackets
21 Store5 South Jackets
22 Store3 North Jackets
23 Store1 East Hats
24 Store5 South Hats
25 Store5 South Jackets
26 Store1 East Jackets
27 Store 3 North Hats
28 Store8 West Shirts
29 Stored North Shirts
30 Store2 East Scarves
31 Store6 South Jackets
32 Store6 South Jackets
33 Store8 West Jackets
34 Store7 West Jackets
35 Stored North Pants
136 Store2 East Hats
4 4+ M| Sheetl Sheet2 ~ Sheet3

D
When
Quarter 1
Quarter 2
Quarter 3
Quarter 4
Quarter 1
Quarter 2
Quarter 3
Quarter 4
Quarter 1
Quarter 2
Quarter 3
Quarter 4
Quarter 3
Quarter 1
Quarter 3
Quarter 4
Quarter 1
Quarter 2
Quarter 3
Quarter 4
Quarter 1
Quarter 2
Quarter 3
Quarter 4
Quarter 1
Quarter 2
Quarter 3
Quarter 4
Quarter 1
Quarter 2
Quarter 3
Quarter 4
Quarter 1
Quarter 2

Quarter 3
Sheetd “¢J

E

F

Quantity Revenue

1632
1028
574
2059
217
16
2179
150
1695
1595
2152
8§22
1217
5555
1767
440
1220
1203
1244
1292
927
2178
1563
2512
887
9987
2081
61
2617
660
2529
586
683
1775
953

6045
3808
2127
7628

804

430
8074

558
6281
5908
7972
3048
4508
7434
6548
1632
4521
4457
4609
4788
3434
8067
5791
9307

336
2020
7

229
9694
2447
9367
2172
2530
6577
3531

H 1] K L M N
[rem — Jiam 7]
Sum of An when [~
Region ~ |Store ID| v |Quarter 1 Quarter 2 Quarter 3 Quarter 4 |Grand Total
SEast |Storel $6,617 $8,067 $14,634]
Store 2 $9,634 53,531 51632 $14,857|
East Total $16,311 $8,067 53,531 S1,632 529,541
=North |Store 3 $3.434 55,828 $558 $9,820
Store 4 $4,521 $6,577 $11,056 $229 $22,383
North Total $7,955 $12,405 $11,056 $787| $32,203]
=south |Stores 510,365 521,837 517,143 $49,345
Store 6 $804 $2,447 59,367 $7,628 $20,246
South Total $804 $12,812 $31,204 524,771 $69,591
=West |Store7 $9,964 $2,127 $12,091
Store & $430 $7,711 $2,172 $10,313
Store 9 $6,045 $4,609 $10,654|
West Total $16,009 5430 514,447 52,172 $33,058
Grand Total $41,079 $33,714 $60,238 $29,362| $164,393
When v
W Quarter 1
™ Quarter 2
W Quarter 3
W Quarter 4

L

FIGURE 15-23

To view the video that accompanies this lesson, please select Lesson 15, available
at the following website: www.wrox . com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

User Defined Functions

Most Excel users who are not absolute beginners use worksheet functions in their formulas.
The most common worksheet function is the sum function, and there are hundreds more.

Basically, a function performs a calculation or evaluation, and returns a value. Functions used
in your VBA expressions act the same way; they do what they are programmed to do, and
return a result.

With VBA, you can write (“define”) your own custom function that looks, acts, and feels like
a built-in function, but with a lot more power and versatility. Once you get the hang of UDFs,
yow’ll wonder how you ever got along without them.

WHAT IS A USER DEFINED FUNCTION?

You are already familiar with many of Excel’s built-in worksheet functions such as su,
AVERAGE, and VLOOKUP, but sometimes you will need to perform calculations or get informa-
tion that none of Excel’s built-in functions can accomplish. A User Defined Function (UDF) is
a function in VBA that you create with arguments you specify, to use as a worksheet function
or as part of a macro procedure, when a task is otherwise impossible or too cumbersome to
achieve with Excel’s built-in formulas and functions.

For example, you may need a formula to sum a range of numbers depending on a cell’s inte-
rior color; or to extract only numbers or letters from an alphanumeric string; or to place an
unchanging random number in a cell; or to test whether a particular worksheet exists or
another workbook is open. UDFs are an excellent option for handling tasks when regular
worksheet functions cannot or should not be used.

www.it-ebooks.info

http://www.it-ebooks.info/

184 | LESSON16 USER DEFINED FUNCTIONS

Characteristics of User Defined Functions

When used as a worksheet function, the purpose of a UDF is to return a number, string, array, or
Boolean (true or false) value to the cell it occupies. UDFs cannot change the Excel environment in
any way, meaning they cannot place a value in another cell, or change the interior color of any cell
including the cell they are in, or rename a worksheet, or do anything other than return a value to
their own cell.

That said, it’s important to note that a UDF can be called by a macro. This allows the calling pro-
cedure (the macro) to take advantage of the UDF while still retaining the ability to change the Excel
environment. This makes your UDF a versatile tool when integrated with macros.

UDFs cannot be composed by the macro recorder. Although in some cases you can record a macro
and turn it into a UDF by editing the code, most of the time you will create a UDF by writing the
code yourself directly into a standard module.

UDFs are always located in a standard module, though they can neither appear
in, nor be run from, the Macro dialog. UDFs will not work if placed in any other
type of module such as a worksheet, workbook, userform, or class module.

Whichever way the UDF is called, be aware that it will always compile slower than built-in func-
tions. Avoid reinventing the wheel by using worksheet functions wherever practical, and UDFs for
what worksheet functions cannot do.

Anatomy of a UDF

When designing a UDF, it helps to consider three questions:
> What is the function’s purpose; that is, what do you want it to accomplish?
> What arguments, if any, does the function need?

> What will the function return as a formula or provide to its caller in a macro?

A UDF always begins with the Function statement and ends with the End Function statement.
Unless you want your function to be visible only to other code in the same module, it’s best to
declare the function as Public, or omit the Public/Private qualifier altogether, which will default
the function’s scope to Public. Declaring a function as Public will also enable the UDF to be listed
in the Insert Function dialog.

The general syntax of a UDF is:

Function name ([argument list]) as type
'VBA statements that make up the Function
[name = returned expression]

End Function

www.it-ebooks.info

http://www.it-ebooks.info/

What Is a User Defined Function? | 185

Function names must begin with a letter, and cannot contain spaces or illegal
naming characters such as the slash, colon, comma, bracket, or any arithmetic
operator symbols. It’s always a good practice to give functions simple, meaning-
ful names, just as you would for a macro.

After the function’s name is the argument list, which is enclosed by parentheses. If there are two or
more arguments, each is separated by a comma and a space. Not every UDF will require arguments,
but the parentheses are still required immediately after the function name. Following the argument
list is the optional (but strongly recommended) specification of the data type, depending on the
function’s purpose.

Here’s an example of a UDF that does not require any arguments. It returns the complete path of the
Microsoft Excel program on your computer:

Function xlPath() As String
x1Path = Application.Path
End Function

On my computer, using Microsoft Office 2010 and entering the formula =x1pPath () into a work-
sheet cell, this UDF returns the path c:\ProgramFiles\Microsoft Office\Officel3.

UDF Examples That Solve Common Tasks

User Defined Functions can simplify your work by enabling you to use shorter and more readable for-
mulas. Once you create the UDF, all the user needs to know is the function name and its arguments.
User Defined Functions are very useful for handling everyday tasks that you might have thought were
impossible to solve by formula. Following are a few examples of UDFs that can solve such tasks.

Sum Numbers in Colored Cells

A question that frequently arises is how to add up the numbers that A B c D
. . 1 | Numbers 16
are only in colored cells of a certain range. If the cells were colored : 7 _ _
by Conditional Formatting, the solution could be to sum that range 3 4 The UDF in cell C1 is
. . . 4 3 =SumColor(A2:A15)
of cells based on the condition, such as by using the suMtF function. : 6
However, evaluating the property of a cell, in this case its actual inte- i f
rior color, is more of a challenge because no built-in worksheet func- z g
tion is able to do that. 190 ‘1‘
As an example, Figure 16-1 shows a list of numbers in A2:A15, 1; :;
where some cells are colored gray and some are not. The task is to 12 [
sum the numbers in gray-colored cells. 1: é
FIGURE 16-1

www.it-ebooks.info

http://www.it-ebooks.info/

186 | LESSON16 USER DEFINED FUNCTIONS

Outside the range, cell C1 serves the dual purpose of receiving the UDF, and also displaying the color
you need to sum by. With this approach, the UDF only needs one argument to specify the range to sum:

Function SumColor (RangeToSum As Range) As Long

'Declare the necessary variables.

Dim ColorID As Integer, ColorCell As Range, mySum As Long

'Identify the ColorID variable so you know what color to look for.

ColorID = Range (Application.Caller.Address).Interior.ColorIndex

'Loop through each cell in the range.

For Each ColorCell In RangeToSum

'If the cell's color matches the color we are looking for,

'keep a running subtotal by adding the cell's number value

'"to the mySum variable.

If ColorCell.Interior.ColorIndex = ColorID Then mySum = mySum + ColorCell.Value
Next ColorCell

'The cells have all been evaluated, so you can define the SumColor function
'by setting it equal to the mySum variable.

SumColor = mySum

End Function

The entry in cell C1 is =sumColor (a2:215). The UDF loops through each cell in range A2:A15, and
along the way keeps a running total with the mySum variable when a gray cell is encountered. At the
end of the UDF code, the function’s name of sumColor is set to equal the mysum variable, and that
enables the UDF to return 16 as the sum of gray-colored cells. Notice that because you were expect-
ing the result to be a whole number, the Long variable type was specified for the function’s name.

This example also demonstrates another useful way to employ the Application
.Caller statement that you first saw in Lesson 13. Here, the object calling the
function is cell C1, which was colored gray before the UDF was entered.

Extract Numbers or Letters from an Alphanumeric String

Another common question is how to extract numbers or letters from a string that contains a mix-
ture of alphanumeric characters. If the numbers or letters are all in predictable places or consistently
grouped in some way, built-in formulas might do the job. But it gets dicey if the string has an unpre-
dictable mishmash of characters similar to what is in column A in Figure 16-2.

A B C
1 Original string Numbers extracted Letters extracted
2 KHEY3Wa4A 5384 KHYWA
3 JUB3d7Tx62KBV 83762 JUdxKBV
4 3L4SWcIETTI 349179 LSWcE
5
6
; UDF in B2 and copied down is: UDF in G2 and copied down is:
9 =ExtractNumbers(A2) =ExtractLetters(A2)
10

FIGURE 16-2

Following are two similar UDFs, one that extracts just the numbers from an alphanumeric string
and one that extracts just the letters. Figure 16-2 shows how the formulas should be entered.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is a User Defined Function? | 187

Remember that you can copy and paste a UDF just as you can a built-in formula
or function. You can also use the fill handle to copy the UDF down.

Function ExtractNumbers (strText As String)
'Declare the necessary variables.

Dim i As Integer, strDbl As String

'Loop through each character in the cell.
For i = 1 To Len(strText)

'If the character is a digit, append it to the strDbl variable.

If IsNumeric (Mid(strText, 1, 1)) Then

strDbl = strDbl & Mid(strText, i, 1)

End If

Next 1

'Each character in the cell has been evaluated,

'into a numeric Double data type.
ExtractNumbers = CDbl (strDbl)
End Function

Function ExtractLetters(strText As String)
'Declare the necessary variables.

Dim x As Integer, strTemp As String

'Loop through each character in the cell.
For x = 1 To Len(strText)

so you can define the
'ExtractNumbers function by setting it equal to the strDbl variable.
'The purpose of the CDbl function is to coerce the strDbl expression

'If the character is not numeric, it must be a letter,

'so append it to the strTemp variable.

If Not IsNumeric (Mid(strText, x, 1)) Then
strTemp = strTemp & Mid(strText, x, 1)

End If

Next x

'Each character in the cell has been evaluated,
'ExtractLetters function by setting it equal to
ExtractLetters = strTemp

End Function

Extract the Address from a Hyperlink

so you can define the
the strTemp variable.

Here is an example of how to return the actual underly- A B

i dd fah link. In Fi 16-3. h link Hyperlink in cell Hyperlink address
Ing address of a hyperlink. In rigure -9, hyperlinks Tom's website http/iwww.atlaspm.com/
are in column A but the display text in those cells Excel Aptitude Test hitp-/hwww xatcorp.com/

describes the link’s destination. This UDF will return

the actual hyperlink address; the "mailto" portion of
the code deals with the possibility of a link being an
e-mail address.

Function Link (HyperlinkCell As Range)

1
2
3
4
5
6
[

UDF in B2 and copied down is:
=Lind(A2)

FIGURE 16-3

Link = Replace (HyperlinkCell.Hyperlinks(1l).Address, "mailto:", "")

End Function

www.it-ebooks.info

http://www.it-ebooks.info/

188 | LESSON16 USER DEFINED FUNCTIONS

UDFS AND ERRORS

You might wonder what happens when an error occurs with a UDF. For example,
what if the sumColor function is entered into a cell with an illogical range argu-
ment address such as =SUMCOLOR (A2 :xvZ) ? Or, what if a UDF attempts to divide a
number by zero?

When a UDF attempts to do what it cannot do, the cell will display a #VALUE!
error. Whereas a failed macro will result in a runtime error with an imposing
Message Box to announce the error and a debug option to identify the offending
code line, such is not the case with a failed UDF. Even though it is a VBA item, a
failed UDF will only return the #vALUE! error. With larger UDFs, finding the cause
of the error can be a real chore. Therefore, it’s a good idea to test each code line in
the Immediate window as you write your larger UDFs.

VOLATILE FUNCTIONS

Sometimes, you want a UDF to return a value and then do nothing else until you purposely cause
it to recalculate. An example is if you want to produce a random number in a cell but keep that
number constant until you decide to change it again, if ever. The worksheet function RaND () will
return a random number but it recalculates whenever the worksheet recalculates or any cell in
that worksheet is edited. This UDF will return an unchanging (static) random number between

1 and 100:

Function StaticRandom() As Double
StaticRandom = Int(Rnd() * 100)
End Function

The function entry for the cell is:

=StaticRandom ()

You’ll notice that the staticRandom UDF does not require an argument. Even
so, the empty parentheses must immediately follow the function’s name in the
first code line, and when entering the UDF in a cell, the parentheses must be
included as you see in this example.

Now with the staticRand UDF in its current state, its returned random number will not change
unless you purposely call the UDF, such as if you select the cell, press the F2 key, and press Enter,
or if you press Ctrl+Alt+F9 to force a calculation on all cells.

www.it-ebooks.info

http://www.it-ebooks.info/

Volatile Functions | 189

If you prefer to have the UDF act as the built-in RAND function would, that is, to recalculate when-
ever another worksheet formula is recalculated or a cell is edited, you can insert the statement
Application.Volatile like so:

Function StaticRandom() As Double

Application.Volatile

StaticRandom = Int(Rnd() * 100)
End Function

Be aware that if the UDF is used in a lot of cells, Application.vVolatile will add to the work-
book’s overall calculation effort, possibly resulting in longer recalculation times.

The Name of the Active Worksheet and Workbook

A very common request is for a formula to return the name of the active worksheet or workbook.
This is a case where a UDF is still a worthy alternative even though there are formulas that can
handle this request, and the aApplication.Volatile statement would be included.

For the worksheet name, this formula is an option but it’s not easy to memorize or to enter correctly:

=MID(CELL("filename",Al) ,FIND("]",CELL("filename",Al))+1,32)

Although the formula automatically updates itself when a sheet tab name changes, the workbook
must be named (saved at least once) or the formula will return a #VALUE! error.

The following code shows a UDF with the application.volatile statement that covers all the
bases. It updates itself when the worksheet tab changes, and the workbook does not need to be
named or saved for the UDF to work. Another advantage is that the formula =SheetName () is easy
to remember and to enter:

Function SheetName() As String
Application.Volatile

SheetName = ActiveSheet.Name
End Function

For the formula that returns the active workbook’s name, a lengthier and more difficult one to enter
properly is:

=MID(CELL("filename",Al) ,FIND(" [",CELL("filename",Al))+1, FIND

("1", CELL("filename",6Al))-FIND("[",CELL("filename",6Al))-1)

The workbook would need to be saved at least once for this formula to work.

The NamewB () function is much easier to remember and enter, and it’ll also do the job whether or
not the workbook has been saved:

= NameWB ()

Its UDF is:

Function NameWB () As String
Application.Volatile

NameWB = ActiveWorkbook.Name
End Function

www.it-ebooks.info

http://www.it-ebooks.info/

190 | LESSON16 USER DEFINED FUNCTIONS

UDFs with Conditional Formatting

One of the less-utilized but powerful applications of a UDF is to combine it with Conditional
Formatting. Let’s say you want to identify cells that contain a comment in a workbook where the
option to show comment indicators is turned off. It’s true that cells containing comments fall into
the category of sSpecialcCells and you can select them through the Go To Special dialog box, and
maybe format the selected comment-containing cells from there. However, you’d need to repeat
those steps any time a cell obtains or deletes a comment, and there’s no telling if or when that might
happen.

A better way to go is with a UDF as the formula rule with Conditional Formatting, to format the
comment-containing cells in real time, as comments are added or deleted. For example, place this
UDF into a standard module:

Public Function TestComment (rng As Range) As Boolean

TestComment = Not rng.Comment Is Nothing
End Function

Back onto your worksheet, select the range of interest, in this example starting from cell A1. In the
Conditional Formatting dialog (or the New Formatting Rule dialog for Excel versions starting with
2007), enter this formula:

=TestComment (Al)

Then choose your formatting style, click OK, and all comment-containing cells in that range will be
formatted.

Calling Your Function from a Macro

As I mentioned earlier, functions that you create need not only serve as worksheet formulas. A func-
tion can also be called by a macro, which does not limit the macro’s ability to do whatever needs to
be done. In the following code, the openTest function is set apart from the openorclosed macro,
which gives you the best of both worlds for testing if a particular workbook is open or closed.

To test by formula if a workbook named “YourWorkbookName.xlIs” is open or closed, you can
enter this in a worksheet cell, which will return TRUE (the workbook is open) or FALSE (the work-
book is closed):

=OpenTest ("YourWorkbookName.x1s")

To test by macro, you can expand the functionality by asking with a Yes/No message box if you'd
like to open that workbook if it is not already open, and open it if Yes is selected, or keep the work-
book closed if No is selected. Here’s the code:

Function OpenTest (wb) As Boolean
'Declare a Workbook variable
Dim wkb As Workbook

www.it-ebooks.info

http://www.it-ebooks.info/

Volatile Functions | 191

'Employ the On Error Resume Next statement to check for, and bypass,
'a run time error in case the workbook is not open.

On Error Resume Next

Set wkb = Workbooks (wb)

'If there is no error, the workbook is open.

If Err = 0 Then

Err.Clear

OpenTest = True

Else

'An error was raised, meaning the workbook is not open.
OpenTest = False

End If

End Function

Sub OpenOrClosed()
'Declare a string variable that will be the workbook name.
Dim strFileName As String

strFileName = "YourWorkbookName.xls"

'Call the OpenTest UDF to evaluate whether or not the workbook is open.
If OpenTest (strFileName) = True Then

'For demo purposes, this Message Box informs you if the workbook is open.
MsgBox strFileName & " is open.", vbInformation, "FYI..."

Else

'The OpenTest UDF determines that the workbook is closed.

'A Message Box asks if you want to open that workbook.

Dim OpenQuestion As Integer

OpenQuestion = _

MsgBox (strFileName & " is not open, do you want to open it?"
vbYesNo,

"Your choice")

'Example code if you answer No, meaning you want to keep the workbook closed.
If OpenQuestion = vbNo Then

MsgBox "No problem, it'll stay closed.", , "You clicked No."

Else

'Example code if you answer Yes, meaning you want to open the workbook.
'You need to tell the macro what the full path is for this workbook,
'so another String type variable is declared for the path.

Dim strFileFullName As String

strFileFullName = "C:\Your\File\Path\" & strFileName

'Open the workbook.

Workbooks.Open Filename:=strFileFullName

End If

End If

End Sub

Adding a Description to the Insert Function Dialog

Chances are, the more VBA you learn, the more popular you’ll be at your workplace as the Excel
go-to person. Soon, if not already, you’re building workbooks for other people to use, and it’s a nice
touch to add a helpful description to your UDFs for the benefit of those other users. The Insert

www.it-ebooks.info

http://www.it-ebooks.info/

192 |

LESSON 16 USER DEFINED FUNCTIONS

Function dialog is a good place to help people understand Insert Function Rx
how to enter your UDFs, especially because this dialog is eerch for unction:
how some users enter functions, and each UDF has its own i ref descpion of ik youvak o coarthen | | G0]
unique Cntry requirements. O select a categaory: | User Defined v
Select & Funchion:
Figure 16-4 shows a typical Insert Function dialog, where f 4|
. . . sshared
your publicly or non-declared UDFs will appear in the Select Einsk . =
) ' pentes
a Function pane when the User Defined category is selected. StatcRandon El
I’ve selected the ExtractNumbers function, but no help is e
available for someone who has never seen this UDF and
would not know how to properly enter the function. el o i oetion
In two easy steps, here’s how you can provide a helpful tip FIGURE 16-4
for entering a UDF from the Insert Function dialog:
1. Press Alt+F8 to call the Macro dialog. In the Macro Name field, enter the function name, for
example, ExtractNumbers as shown in Figure 16-5. Next, click the Options button.
ExtractNum‘berS L Run]
[ceme]
Delete
Macros in: 2l G Workhiooks |
Description
FIGURE 16-5
2. In the Description field of the Macro Options dialog, enter a brief description of how to enter

this UDF. As partially shown in Figure 16-6, I entered the following description and con-
firmed it by clicking OK and exiting the Macro dialog:
Example UDF entry:

=ExtractNumbers (A2)
where cell A2 contains the original alphanumeric string.

Macra name:

Extracthumbers [Ewn]

Macro Options

Macro name: Step Into
ExtractNumbers
Edit

shorkcut key:

Ct"*D Create

Description:
Example UDF entry: E}
=Extractiumbers(A2)

Options...]

FIGURE 16-6

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 193

And that’s all there is to it. Now if you go back to the Insert Function dialog and select the
ExtractNumbers UDF, a description appears as shown in Figure 16-7, providing the users with a
useful tip for how to enter the UDF.

Insert Function ‘EHZ‘
Search For a Function:

Tvpe a brief description of what you want to do and then Go

click Go

oz

Select a function:

ExtractLetters

>

Isshared

Link.
OpenTest
StaticRandom
SumColor

2]

ExtractNumbers{strText)

Example LUDF entry:

=Extracthumbers{az)

where cell A2 contains the original alphanumeric string.

Help on this function
FIGURE 16-7

TRY IT

In this lesson you practice creating a User Defined Function that tests whether a particular cell con-
tains a comment. If so, it returns the text of that comment; if not, it returns “No comment.”

Lesson Requirements

To get the sample database files, you can download Lesson 16 from the book’s website at

WWwW . Wrox.com.

Step-by-Step
Create a UDF to examine another cell’s comment.

1. From your keyboard press Alt+F11 to get into the VBE, and from the menu bar click Insert &
Module.

2. Enter the function name, declare an argument variable for a Range type because a cell will be
evaluated, and declare the Function type as string because the UDF will return text of some
kind. For example:

Function GetComment (rng As Range) As String

3. Declare a string type variable to handle either the comment text, or the “No comment”
statement. For example:

Dim strText As String

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

194 | LESSON16 USER DEFINED FUNCTIONS

Using an If structure, evaluate the target cell for the existence of a comment. If there is no
comment, define the strText variable as “No comment.” For example:

If rng.Comment Is Nothing Then
strText = "No comment"

Complete the 1f structure for the condition of the target cell containing a comment. For
example:

Else
strText = rng.Comment.Text
End If

Set the name of the Function equal to the strText string expression. For example:

GetComment = strText

Close the Function with the End Function statement. The entire UDF will look like this:

Function GetComment (rng As Range) As String
Dim strText As String
If rng.Comment Is Nothing Then

strText = "No comment"
Else

strText = rng.Comment.Text
End If

GetComment = strText
End Function

Press Alt+Q to return to the worksheet, test your UDF to evaluate the existence of a com-
ment in cell A1, and return the conditional string with this formula:

=GetComment (Al)

To view the video that accompanies this lesson, please select Lesson 16, available
at the following website: www.wrox.com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

17

Debugging Your Code

Despite what you’ve always heard, there are really three sure things in life: death, taxes,
and errors in computer programs. There’s no avoiding it — errors will happen and they
will need to be fixed, whether the length of your VBA programming experience is 10 days
or 10 years.

You will need to learn the tools and techniques for debugging your code, so that

when things go wrong, you’ll be familiar with the resources that are at your disposal
for finding and fixing errors. Excel has many good built-in debugging tools. In addition,
other techniques exist that you’ll learn in this lesson about how to avoid errors in the
first place, and, believe it or not, how you can get errors to work for you instead of
against you.

WHAT IS DEBUGGING?

A bug is an error in your code that can produce erroneous results, or, depending
on the nature of the bug, stop the code from executing altogether. In programming,
the term debugging refers to correcting an error in code, or the process of testing

a procedure for the possible existence of bugs that would need to be fixed if found.

YOU CAN DO EVERYTHING RIGHT AND STILL HAVE A BUG

In the next section you’ll read about three causes of errors in VBA programming.
Actually, there is a fourth cause, which you have absolutely no control over, and
that is a bug in a software application itself. This is not in any way a specific refer-
ence to a particular software company or to Microsoft. It’s a software industry
reality that new products are sometimes released with bugs, including known bugs
that are deemed to be benign but turn out to be a problem when used with Excel.

continues

www.it-ebooks.info

http://www.it-ebooks.info/

196

LESSON 17 DEBUGGING YOUR CODE

(continued)

In your future development projects, you’ll encounter many external data storage
and management applications that mostly play well with Excel, but sometimes
might not when by all rights they should. It’s never in any reputable software com-
pany’s best interests to impose nuisance bugs on its products’ users. The point is,
if you find that you have all your bases covered and are still scratching your head
about an error that has no rhyme or reason, you might have stumbled onto a bug
that other users of that product, and especially the software manufacturer, would
want to know about.

The process of debugging is a combination of art and science. The science is covered by some terrific
debugging tools that come with Excel VBA. The art is owing to the skills and experience you will
gain when you build VBA projects with a mindset for anticipating potential minefields based on the
intended use, and users, of your projects.

WHAT CAUSES ERRORS?

The world of computer programming enjoys no exemption from Murphy’s Law, where if something
can go wrong, it will go wrong. Three primary causes of errors can infect your VBA programming
code. To avoid errors, your first line of defense is anticipating problems as you write your code,
especially considering how the project will be used in real practice. Eventually, however, one of three
types of errors will impose their nuisance selves.

One cause is syntax errors, such as misspelling a VBA keyword, or not declaring a variable while
requiring variable declaration (as was outlined in Lesson 6). This causes a compile error as shown
in Figure 17-1, because the LastRow variable was not declared in that example. If an error can be
classified as friendly, it’d be a compile error because it is VBA’s way of telling you what’s wrong, and
sometimes showing you exactly where the problem is.

I:General]

Cption Explicit

Sub FindLastRow ()
PEStile Ce=lls (Rows.Count, 1).End(x1Up).Row

Microsoft Visual Basic for App |

Compile error:

%
“ Variable not defined

- |

FIGURE 171

www.it-ebooks.info

http://www.it-ebooks.info/

What Causes Errors? | 197

Another syntax error that can result in a compilation failure Oprion Explicic
is the absence of an End 1f, End With, or loop continuation Sub CompileTest ()

With Worksheets ("Sheetl"™)
keyword such as Next or Loop. For example, the macro shown -Range ("AL") .Value = "Hello®
.Tab.Color = vbRed
in Figure 17-2 will produce a compile error because it is missing "3:D") .Colunmiaden = 10
an End With statement. - =

A second cause of errors can be classified as runtime errors,
because they occur while the macro is running, and usually
will stop the procedure dead in its tracks with a runtime error
message such as you see in Figure 17-3. Notice the reason for
the error: In the Project Explorer window, you can see that the
workbook only has three worksheets, named Sheet1, Sheet2,
and Sheet3.

&, Compile error:

Expected End With

=i =]

FIGURE 17-2

7@ Microsoft Visual Basic for Applications - Lesson 17.xlsm [running] - [Module1 (Code)]
i File Edit View Inset Format Debug Run Tools AddIns Window Help
- 4 cBR 9 » 0@ NEHFY S @ wnecus !EEL‘%%%M
Project - VBAProject I:General)
= 3 - —
Cption Explicit
[5-&% VBAProject (Lesson 17.xdsm)
B Microsoft Excel Objects Sub EditWorksheets ()
Sheet1 (Sheet1) Worksheets ("Sheet1").Range ("A1") .Value = "Quarter 1"
Sheet2 (Sheet2) Worksheets ("Sheet2") .Range ["A1") .Value = "Quarter 2"
Sheet3 (Sheet3) Worksheets ("Sheet3™) .Range ("Al") .Value = "Quarter 3"
H E This\Workbook Worksheets ("Sheet4") .Range ("A1") .Valus = "Quarter 4"
E-£3 Modules End Sub
et odde
Run-time error '9":
Subscript out of range
e | e | o
FIGURE 17-3

The runtime error is VBA’s way of protesting that it is being told to do something it cannot do, as in
this case because a worksheet does not exist named Sheet4. If the Visual Basic Editor is unprotected,
and you click the Debug button on a runtime error message, VBA will take you to the related mod-
ule and highlight the offending line of code, as shown in Figure 17-4.

The third cause of errors are logical errors, and they are the most nefarious, because they come with
no message warnings that something is wrong. An example of a logical error is a wrongly coded
mathematical calculation that yields incorrect results. Suppose your project is a large VBA effort
with macros that calculate financial data that end users and investment clients are depending on for
their personal investment strategies. Your macros will run without getting interrupted by compile or
runtime errors, but the results are still flawed. People tend not to fix what they think isn’t broken, so
unless you (or an angry client) discovers the math bug, it can go undetected for a long time, and may
never be detected.

www.it-ebooks.info

http://www.it-ebooks.info/

198

LESSON 17 DEBUGGING YOUR CODE

EE-H % 2na 9

i File Edit View Insert Format Debug Run Tools Adddns Window Help
U E R BNEFY E @ in7co EEEJBE.?%,» ==

i Microsoft Visual Basic for Applications - Lesson 17.xlsm [break] - [Module1 (Code)]

Project - VBAProject E3
= &3]

I:Gene ral)

Option Explicit

- & VBAPraject (Lesson 17.xdsm)
2§ Microsoft Excel Objects

Sheetl (Sheet1)

Sheet2 (Sheet2)

Sheet3 (Sheet3)

Sub EditWorksheets|()
Worksheets ("5Sheetl™)
Worksheets ("Sheet2")
Worksheets ("Sheet3")

.Range ("Al1") .Value = "Quarter 1"
.Range ("A1") .Value
.Range ("A1") .Value

"Ouarter 2"
"Quarter 3"

4] Thisworkbook 2| jlorksheets ("Shest4”) .Rangs ("AL").Value = "Quarcer 4"
=5 Modules End Sub
22 Module1
FIGURE 17-4

When programming mathematical and logical operations, it’s always a good idea
to test your code by comparing the output of your VBA results with the output

from an independent source.

WEAPONS OF MASS DEBUGGING

Now that you know what kinds of bugs are lurking in the shadows and how they can bite your
code, you can fight back with several excellent debugging tools that are found in the Visual Basic
Editor. Your best defense starts with information about the weapons in your debugging arsenal and

how they are used.

The Debugging Toolbar

The Debugging toolbar is a handy item to display and keep docked onto your VBE menu bar. To
show the Debugging toolbar, from the VBE menu click View = Toolbars => Debug as shown in

Figure 17-5.

The Debugging toolbar typically contains 13 icons, some of which you are already familiar with.
Figure 17-6 shows the toolbar and the names of the icons, and the following sections describe

their uses.

www.it-ebooks.info

http://www.it-ebooks.info/

Weapons of Mass Debugging | 199

Zii Microsoft Visual Basic for Applications - Lesson 17.xlsm - [Sheet1 (Code)]

g8 File Edit | Yiew | Insert Format Debug Run Tools AddIns Window Help
‘Ea-d O o T K SEFY @
|Project - VBAProj|ESIeIN T Shift=F7
E H & Definition shift=F2
E\E_ VBAProjeq Last Position Ctrl+Shift+F2
Ea
Object Browser F2
Immediate Window Ctrl+G Step WatCh
Locals Window Reset Over Window
\—Vatcﬂwindow) Step Step QUiCk
%, Call Stack... Ctri+L Run Into
. Out Watch
Project Explorer cti=R l l l
Properties Window F4 Y Y |
¥ Toolbox — = > = * .-x
Tab Order % 4 IJ!J a @ = = E = G a3 6 ‘-,'I‘
Tooalbars > Debug ~——F——————— I T
Microsoft Excel Alt+F11 : E:;dam Design TOggle Immedmte
eerrorm Mode Breakpoint Window
Call
Customize.. Break Locals Stack
Window
FIGURE 17-5 FIGURE 17-6

Design Mode

The Design Mode button turns Design mode on and off in the active workbook. Design mode is

the time during which no code from the project is currently running. You can leave Design mode by
clicking the Design mode icon again, or by running a macro or using the Immediate window. When
you have an ActiveX object on your worksheet, such as a commandButton, Design mode allows you
to view the object’s properties, or to double-click the object to quickly access its module in the VBE.

Run

Clicking the Run button will have one of two effects. If your cursor happens to be blinking in the
Code window within a macro, clicking the Run button, or pressing the F5 key, runs the macro.
Otherwise, it will call the Macro dialog box, same as if you were on a worksheet and you pressed
the Alt+F8 keys.

Break

Clicking the Break button is the same as pressing the Ctrl+Break keys, which halts macro execution.
Break mode is a special mode of operation in the Visual Basic Editor that allows you to run one line
of code at a time without having to run the entire macro. Examining one line of code at a time is a
way to pinpoint the exact whereabouts of the error. You can edit code in Break mode.

Reset

Clicking the Reset button clears the Call stack and clears the module-level variables. This will end
Break mode, end all program execution, and close the Debug window if it is open.

www.it-ebooks.info

http://www.it-ebooks.info/

200 | LESSON17 DEBUGGING YOUR CODE

Stepping through Code

On the Debug toolbar, three icons, named Step A B c B E F
Into, Step Over, and Step Out, are related to a =
process known as stepping through code. There 3
. 5 . 4
are times vyhen youw’ll want to examine each : Store 1 3190 19974 2505
statement in your macro if you suspect a bug 5 Store 2 90070 77324 13646
is somewhere in your code but you’re not sure z Store 3 070 7058 i
y y . . 3 Store 4 29592 25153 4439
where. Even large macros can run quickly, so it’s | Store 5 44800 38080 8720
- - . . 10 Store 6 54857 46628 8229
dllfﬁcult, and often 1mp0551ble, to isolate the spe- |, Store 7 a0z 6591 11611
cific command that is not executing the way you [z Store 8 94547 80384 14183
. 13 Store 9 83908 71398 12600
would have planned. Stepping through your VBA | 7 Store 10 o608 53954 9404
statements allows you to execute one or more 15
lines of code, at your own pace, to see for your- FIGURE 17-7

self what every VBA statement is really doing.

Suppose you oversee a region of 10 hardware stores, and you receive a table of each store’s quarterly
sales activity. Your table is in a raw form, downloaded into Excel from your company’s database,
resembling Figure 17-7.

You have a macro such as the one pictured in Figure 17-8 that formats the table and sorts the Net
Income column in descending order so you can quickly list the most profitable stores. When you run
the macro, you do not get a compile or runtime error, but something still doesn’t look right when
the macro completes its full execution, as shown in Figure 17-9.

Sub StepThroughBreakpointExample ()

'Company name
Range ("A1") .Value = "XYZ Widgets, Inc."

'Quarter header label
Range ("A2") .Value = "Quarterly Report™

'Call the macro that creates a chart sheet from this data.
Call myChartMaker

'Enter the table headers and bold them.

With Range ("B4:E4")

.Value = Array("Store Name"™, "Gross Sales", "Expenses", "Net Income™)
.Font.Bold = True

End With

'Border around the table.
Range ("B4:E14") .BorderAround Weight:=xlMedium

'Format the numbers to currency and comma separators.
Range ("C5:E14") .NumberFormat = "$#, #§0"

'AutoFit the columns from A:E

Range (Columns (1), Columns(5)).AutoFit

'Sort the table by descending Net Income column E.
With ActiveSheet.Sort

.SortFields.Clear

.SortFields.Add Key:=Range ("ES:E13"), _
BortOn:=x15ortOnValues, Order:=xlDescending
.SetRange Range ("BS:E13")

«Header = xlY¥Yes

.Apply

End With

End Sub

FIGURE 17-8

www.it-ebooks.info

http://www.it-ebooks.info/

Weapons of Mass Debugging | 201

A B c D E F
1 | XYZ Widgets, Inc.
2 |Quarterly Report

4 Store Name Gross Sales Expenses Netlncome
5 Store 1 $23,499 $19,974 $3,525
6 Store 8 $94,547 $80,364 $14,183
7 Store 3 $94,070 $79,959 $14,111
8 Store 2 $90,970 §77.324 513,646
3 Store 9 $83,008 $71,398 $12,600
10 Store 7 $77,402 $65791 311,611
1 Store 6 $54,857 $46,628 $8,229
12 Store & $44.800 $38,080 $6,720
13 Store 4 $29,562 $25,153 $4,439
14 Store 10 562,688 $53.284 $9,404
15
FIGURE 17-9

Using the Step Into Command

To examine line by line where the problem lies, click your mouse anywhere inside the macro and
then click the Step Into button. The macro’s sub line will be highlighted in yellow, indicating to you
that it’s that particular macro you are about to step into.

When you “step into” a macro, you are traversing step-by-step (code line by
code line), in a single-step process to execute each line in turn.

Click the Step Into button again and the first line of code will be highlighted in yellow, which in

this example is Range ("A1") .Value = "XYZ Widgets, Inc." asshown in Figure 17-10. If you
click the Step Into button again, the code line Range ("A1") .value = "XYZ Widgets, Inc." will
be executed, and the next line of code, Range ("A2") .value = "Quarterly Report", will be high-

lighted in yellow, ready to be executed with your next Step Into command.

Each time you click the Step Into button, the line of code that is highlighted will be executed,
and the next line will be highlighted, and so on until you reach the end of the macro. Because
you suspect a bug somewhere in the code, you’d be looking at your worksheet after each Step
Into command to make sure that what the code is supposed to be doing is what it truly is doing.

In this example, all the cell values and formatting were correctly executed when you stepped into
each one, until the very last section of code that executes the sort method. You find when step-
ping into that section that the range of cells being sorted is not correct. Your table occupies range
B4:E14 but the VBA code is sorting only up to row 13. Your suspicions were correct about the
final result on the worksheet looking peculiar, so a quick adjustment is made to the sort range
address after you’ve verified that each of the other lines of code were properly written and being
properly executed.

www.it-ebooks.info

http://www.it-ebooks.info/

202 | LESSON17 DEBUGGING YOUR CODE

Sub StepThroughBreakpointExample ()

'Company name
o Range ("A1"™).Value = "XYZ Widgets, Inc."

'Quarter header label
Range ("A2") .Value = "Quarterly Report™

'Call the macro that creates a chart sheet from this darta.
Call myChartMaker

With Range ("B4:E4")

.Value = Array("Store Name", "Gross Sales", "Expenses”, "Net Income")
.Font.Bold = True

End With

'Border around the table.
Range ("B4:E14") .BorderAround Weight:=xlMedium

'Format the numbers to currency and comma separators.
Range ("C5:E14") .NumberFormat = "§§,#§0"

'AutoFit the columns from A:E

Range (Columns (1), Columns (5)).AutoFit

'Sort the table by descending Net Income column E.
With ActiveSheet.Sort

.SortFields.Clear

.SortFields.Add Key:=Range ("ES:E13"), _
SortCn:=xl5o0rtOnValues, Order:=xlDescending
.S5etRange Range ("BS:E13™)

.Header = xlYes

.Apply

End With

End Sub

FIGURE 17-10

Using the Step Over Command

The Step Over command is similar to the Step Into command, with the difference between the two
commands occurring at the point of a call to another macro. You may have noticed in the macro the
code line call myChartMaker, where in this hypothetical example the myChartMaker macro creates
a chart sheet from the table data. Figure 17-11 shows that call statement highlighted during the
Step Into process.

In this situation, if you click the Step Over button, the call myChartMaker command will be
executed but you will not be taken through it line by line as if it were stepped into. You would prefer
to do this when you know for sure that the myChartMaker macro works without any problems, and
cannot be the cause of whatever bug you are trying to fix in the current macro. The Step Over com-
mand will execute the myChartMaker macro and the next line of code in your macro will be high-
lighted for the next Step Into command.

Did you notice a tiny arrow in the margin to the left of the macro being stepped
into? When a line of code is highlighted during a stepping process, a yellow
arrow in the Code window’s left margin helps to indicate your place in the pro-
cess. With your mouse, you can select and drag the arrow upward or downward,
dropping it at whichever line of code you want to execute next.

www.it-ebooks.info

http://www.it-ebooks.info/

Weapons of Mass Debugging | 203

Sub StepThroughBreakpointExample ()

'Company name
Range ("E1") .Value = "XYZ Widgets, Inc."

"Quarter header label
Range ("A2") .Value = "Quarterly Report"

——| o3| Call myChartMaker

"Enter the table headers and bold them.

With Range ("B4:E4™)

.Value = Array("Store Name", "Gross Sales", "Expenses",
.Font.Bold = True

End With

'Border around the table.
Range ("B4:E14") .BorderAround Weight:=xlMedium

'Format the numbers to currency and comma separators.
Range ("C5:E14") .NumberFormat = "$#, §##0"

'AutoFit the columns from A:E

Range (Columns (1), Columns(5)).AutoFit

'Sort the table by descending Net Income column E.
With ActiveSheet.Sort

.SortFields.Clear

-SortFields.Add Key:=Range ("E5:E13"), _
SortOn:=xlSortOnValues, Order:=xlDescending
.SetRange Range ("B5:E13")

.Header = xlYes

-Epply

End With

End Sub

"Call the macro that creates a chart sheet from this darta.

"et Income")

FIGURE 17-11

Using the Step Out Command

The Step Out command executes the remaining lines of code between and including the current
highlighted execution point and the End sub line. You might think by the name Step Out that it
refers to simply exiting the Step Into command, but that is not exactly the case. Though it does
result in exiting the step through process, it does so by executing the rest of the macro to get to the
end. If you want to exit any of the step through process, click the Reset button.

Toggle Breakpoint

One of VBA’s convenient features is the ability to set a breakpoint, where you can specify a line of
code that will be the point up to which the macro would run at full speed. When the macro’s execu-
tion reaches the breakpoint code line, VBA switches to Break mode and halts the execution process.

y Stepping through your macro is a good way to examine each line of code,

but when your macros are hundreds of lines long, a line-by-line examination
process is tedious and time consuming. There will be many statements in your
code that won’t need to be examined, and there’s no reason to inch your way
to the section of your macro where the error probably resides. This is where

breakpoints come in handy.

www.it-ebooks.info

http://www.it-ebooks.info/

204 | LESSON17 DEBUGGING YOUR CODE

To set a breakpoint in your code, click your mouse into the line of code where you want the break-
point to start. Click the Toggle Breakpoint button, or press the F9 key, and the breakpoint will be
set at that line. VBA clearly identifies a breakpoint with a large brown dot in the Code window’s left
margin, and the code line itself is shaded brown.

For example, if you suspect a bug in a macro but you know that the majority of the macro runs
without any problems, you can set a breakpoint starting at a section in the program where you
want to examine the code more closely. In Figure 17-12, I clicked my mouse into the code line with
ActivesSheet.sort and clicked the Toggle Breakpoint button. If the macro were to be run now, it
would execute all lines of code up to, but not including, that breakpoint line. Now, you can step
through the subsequent lines of code to verify that each line is doing what you’d expect.

Sub StepThroughBreakpointExample ()

'Company name
Range ("21") .Value = "XYZ Widgets, Inc."

'Quarter header label
Range ("A2") .Value = "Quarterly Report™

'Call the macro that creates a chart sheet from this data.
Call myChartMaker

With Range ("B4:E4")
.Value = Array("Store Name", "Gross Sales", "Expenses", "Net Income"™)
.Font.Bold = True

End With

'Border arcund the table.
Range ("B4:E14") .BorderAround Weight:=xlMedium

'Format the numbers to currency
Range ("C5:E14") .NumberFormat

and comma separators.

"SE, FEO"

'AButoFit the columns from A:E
Range (Columns (1), Columns (5)).RutoFit

'Sort the table by descending Net Income column E.
o

«SortFields.Clear

.SortFields.RAdd Key:=Range ("E5:E137), _
SortOn:=xlSortOnValues, Order:=xlDescending
.SetRange Range ("B5:E13")

«Header = xlYes

.Apply

End With

End Sub

FIGURE 17-12

You can set a breakpoint only on an executable line. Commented lines in your
code, or empty lines, cannot be set as breakpoints.

True to its name, the Toggle Breakpoint button can be clicked again to clear the current breakpoint
with any portion of that line selected, or you can click the large dot in the Code window’s margin.
You’ll notice that if you have already set a breakpoint and you click the Toggle Breakpoint button,
or press F9, you will set another breakpoint if you have any other line of code selected. You can set
more than one breakpoint, so to quickly clear all breakpoints at once, press the Ctrl+Shift+F9 keys.

www.it-ebooks.info

http://www.it-ebooks.info/

Weapons of Mass Debugging | 205

Locals Window

The Locals window can help you in situations optiom Eplicic
when you get a runtime error and the offend- Sub TestSheet()
. . . . Dim mySheet As Worksheet
ing line of code involves a variable. The Locals | Worksheets (mySheet) .Activate

. . . . End Sub
window displays the variables and their values
for the macro(s) you are currently running. o= o ir

Expression Value T

Mod

Figure 17-13 shows a very simple macro that myShest Nothing Worisheet
attempted to activate a worksheet based on the
object variable mysheet. Because that variable
was never set with an identifying worksheet,

a runtime error occurred because VBA could FIGURE 17-13

not determine which sheet the mySheet variable

was referring to. While in Break mode in this example, the Locals window shows that mysheet is
set to Nothing, telling you that you forgot to include a set statement for mySheet.

] E—| | EN

Immediate Window

The Immediate window allows you to type in or paste a line of VBA code, which will execute when
you press the Enter key. To see the Immediate window, you can click its icon button on the Debug
toolbar, or from the menu click View &> Immediate Window, or press Ctrl+G.

If it hasn’t happened already, you’ll soon find yourself using the Immediate window for reasons hav-
ing nothing to do with errors. The Immediate window is a great way to execute commands quickly
without needing to create a formal macro to get the task done, such as in the following examples.

To eliminate leading apostrophes in cell values, which can occur when manually entered
or imported from external source data, you can type Activesheet.UsedRange.Value =
Activesheet.UsedRange.Value and press the Enter key.

To delete hyperlinks but keep the underlying cell value, you can type ActiveSheet .Hyperlinks
.Delete and press the Enter key.

When querying some fact or condition, precede your statement with

? Application.Version

a leading question mark. If you want to know the version of Excel 1.0
you are using, type ? Application.Version and press the Enter
key. As shown in Figure 17-14, when I entered that statement into
the Immediate window, the value 14.0 was returned, which is Excel’s
version 2010. FIGURE 17-14

The point to be made about the Immediate window is that it is a proactive tool. If you are wonder-
ing whether a line of code will fail, or whether it will produce the result you have envisioned, you
can test that code line in the Immediate window and see the results before taking your chances of
putting it into your code.

Watch Window

The Watch window allows you to watch a variable or an expression change as your code executes.
You’d normally do this with values that are associated with runtime errors, so you can see at what
point the VBA expressions produced a value that might have caused the error.

www.it-ebooks.info

http://www.it-ebooks.info/

206 | LESSON17 DEBUGGING YOUR CODE

Select the expression you want to watch, right-click that selection, and choose Add Watch from the
pop-up menu. Figure 17-15 shows the process for adding the variable strvalue to the Watch list.
The Add Watch dialog box will appear, as shown by example in Figure 17-16, for you to confirm
your settings and click OK.

Sub TestWatch ()
Dim intCounter As Integer, strValue As String
For intCounter = 1 To 5
B = Cells(intCounter, 3).Value
cut

Sub TestWatch()
Dim intCounter As Integer, strValue As String
For i unter = 1 To 5

52 Copy = Cells({intCounter, 3).Value
L, paste Next intCounter
B End Sub -
=) Add Watch x|
[} List Properties/Methods
Ok List Constants Expression: lII
Eirvalue
k. Quick Info Cancel |
W2 Parameter Info [Context
Procedure; |TestWatch 'I Help |
Az Complete Word
Toggl ' Module: |Module3 =l
Ioggle
) Project: VBAProject
5 Object Browser oF oF
Add Watch.., ’V\(ffbm Type
+ Watch Expression
Definition
 Break When Value Is True
Last Position
™ Break When Value Changes
= Hide

FIGURE 17-15 FIGURE 17-16

When you step into code after setting a watch expression, Sub Teatiaten ()

Dim intCounter As Integer, strValue As String
For intCounter = 1 To 5

strValue = Cells(intCounter, 3).Value

Next intCounter

End Sub

you’ll see the expression’s value change during execu-
tion. Figure 17-17 shows the strvalue variable’s value
change with each iteration of the For Next loop. Notice
that the value at one point in the loop is a number, yet
the strvalue variable was declared as a String type.

It’s that kind of attention that the Watch window brings
to your awareness of what your variables are actually T sivae 2 Sting Module3 Testialch

returning, if you suspect a particular expression to be
the cause of an error.

FIGURE 17-17
Quick Watch
The Quick Watch window allows you to sub Testaten ()
get a look at the current value of an expres- o g L nLoOeT, STrValue Ra String
sion or variable for which you have not jf ccrvelue - Cells(incComnter, 3).Value
defined a watch expression. While you are End Sub H
in Break mode, select your expression in the me |
. . .Module3. TestWatch
module and click the Quick Watch button, vi:wiefm R
or press the Shift+F9 keys. For example, in D | -m =
Figure 17-18, the intCounter variable was b =
selected during a step through process, and
the Watch window displays 3 in the Value FIGURE 17-18

field, indicating that the For Next loop is
currently in its third iteration.

www.it-ebooks.info

http://www.it-ebooks.info/

Trapping Errors | 207

Call Stack

The Call Stack dialog box shows the list of currently active procedure calls in Break mode. Unless
you write macros that involve a maze of calls to other macros, that themselves call other procedures,
you won’t need the Call Stack dialog box. A word to the wise: Keep your macros simple and limit
their procedure calls to a reasonable level, and you won’t have to worry about relying on a dialog
box to tell you which macro is in error of Break mode.

TRAPPING ERRORS

When you encounter a runtime error and you’ve figured out the cause, it might be that you need to keep
the error-prone code in place because it is such an important component of the larger macro. Actually,
you will come across this situation a lot, so you’ll need to know how to handle errors programmatically
behind the scenes, in a way that the users of your projects will not be bothered by runtime errors.

Error Handler

One of the more common tasks in development projects is to
add a worksheet to the workbook. Your project might involve Run-tie eror ‘1004
building a report onto a new worksheet, or copying various e e e e e e

sections of a master worksheet and pasting those individual

sections to their own new worksheets that you create. Say you

provide an InputBox for users to enter the name of a worksheet e | | | s
they want to add. What happens if a user already has a work-
sheet by that name in the workbook? Two worksheets cannot
have the same name in the same workbook, but the macro still needs to complete its appointed task.

FIGURE 17-19

One approach is using an on Error GoTo statement that will trap the error, and point to a certain sec-
tion in your macro that should be executed next in order to handle the error. Suppose your macro calls
for a new worksheet to be added, and named by the user as Sheet3. If a worksheet already exists in the
workbook named Sheet3, a 1004 type runtime error message would occur as shown in Figure 17-19.

With the following syntax, you can use an error handler to avoid getting a runtime error message if
an attempt is made to give a new worksheet the same name another worksheet already has. In this
example macro, the user is provided an InputBox to name the new sheet, and informed if the sheet is
added, or if it is not added because duplicate names are not allowed.

Sub AddSheetTest ()
Dim mySheetName As String
mySheetName = _

InputBox ("Enter the worksheet name:", _
"Add and name a new worksheet")

If mySheetName = "" Then Exit Sub
On Error GoTo ErrorHandler

Worksheets.Add.Name = mySheetName
MsgBox _

www.it-ebooks.info

http://www.it-ebooks.info/

208 | LESSON17 DEBUGGING YOUR CODE

"Worksheet " & mySheetName & " was added.", , "Thank you."
Exit Sub

ErrorHandler:

MsgBox _

"A worksheet named " & mySheetName & " already exists.",
vbCritical,

"Duplicate sheet names are not allowed."

End Sub

Bypassing Errors

My preference for most situations where runtime errors can occur is to avoid the error handler
route because the GoTo statement makes the macro more difficult to follow. Using an error bypass
approach with the on Error Resume Next statement, you can test for the condition of the Error
object, and use an 1f structure to deal with either possibility.

When it comes to naming a sheet, several considerations need to be monitored:
> Does the sheet name already exist in the workbook? Duplicate sheet names are not allowed.
> Is the proposed sheet name more than the maximum allowable 31 characters in length?

> Are any illegal sheet-naming characters included in the proposed name? Sheet tab names can-
not contain the characters /,\, [, |, *, ?, or :. If you try to type any of those characters into
your sheet tab, Excel will disallow the entry.

The Following macro takes these possibilities into consideration. If all conditions are met, a new
sheet is added. If any condition is not met, a new worksheet will not be created and a Message Box
will inform you of the reason why.

Sub TestSheetCreate()

'Declare String type variables for naming and testing the sheet.
Dim mySheetName As String, mySheetNameTest As String

'Use an InputBox to ask the user to propose a new sheet name.
mySheetName = _

InputBox ("Enter the worksheet name:",

"Add and name a new worksheet")

'"Exit if nothing was entered or the Cancel button was clicked.
If mySheetName = "" Then Exit Sub

'"Error bypass if the proposed sheet name already exists
"in the workbook.
On Error Resume Next

mySheetNameTest = Worksheets (mySheetName) .Name

If Err.Number = 0 Then

MsgBox _

"The sheet named " & mySheetName & " already exists.", _
vbInformation,

www.it-ebooks.info

http://www.it-ebooks.info/

Trapping Errors | 209

"A new sheet was not added."
Exit Sub
End If

'TIf the length of the proposed sheet name exceeds 31 characters,
'disallow the attempt.
If Len(mySheetName) > 31 Then

MsgBox _

"Worksheet tab names cannot exceed 31 characters." & vbCrLf & _
"You entered " & mySheetName & ", which has " & vbCrLf & _

Len (mySheetName) & " characters.", vbInformation,

"Please use no more than 31 characters."

Exit Sub

End If

'Sheet tab names cannot contain

'the characters /, \, [, 1, *, ?, or

'Verify that none of these characters

'are present in the cell's entry.

Dim IllegalCharacter(l To 7) As String, i As Integer
IllegalCharacter (1) = "/"

IllegalCharacter(2) = "\"
IllegalCharacter(3) = "["
IllegalCharacter(4) = "]"
IllegalCharacter(5) = "*"
IllegalCharacter(6) = "?"

IllegalCharacter(7)

'Loop through each character in the proposed sheet name.

For i = 1 To 7

If InStr (mySheetName, (IllegalCharacter(i))) > 0 Then

MsgBox _

"You included a character that Excel does not allow" & vbCrLf & _
"when naming a sheet. Please re-enter a sheet name" & vbCrLf & _
"without the ''" & IllegalCharacter(i) & "'' character."
vbCritical,

"Sheet not added."

Exit Sub

End If

Next 1

3
4
5
6
7

'History is a reserved word, so a sheet cannot be named History.

If UCase(mySheetName) = "HISTORY" Then

MsgBox "A sheet cannot be named " & mySheetName & vbCrLf & _
"because it 1s a reserved word in Excel.", vbInformation,
"History is a reserved word."

Exit Sub

End If

'Inform the user that a new sheet has been added.
Worksheets.Add.Name = mySheetName

MsgBox "A new sheet named " & mySheetName & " has been added!",
vbInformation,

"Thank you !"

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

210 | LESSON17 DEBUGGING YOUR CODE

TRYIT

In this lesson, you create a macro that avoids a runtime error while using the Find method to locate
a value on your worksheet. If the value is found, its cell address will be displayed in a Message Box.

Lesson Requirements

It is not practical to loop through potentially millions of cells, so the Find method is used with an
error bypass structure.

If you were to record a macro to find the word Hello on a worksheet, the recorded code would look
like this:

Cells.Find(What:="Hello", After:=ActiveCell, LookIn:=xlFormulas, _
LookAt:=x1Part, SearchOrder:=x1ByRows, SearchDirection:=x1Next, _
MatchCase:=False, SearchFormat:=False) .Activate

If the word Hello is not found on the worksheet, a runtime error would result because the recorded
code is instructing VBA to activate a cell that contains a value that does not exist. The purpose of this
lesson is to avoid a runtime error if the value being looked for does not exist on the worksheet. To get
the sample database files you can download Lesson 17 from the book’s website at www . wrox . com.

Step-by-Step

1. Open a workbook and activate a worksheet that contains a relatively large amount of data.
This is an exercise in finding a value if it exists on the worksheet, so the more complex the
worksheet, the better.

2. From your worksheet press Alt+F11 to get into the Visual Basic Editor.
3. From the menu bar, click Insert & Module.

4. In your new module, type the name of your macro as Sub FindTest and press the Enter key.
VBA will display your entry and new macro as follows:

Sub FindTest ()

End Sub

5. For your first line of code, declare a variant type variable for the value you want to locate.
In this example, simply call it varFind.

Dim varFind as Variant

6. Declare two more variables, both Long type, for the row and column of the value if it is
found:

Dim varFindRow As Long, varFindColumn As Long

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 21

10.

1.

12.

13.

14.

15.

Declare a String type variable for the value to be located:

Dim FindWhat As String

Define the Findwhat variable as an InputBox entry:

Findwhat = _

InputBox ("What do you want to find?", "Find what?")

If the Cancel button is clicked, or nothing is entered in the InputBox, exit the macro:

If FindWhat = "" Then Exit Sub

Set the varFind variable to the Find method:
Set varFind = _

Cells.Find(What:=FindWhat, LookIn:=xlFormulas, lookat:=xlWhole)

If varFind is Nothing, inform the user that the value being looked for was not found. Also,
exit the macro.

If varFind Is Nothing Then

MsgBox _

FindWhat& " was not found.",
vbInformation,

"No such animal."

Exit Sub

Else

Define the row and column variables to identify the found cell. Actually, this is not required
because varFind, being variant, would identify the found cell address with varFind.address.
The row and column variables are for demonstration purposes.

varFindRow = varFind.Row
varFindColumn = varFind.Column

A Message Box informs the user that the value was found, and in what cell:
MsgBox FindWhat& " was found in cell " & _

Cells(varFindRow, varFindColumn) .Address & ".", , "Found"

Enter the End If statement:

End If

Press Alt+Q to return to the worksheet and test your macro. The entire macro when it is
completed will look like this:

Sub FindTest ()

'Declare a variant type variable for the value to locate.
Dim varFind As Variant

www.it-ebooks.info

http://www.it-ebooks.info/

212 | LESSON17 DEBUGGING YOUR CODE

'Declare two more variables, both Long type, for the row
'and column of the value if it is found.
Dim varFindRow As Long, varFindColumn As Long

'Declare a String type variable for the value to be located.
Dim FindwWhat As String

'Define the FindWhat variable as an InputBox entry.
FindWhat =

InputBox ("What do you want to find?", "Find what?"

'If the Cancel button is clicked, or nothing is entered
'in the InputBox, exit the macro.
If Findwhat = "" Then Exit Sub

'Set the varFind variable to the Find method.
Set varFind = _
Cells.Find(What:=FindWhat, LookIn:=xlFormulas, lookat:=xlWhole)

'If varFind = Nothing, inform the user that the value being
'looked for was not found. Also, exit the macro.
If varFind Is Nothing Then

MsgBox _

FindWhat& " was not found.",
vbInformation,

"No such animal."

Exit Sub

Else

'Define the row and column variables to identify the cell.
'Actually this is not required because varFind, being Variant,
'would identify the found cell address with varFind.Address.
'The row and column variables are for demonstration purposes.

varFindRow = varFind.Row: varFindColumn = varFind.Column
'A Message Box informs the user that the value was found,
'and in what cell.

MsgBox FindWhaté& " was found in cell " & _
Cells(varFindRow, varFindColumn).Address & ".", , "Found"

End If

End Sub

To view the video that accompanies this lesson, please select Lesson 17, available
at the following website: www .wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

SECTION IV
Advanced Programming Techniques

» LESSON 18: Creating UserForms

» LESSON 19: UserForm Controls and Their Functions
» LESSON 20: Advanced UserForms

» LESSON 21: Class Modules

» LESSON 22: Add-ins

» LESSON 23: Managing External Data

» LESSON 24: Data Access with ActiveX Data Objects

» LESSON 25: Not Gone, Not Forgotten

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

18

Creating UserForms

In previous lessons, you have seen examples of how your workbook can interact with its users
to make decisions by employing such methods as InputBoxes and Message Boxes. Although
these interactive tools are very useful for the situations they are meant to serve, they have lim-
ited usefulness in more complex applications.

Some of your projects will require a more versatile approach to asking for and gathering many
kinds of information from the users, all within a dedicated interface that’s convenient and
easy to use. Perhaps you have seen attempts to accomplish this on a neatly arranged worksheet
where certain cells are color-shaded or unprotected for data input, maybe with drop-down
lists and embedded check boxes or option buttons. A UserForm in VBA is a more efficient
method for collecting and recording such information.

WHAT IS A USERFORM?

A UserForm is essentially a custom-built dialog box, but that description does not do justice
to the immense complexity and diversity with which UserForms can be built and be made to
function. A UserForm is created in the Visual Basic Editor, with controls and associated VBA
code, usually meant for the end user to be advised of some information or to enter data, gener-
ate reports, or perform some action.

Think of UserForms as electronic versions of the different forms you fill out on
your computer, such as when you make an online purchase, or with paper and
pen in a business office. Some information on most forms is required and some
information is optional. A UserForm is a dynamic object, with VBA code work-
ing behind the scenes to guide your users toward telling your workbook what it
needs to know.

www.it-ebooks.info

http://www.it-ebooks.info/

216 | LESSON18 CREATING USERFORMS

CREATING A USERFORM

The first step in creating a new UserForm is to insert one into the Visual Basic Editor. To do that,

press Alt+F11 to get into the VBE, and select your workbook name in the Project Explorer as shown
in Figure 18-1.

ai Microsoft Visual Basic for Applications - Lesson18.xism

. =lolx
! File Edit View Insert Format Debug Run Tools AddIns Window Help Type a question for help +
(EE-E 6 aEA 9 e BEEE QRIS 2 o%%%f
Project - VBAProject [x]

14 VBAProject (Book1.xlsm)
(-84 VBAProject (Book2.xlsm)
5B $ VBAProject (Lesson1B.dsm)]
-5 Microsoft Excel Objects
5] Sheet1 (Sheet1)

B8] Sheet2 (Sheet2)

~HB] Sheet3 (Sheet3)

@ ThisWorkbook

FIGURE 18-1

Be careful to select the workbook you have in mind before adding a UserForm to
it! In Figure 18-1, a couple of other workbooks are open to help make the point

that the workbook of interest (“Lesson18.xlsm” in this example) is the work-
book selected in the Project Explorer.

With the workbook name selected, from the menu bar click Insert & UserForm as shown in
Figure 18-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a UserForm | 217

4 Microsoft Visual Basic for Applications - Lesson18.xlsm B =[S
POFile Edit View | Insert | Debug Run Tools Adddns Window Help Type a question for help =

Procedure... I M &’@!&E T 0 .

UserForm

Module
Class Module

@ ThisWarkbook

FIGURE 18-2

A new UserForm will appear in its design window as shown in Figure 18-3.

i Microsoft Visual Basic for Applications - Lesson18.xlsm - [UserForm1 (UserForm)]

iE File Edit View Insert Format Debug Run Tools AddIns Window Help Type a question forhelp = _ & X

DB # 9 0) 2 e%%nl

RN B

i VBAProject (Book1.xdsm)
& vBAProject (Book2.dsm)
=-&% VBAProject (Lesson18.adsm)
= & Microsoft Excel Objects

G
i

rForm1

: @ ThisWarkbook
(=14 Forms
i...[@ UserForm1

FIGURE 18-3

www.it-ebooks.info

http://www.it-ebooks.info/

218 | LESSON18 CREATING USERFORMS

DESIGNING A USERFORM

UserForms have a wide variety of properties. You can show the Properties window for the UserForm
itself, or for any of its controls, by selecting the object and clicking its Properties icon, or clicking
View o> Properties Window as shown in Figure 18-4.

74 Microsoft Visual Basic for Applications - Lesson18.xlsm - [Userform1 (UserForm)] ol x|
{E9 File Edit | View | Insert Format Debug Run Tools [Addins Window Help Typeagquestionforhelp ~ - & X
ME-d | o 7 oh W 2% %%)
Froect - voneror (RN shirtFT
== i Definition Shift=F2
[F-%E VBAProjed Last Position Cirl=Shift=F2
B VBAProjec a
=% vBAProjec Object Browser F2
E-E5 Microsa| =] [mmediate Window Ctrl+G
-4} sne B Locals Wind
&) che] Locels Window
8] she| g3l Watch Window
-3 Thig 2, Call Stack... Ctri=L
-5 Forms
Use 3 Project Explorer Ctri+R
[ZF Properties Window F4
¥ Toolbox
Tab Order
Toolbars 3
Microsoft Excel Alt=F11

Below the Project Explorer is where you’ll see the Properties window, partially visible in Figure 18-5.

=10l

Eile Edit View Inset Format Debug Run JIools AddlIns Window Help Typeaquestonforhelp ~ o @ X
HE J s eanh 9) nak &F =2 o%%n]
Project - VBAProject

= [

%% VBAProject (BookLxism)
13 vBAProject (Book2.xlsm)
-8 VBAProject (Lesson18.xdsm)
=5 Microsoft Excel Objects
5] Sheetl (Sheet1)
8] Sheet2 (Sheet2)
~FH] Sheet3 (sheet3)
@ ThisWorkbook:
E1-E5 Forms
[UserForm1

Properties - Userforml

1]

[userForm1 UserForm
Alphabetic | Categorized |

UserForm1
[BackColor] aHa000000F&:
IBorderColor W &+z00000128
Borderstyle 0 - fmBorderStyleMone
ICaption UserForm1
Cyde 0 - fmCydeAlForms
IDrawBuffer 32000
[Enabled True
Font Tahoma
IForeColor M :a+300000128
Height 180 |

FIGURE 18-5

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Controls to a UserForm | 219

For the workbook’s first UserForm, VBA assigns a default value of “UserForm1” to its Name
and Caption properties, as you can see in Figure 18-5. If you were to create a second UserForm,
its default Name and Caption properties would be “UserForm2,” and so on. To help distinguish
between the Name and Caption properties, Figure 18-6 shows where the Name property was
changed to “frmEmployees,” and the Caption property, which is displayed in the UserForm’s title
bar, was changed to “Employee Information.”

i Microsoft Visual Basic for Applications - Lesson18.xism - [frmEmployees (UserForm])] K —1of x|
iE File Edit View Insert Format Debug Run Tools AddIns Window Help Typeaquestionforhelp « _ & X
: HDBaan 90 » n o ¥FY » @ 2 enenfl
Project - VBAProject -

E3
—= Employee Information

&% vBAProject (Book1.xdsm)
&% vBAProject (Book2.xlsm)

. de] Thisiorkbook
=3 Forms

frmEmployees
IfrmEm ployees UserForm ;I

Alphabetic | Categorized |

frmEmployees
BackColar [&HB000000F&
BorderCalor W =H300000125
Borderstyle 0 - fmBorderStyleNone
Caption Employee Information
Cyde 0 - fmCydeAlForms
DrawBuffer 32000

Enabled True

Font Tahoma

FareColar M =H300000125
Height 180 =

FIGURE 18-6

f When naming UserForms, or any object for that matter, it’s best to assign a name
that is relevant to the theme of the object. When [name a UserForm, I use the pre-
fix “frm” (for UserForm) followed by a simple, intuitive term (such as “Employees”
in this example) that represents the basic idea of the UserForm object.

ADDING CONTROLS TO A USERFORM

A control is an object such as a Label, TextBox, OptionButton, or CheckBox, in a UserForm or
embedded onto a worksheet that allows users to view or manipulate information. VBA supports
these and more controls, which are accessible to you from the VBE Toolbox. To show the Toolbox
so you can easily grab whatever controls you want from it, you can click the Toolbox icon, or click
View @ Toolbox as shown in Figure 18-7.

www.it-ebooks.info

http://www.it-ebooks.info/

220

| LESSON18 CREATING USERFORMS

icrosoft Visual Basic for Applications - Lesson18.xism - [frmEmployees (UserForm)]
File Edit | View | Insert Format
Code 7

=10l

Type aqueston forhelp + - & X

2 ehnl

Debug Run Tools

AddIns |Window Help

y
(€
it

Object hift+F7
Definition hift+F2

Last Position Ctrl=fhift«F2

14 a? Object Browser F2
&1 Immediate Window | Ctrl+G
El Locals Window
& Watch Window
B call Stack... Ctri=L
B¢ Project Explorer ctrisR
@ Properties Window F4
frmEmployees U: ¢ Toolbox

Alphabetic |cmg Tab Order

(4zme) Toolbars v
EorclerColor Microsoft Excel Althj

0- y
(Caption Employee Information
cyde 0 - fmCydeAlForms
DrawBuffer 32000
Enabled True
Font Tahoma
ForeColor W zHs00000128
Height 180 =
FIGURE 18-7

The control(s) you place onto your UserForm will depend on its purpose. If you want to design a
simple form to gather employee information for your company, you’d at least want to know the
employees’ names and their titles. It would be useful to display a TextBox to enter the employee
name, and then a list of the company’s position titles so the user can effortlessly select one.
Figure 18-8 shows the Toolbox with the mouse hovering over the Label control icon.

You place a control onto your UserForm by drawing the control onto your UserForm’s design
area. All you need to do is click whatever Toolbox control icon you’re interested in adding to the
UserForm, and draw it as you would draw a Shape object onto a worksheet. Figure 18-9 shows a
Label control that was just drawn, showing its default caption of “Labell.”

7 Microsoft Visual Basic for Applications - Lesson18.xism - [frmEmployees (Userform)] o [w] |3}
i[File Edit View Inset Format Debug Run Tools AddIns Window Help Type aguestion forhelp =~ - & X

HE-Hd 2809 »0a 58% =0 =2 ez2nll

VBAProject

p
(€
il

=)=
[#-&% VBAProject (Bookl.xlsm) [6 St el Bl et i 6Lt P o B o B o o
45 VBAProject (Book2.xism) e e, A

-8 VBAProject (Lesson18.xdsm) Conroks |

'k ATSHER
4] Thisworkbook ha5ha6a0n Bunbanan A onasaasad aode hdaan £ {abel] +

£ 5 Forms RO
frmEmployees | =
Properties - frmEmployees x|
|frmEmployees UserForm =l

Alphabetic |g;3tegwed |

(Name) frmEmployees -
] &H8000000F& -
BorderColor W &HE00000128

BorderStyl 0 - fmB 1

Caption Employee Information

Cyde 0 - fmCydeAlForms

DrawBuffer 32000

Enabled True

Font Tahoma

ForeColor W &H500000128

Height 180 =
FIGURE 18-8

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Controls to a UserForm | 221

-101 x|
Edit View Insert Format Debug Run Tools AddIns Window Help Typeagquestonforhelp - - @ X
E-dsanhoc ruaW S5 x QFO0 b s snnnl

i X

" Employee Information x|

&3 VBAProject (Bookl.dsm)

B vBAProject (Book2.xlsm)

-4 VBAProject (Lesson18.dsm)
= Microsoft Excel Objects

=l
il
=)

ThisWorkbook
E1-E5 Forms
fimEmployees
Properties - Labell
[Label1 Label =l
Aphabetic | Categorized |
[(hame) Labell -
|Accelerator
lAutosize False
BackColor [&Hs000000F &
BackStyle 1 - fmBackStyleOpaque
BorderColor [l 8H800000058
[BorderStyle 0 - fmBorderStyleNone
ControlTipText
[Enabled True
IFont Tahoma =l

Notice in Figure 18-9 that the Label’s Caption property is selected in the Properties window, so

a more meaningful caption can be added to the Label. Because the Label will be directly above
the TextBox, and the purpose of the TextBox is to enter an employee name, the Label’s caption is
changed to “Employee name” as shown in Figure 18-10. Notice further in Figure 18-10 that the
TextBox icon is about to be selected in the Toolbox, as you get ready to draw a TextBox control
onto the UserForm below the Label.

icrosoft Visual Basic for Applications - Lesson18.xlsm - [frmEmployees (UserForm)]

Fd File Edit View Inset Format Debug
E-H o aBR 9 o0
Project - VBAProject

BB @

VBAProject (Bookl.dsm)
& VBAProject (Book2.xlsm)
E-&i VBAProject (Lesson18adsm)
B2 Microsoft Excel Objects

Run Tools AddIns Window Help
al B FEF R @

Typeaguestionforhplp ~ - & X

=lolx|

Employee Information

Employee name

Controls |

Ik A abl|EB

Foe 2
&) ThisWorkbook [o olTextbox]
£ Forms s
frmEmployees |
Properties - frmEmployees |
[frmEmployees UserForm =1
Alphabetic |Catagonzed|
[(Name) frmEmployees -
BackColor [aHsooo000F&
IBorderColor W 2H300000125
0 - fmBorderStyleNane |
Employee Information
0 - fmCydeAlForms
! 32000
[Enabled True
IFont Tahoma
IForeColor W 2H300000125
Height 180 LI

www.it-ebooks.info

http://www.it-ebooks.info/

222

| LESSON18 CREATING USERFORMS

Once you click the Toolbox’s TextBox icon, you add a TextBox control by drawing it onto the
UserForm’s design area, just as you did when you added the Label control. Figure 18-11 shows the
drawn TextBox, positioned below the Label, and having a reasonably sufficient width to accept and
display a person’s name. Meanwhile, as you can see in Figure 18-11, the Frame icon is about to be
selected in preparation for placing a Frame control onto your UserForm.

1ol x|
File Edit View Inset Format Debug Run Tools Add-Ins Window Help Typeaquestonforhep » _ & X
E-bd 4 aan 90¢ » B &% % %
Project - VBAProject
B 3 B
& VBAProject (Bookl.xlsm) . . Employee Mame
-8 VBAProject (Book2.xism) 2 E|

- VBAProject (Lesson18.xlsm)
142§ Microsoft Excel Objects
Sheet1 (Sheetl)

sheet2 (sheet2)

Sheet3 (Sheet3)

i Gede] ThisWorkbook

B3 Forms

----- frmEmployees

Enr\trnlsl

[x A abl EB
Pl e 2
ﬂ_l £=
dEHEME

Properties - frmEmployees

Ll

|frmEmployees UserForm

Alphabetic |Categomd |

fimEmployees
[&Ha000000F&

W zHs00000125&

0 - fmBorderstyleNone
Employee Information
0 - finCydeAlForms

32000

True

Tahoma

W &2H300000125
180

FIGURE 18-11

Figure 18-12 shows your just-drawn Frame control with its default caption of “Framel.” Frames
are a good way to group other controls visually by containment, usually with an underlying theme.
In the case of this UserForm example, the company’s position titles will be contained in such a way
that the user can select only one.

/i Microsoft Visual Basic for Applications - Lesson18.dsm - [frmEmployees (UserForm)]

=101x|

Type a question for help ~

Eile Edit View Inset Format Debug Run Tools Add-Ins Window Help N o
E-dH s aEa9c s na SFy e QOO LS =2 s %nll

Project - VBAProject [x]

o o | T

& vBAProject (Book1.xism)

B2 vBAProject (Book2.xlsm)

E-&% VBAProject (Lesson1B.xdsm)
)4 Micosoft Excel Objects

48 Thisworkbook
=23 Forms
frmEmployees

Properties - Framel

[Frame1 Frame
Alphabetc | categorized |

|(Name)
IBackColor

Frame1

[&HB8000000F&:

M zH300000128

0 - fmBorderStylehone

EorderColor
Borderstyle

(ControMipText

0 - fmCydeAlForms
True

Tehoma

W 54300000128
IHeight 56

FIGURE 18-12

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Controls to a UserForm | 223

The caption of a Frame control is an efficient way to describe the purpose of the Frame, just as the
Label’s caption of “Employee Name” describes the purpose of the TextBox. In Figure 18-12, the
Caption property of your new Frame is selected in order to change the meaningless default caption

of “Framel” to a more useful description.

In Figure 18-13, the Frame’s default caption of “Framel” has been changed to “Position Title.” Now
that the Frame’s caption is taken care of, Figure 18-13 also shows that the OptionButton icon in the

Toolbox is about to be selected. Because an employee would hold only one particular job position
title at a time, a series of OptionButtons can be arranged inside the Frame to represent the com-
pany’s various position titles, where only one can be selected.

icrosoft Visual Basic for Applications - Lesson18.xlsm - [frmEmployees (UserForm)] . =[]
Eile Edit View Insert Format Debug Run Tools Add-Ins Window Help Typeaquestionforhelp « _ & X
ME-H 6 a@ma P @ e B 2] U] £ %l
Project - VBAProject
ER=] | || e
&% vBAProject (Book1.dsm) .. . Employee Name
&% VBAProject (Book2.dsm) | E|
=] 5 VBAProject (Lesson18.xism) : 83 e B e h e i Controls |
=] & Microsoft Excel Objects * = Position Title. . © . .
Sheet1 (Sheet1) B s Ao o o b Kk A abl
Sheet2 (Sheet2) o *
EB ¥
Sheet3 (Sheet3) o L=t
. 3% Thisworkbook 5] =1 2= 5
=] @mes = ﬂ OptionButton
frmEmployees =
IfrmEm ployees UserForm ;I

Alphabetic ICaiEguand |

(Hame)
BackColar
BorderColor

fmEmployees -
[&HB000000F&
W =H300000125

0 - fmBorderStyleNone
Employee Information
0 - fmCydeAlForms
32000

Enabled True

Font Tahoma

FareColar W =H300000125

Height 180 =
FIGURE 18-13

In this basic UserForm example, Figure 18-14 shows four position titles from which to choose,
each as a caption among the four OptionButton controls that were placed inside the Frame. The
OptionButtons were added and captioned one at a time. Planning ahead, Figure 18-14 also shows
the CommandButton icon in the Toolbox, which is about to be selected in order to add a couple of
buttons as the last step in building the UserForm’s front-end design.

In Figure 18-15, two CommandButtons have been added, which completes the UserForm’s interface
design. One of the CommandButtons is captioned OK, which is a common and intuitive caption for
users to click their confirmation of data entries. The other CommandButton is a Cancel button to
allow users to quit the UserForm altogether, if they so choose.

www.it-ebooks.info

http://www.it-ebooks.info/

224 | LESSON18 CREATING USERFORMS

icrosoft Visual Basic for Applications - Lesson18.xlsm - [frmEmployees (UserForm)]) 1ol x|
Edit View Insert Format Debug Run JTools AddlIns Window Help Typeagquestionforhelp ~ - & X

bou V=2 s%nl
~HF] Sheet3 (Sheet3) o] |51 Employee Name
487 ThisWorkbook aa I— F|
-8 VBAProject (Lesson18.xism) o : Controls I
=5 Microsoft Excel Objects * . — Position Tite. —————————————————. .
5] Sheetl (Sheet1) 2alis ity ’TA abl B3
8] Sheet2 (Sheet?) 10D Manager i1 7 Accounting F e o
hest? (Sheety) S sales CULC Adminiswatve | - =
48] ThisWorkbook 5ic|\' o6 ol oo 0d'e &8 0 &' 6 0 BB A D 6 ae R0 5 () (=)=
E-£5 Forms a4
- s HE@l
— I PP) i S R _I;IJCWNBME“M”
|frmEmployees UserForm S|

Alphabetic |Cabegorized |
frmEmployees
IBackColor [aHsooooooFs:
BorderColor W &HB00000125
[BorderStyle 0 - fmBaorderStyleNone
iCaption Employee Information
(Cydle 0 - fmCydeAlForms
IDrawBuffer 32000

[Enabled True

IFont Tahoma

IForeCalor W &HB00000125
Height 180 LI

FIGURE 18-14

icrosoft Visual Basic for Applications - Lesson18.dsm - [frmEmployees (UserForm)] E i [=] 3]
Edit View Inset Format Debug Run Tools Adddns

Typeaquestonforhelp ~ - & X

BHR 9 o 0=2 s2nl
Sheet3 (Sheet3) -] .. Employee Name o
48] ThisWorkbook - I— oL
£-8% vBAProject (Lesson18.dsm) . _______________
[=1-E§ Microsoft Excel Objects 5 Position Title: ————————————————————————
-] Sheet1 (Sheet1)] AR et e B T
8] Sheet2 (Sheet?) Do € Manager 111 € Accounting
48] Sheets (sheet3) | ; Csales S0 € Administrative [
3] ThisWorkbook
E1-E5 Forms
fimEmployees = 8 don o :
: S |
|frmEmployees UserForm =

Alphabetic | categorized |
frmEmployees
EackCalor [] aH3000000FE
[BorderColor M a+300000128
BorderStyle 0 - fmBorderStyleNone
ICaption Employee Information
ICyde 0 - fmCydeAlForms
IDrawBuffer 32000

[Enabled True

Font Tahoma

IForeCalor M 3H300000128
[Height 180 =l

FIGURE 18-15

A standard of proper UserForm design is to always allow your users an escape
route out of the UserForm. This is commonly done with a Cancel or Exit bution
that users can click when they want to leave the form.

www.it-ebooks.info

http://www.it-ebooks.info/

Where Does the UserForm’s Code Go? | 225

SHOWING A USERFORM

To show a UserForm, you execute the VBA show command in a statement having the syntax
UserFormName.Show. For example, if you had performed the same steps as you’ve seen in this
lesson to create the frmEmployees UserForm, you may have a simple macro like this to call the
UserForm:

Sub EmployeeForm()
frmEmployees. Show
End Sub

If you'd like to see how the UserForm looks when it is called in the actual worksheet environment,
without having to write a formal macro for yourself, you can type frmEmployees.Show into the
Immediate window and press the Enter key. Figure 18-16 shows how you and your users will see the
example UserForm.

HHd9-~-FIs Lessoni® - Microsaft Excel =28
n Home | Inset Pagelayout Formulss Data Review View Developer s @o@ R
o) 2 . -
B 5 oo ‘AN == ® Swepte General - ﬁ E = Insert ;l %T [ﬁ
. Ea- 3* Delete - -
Paste B U~ T- A FEEE GMege&Centrs | $ - % %2 5 Conditional Format _Cel ~ Sart& Find&
- & g- = A-|EE B EE Bwegescene Pl S | matting - a3 Table - Styles - | AFormat | 2 Finer- Select-
Clipboard 1 Font - Alignment - Humber 7 Styles cells Editing
- (= | g
A B (4 D E B G H I J K L M N o (4 a -
i
| 2
3
7 zl
5
6 Employee Name:
7
| Position Tite
| € Manager € Accountng
10
B " Salec € Administrative
|12 L
|13
|1 oK Cancel
|15
| 16
[17
|18
[19
| 20
|21
| 22
| 23
I} 2 I
25 -
W 4 b | Sheetl Sheetz .~ Sheetd . J 1Kl i I »[
| Reagy | 23 | | 0w)) o
FIGURE 18-16

WHERE DOES THE USERFORM’S CODE GO?

This lesson introduced UserForms and led you through the steps to create a basic form that contains
various controls. In Lessons 19 and 20 you see examples of how those and other UserForm controls
are programmable with event-driven VBA code.

A UserForm is a class of VBA objects that has its own module. Similar to the notion that each work-
sheet has its own module, each UserForm you add to your workbook will automatically be created

www.it-ebooks.info

http://www.it-ebooks.info/

226 | LESSON18 CREATING USERFORMS

with its own module. Accessing a UserForm’s module is easy: In the VBE, you can double-click the
UserForm itself in the design pane; or in the Project Explorer, you can right-click the UserForm
name and select View Code, as shown in Figure 18-17.

74 Microsoft Visual Basic for Applications - Lesson18.xlsm - [Lessonl8.xlsm - frmEmployees (UserForm)] & =10l x|
% File Edit View Insert Format Dj Typeaquestionforhelp «» - & X
EE-H $Bsa 9o = {0 2 ¢ % Z}{H
Project - VBAProject
=l
- VBAProject (Lesson18.xlsm) * | Employee Name
-5 Microsoft Excel Objects a
8] Sheet1 (Sheet1)
Sheet2 (Sheet2) sition Title
hects (shect) L T
ThisWorkbook D1 | € Manager 1111 " Accounting
L[€ sales D00 € administrative [D
455 Modes G S
+2 Module1 View Object @oaoo
. . oK Cancel
Properties - frmEmployees VBAProject Properties... Sy
frmEmployees UserForm Insert 4
Alphabetic | Categorized | Import File...
frmEmplal Export File...
BackColor] aiaol Remove frmEmployees... E
[BorderColor W a0 =
BorderStyle 0 - fmgor U Erint..
[Caption Employee | Dodable
ICyde 0 - fmCye
Dranuffer 30000 | Hide
[Enabled True
[Font Tahoma
IForeColor M :H300000125
Height 180 =l _’l_l

FIGURE 18-17

CLOSING A USERFORM

You have two ways to close a UserForm. One way is with the Unload method and the other way is
with the #ide method. Though both methods make the UserForm look as if it has gone away, they
each carry out different instructions. This can be a point of confusion for beginning programmers,
so it’s important to understand the distinction between Unload and Hide.

Unloading a UserForm

When you unload a UserForm, the form closes and its entries are cleared from memory. In most
cases, that is what you would want — for the data that was entered to be recorded in some way,
or passed to Public variables, and then closed. The statement that unloads a UserForm is simply
Unload Me and it is commonly associated with a CommandButton for that purpose, such as the
Cancel button that was placed on this lesson’s example UserForm.

Suppose you want to unload the UserForm when the Cancel button is clicked. A quick and easy

way to do that is to double-click the CommandButton in the UserForm’s design, as shown in
Figure 18-18.

www.it-ebooks.info

http://www.it-ebooks.info/

Closing a UserForm | 227

& Microsoft Visual Basic for Applications - Lesson18.xism - [Lesson18.xlsm - frmEmployees (UserForm)].

File Edit View Inset Format Debug

HE-H fRBnR 9 > 0ok HEY R @RI LG

Run Tools Add-Ins Window Help

=10l x|

Typeaqueston forhelp + _ @ X

2

2% 5% %

3 !
i VBAProject (Lesson18.xlsm)
(=23 Microsoft Excel Objects
i L) Sheetd (Sheet1)
Sheet2 (Sheet2)
) Sheet3 (sheet3)
i L4e) Thisworkbook
=13 Forms

- Employee Name

2| € Manager
11O Sales

Position Title

Employee Information

. € Accounting
. € Administrative

.

P frmEmployees
-5 Modules
f.d® Module1

Double-click the selected control
to quickly access its Click event
in the UserForm’s module.

Properties - CommandButton2

Ll

|CommandButton2 Commandgutton
Alphabetic |cmg°d,ed |

CommandButton2

Accelerator

Autosize False

[] &H8000000F&

1- fmBackStyleOpaque
cancel False

Cancel

Immediate k

Default False
Enabled True
Font Tahoma =l

FIGURE 18-18

When you double-click the CommandButton, you will see these lines of code in the UserForm’s
module:

Private Sub CommandButton2_Click()

End Sub

To complete the c1ick procedure, type Unload Me. When the Cancel button is clicked, the
UserForm will unload — that is, it will close and release from memory the data that was entered —
with this c1ick event for that button:

Private Sub CommandButton2_Click()

Unload Me
End Sub

Hiding a UserForm

The #ide method makes the UserForm invisible, but the data that was in the UserForm is still there,
remaining in memory and able to be viewed when the form is shown again. In some situations you
will want this to be the case, such as if you are interacting with two or more UserForms and you
want the user to focus on only one form at a time. The statement to hide a UserForm is Me . Hide.

www.it-ebooks.info

http://www.it-ebooks.info/

228 | LESSON 18 CREATING USERFORMS

To summarize the difference between Unload and Hide, the method you choose
will depend on why you don’t want the UserForm to be seen. Most of the time,
you’ll want the form cleared from memory, but sometimes, information that was
entered into the form needs to be referred to the next time you show the form
while the workbook has remained open. Closing the workbook automatically
unloads a UserForm only if it was hidden.

TRY IT

In this lesson, you design a simple UserForm with a Label control, a TextBox control, a CheckBox
control, and two CommandButton controls.

Lesson Requirements

For this lesson, you practice designing a simple UserForm with various controls to emulate a client
profile. To get the sample database files you can download Lesson 18 from the book’s website at

WWW . Wrox.com.

Step-by-Step

1.
2.

w

o vk

N

®

10.

Press Alt+F11 to go to the Visual Basic Editor.

Select the workbook name in the Project Explorer window, and from the menu at the top of
the VBE click Insert = UserForm.

Select the UserForm in its design window, and press the F4 key (or click View = Properties
Window) to show the Properties window.

Change the Name property to frmClients and change the Caption property to Clients.
Size the UserForm by setting its Height property to 240 and its Width property to 190.
From the menu at the top of the VBE, click View = Toolbox.

From the Toolbox, click the Label control icon and draw a Label across the top of the
UserForm. With the Label control selected, change its Caption property to Company Name.

From the Toolbox, click the TextBox control icon and draw a TextBox directly below the
Label.

From the Toolbox, click the Label control icon again, and draw a Label a little bit below the
TextBox. With that Label control selected, change its Caption property to Client’s business
— check all that apply:.

Directly below the Label from Step 9, from the Toolbox, click the CheckBox control
icon and draw a CheckBox that is wide enough for you to have its caption property be
“Agriculture.”

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 229
11. Repeat Step 10 four more times, meaning you’ll draw a total of =

five CheckBoxes that are stacked one above the other in a vertical Gt

fashion. Change the Caption labels on the four other Checkboxes |

to Manufacturing, Medical, Retail, and Technology. ot
12. From the Toolbox, click the CommandButton icon control and :z::;;g

draw a CommandButton in the lower-left corner of your UserForm. I Hedea

Change its Caption property to OK. iz

[~ Technology
13. Draw a second CommandButton in the lower-right corner of your e
. . oK

UserForm. Change its Caption property to Cancel.

14. Take a look at your completed UserForm as it would appear when =~ FIGURE18-19

called. While you are still in the VBE, press Ctrl+G to get into the

Immediate Window. Type frmClients.Show and press the Enter key.

Your UserForm should look like the one shown in Figure 18-19.

To view the video that accompanies this lesson, please select Lesson 18, available

at the following website: www.wrox . com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

19

UserForm Controls and
Their Functions

UserForms allow you to interact with your users in ways that you can’t when using standard
Message Boxes, InputBoxes, or controls embedded onto your worksheet. With UserForms, you
can control the input of information by validating the kind of data that gets entered, the order
in which it is entered, and, if your workbook requires it, the exact location where the informa-
tion should be stored and how it should be recalled. This lesson leads you through the design
of various UserForms, with examples of how to program an assortment of controls that you’ll
utilize most frequently.

UNDERSTANDING THE FREQUENTLY
USED USERFORM CONTROLS

As you saw in Lesson 18, when you add a UserForm to your workbook, the first thing you see is
the empty UserForm in its design window, not unlike a blank canvas upon which you’ll strategi-
cally place your controls. The controls you utilize will depend upon the task at hand, and you’ll
come across countless sets of circumstances for which a UserForm is the right tool for the job.

Still, you’ll find that a core group of frequently used controls can handle most of your UserForm
requirements. The fun part is tapping into the events each control supports, in order to create a
customizable UserForm that’s user-friendly and, most importantly, gets the job done.

As you will see in Lesson 20, you are not limited to the relatively few controls
shown by default on the Toolbox. Dozens more Toolbox controls are available
to you, many of which you’ll probably never use, but some you eventually will.

www.it-ebooks.info

http://www.it-ebooks.info/

232 | LESSON19 USERFORM CONTROLS AND THEIR FUNCTIONS

CommandButtons

The CommandButton is a basic staple of just about any UserForm. x|
The combination of a Caption property and c1lick event make

CommandButtons an efficient way to convey an objective and then
carry it out with a mouse click. And if for no other reason, a Cancel (.|

or Exit button is about as basic a need as any form will have.

Please indicate your preference for printing this sheet:

e |

Cancel I do not want to print anything |

Suppose you want to provide your users with a quick way to print a

worksheet in either portrait or landscape orientation. You can make
it easy for your users to click a button to indicate their decision, and
then just go ahead and execute the print job. Figure 19-1 shows

an example of how this may be done, followed by the code behind
each of the CommandButtons.

FIGURE 19-1

Private Sub cmdPortrait_Click()
With ActiveSheet
.PageSetup.Orientation = xlPortrait
.PrintPreview

End With

End Sub

Private Sub cmdLandscape_Click()
With ActiveSheet
.PageSetup.Orientation = Landscape
.PrintPreview

End With

End Sub

Private Sub cmdCancel_Click()
Unload Me
End Sub

i’ As you can see in the preceding code, each of the CommandButtons has been
named using the prefix “cmd” followed by a notation that gives a clue as to the
purpose Of the button (see cmdPortrait_Click(), cmdLandscape_Click(),
and cndCancel_Click ()). There is nothing sacred about the “cmd” prefix for
CommandButtons, or about the “Ibl” prefix when naming Labels, or about
any naming prefix for that matter. Still, it’s wise to name your controls in some
intuitive and consistent way so you and others will recognize the control and its
purpose when reviewing your VBA code.

Labels

You’ve seen Label controls, such as the examples in Lesson 18, where the Label’s Caption property
is set to always display the same text. Sometimes, a Label can serve to display dynamic information
that is not a static piece of text, and in that case, you’d leave the Caption property empty.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Frequently Used UserForm Controls | 233
UserForms have an Initialize event that is welome x|
trlggered when you call the UserForm, which Good Afternoon ! Welcome to the company workbook.

can help you take action on your UserForm or
workbook. Suppose you want to enhance the

customized look of your form with a welcome Proceed to the Main Menu | Exit
greeting that changes to reflect the time of day.
For example, if the UserForm were to be opened FIGURE 19-2

in the morning, the message would include the text
“Good morning,” and so on for the afternoon and
evening. The following code achieves that effect,
as shown in Figure 19-2.

Private Sub UserForm_Initialize()

Dim TimeOfDay As String

If Time < 0.5 Then

TimeOfDay = "Good Morning ! "

ElseIf Time >= 0.5 And Time < 0.75 Then
TimeOfDay = "Good Afternoon ! "

Else
TimeOfDay = "Good Evening ! "
End If
Labell.Caption = TimeOfDay & "Welcome to the company workbook."
End Sub
TIMES IN VBA

Even after studying the preceding code, you might wonder why a number less
than .5 translates to morning, why a number greater than or equal to .5 and less
than .75 translates to afternoon, and why a number greater than or equal to .75
translates to evening. The reason is that VBA regards a time of day as a completed
percentage of the calendar day. For example, 12:00 noon is the halfway mark of a
calendar day, and one-half of something can be mathematically represented by the

expression .5. The Time function in VBA interprets a number less than .5 as morn-
ing because by definition, half the day would not yet have completed. Afternoon is

between .5 (12:00 noon) and up to just before 6:00 PM, which the Time function
interprets as .75, being at the three-fourths mark of the 24-hour calendar day. A

Time number greater than or equal to .75 is evening because it is at or past 6:00 PM

and before the Time number of 0, which is 12:00 midnight of the next day.

You can also populate a Label’s caption from another control’s event procedure. Suppose your
UserForm provides a CommandButton that when clicked, toggles column C as being visible or hid-

den, such as with this line of code in the CommandButton’s c1ick event:

Columns (3) .Hidden = Not Columns (3).Hidden

www.it-ebooks.info

http://www.it-ebooks.info/

234

| LESSON19 USERFORM CONTROLS AND THEIR FUNCTIONS

i Columns (3) is another way of expressing Columns ("C:C"). The “3” refers to
C being the third letter in the alphabet, which corresponds to the third column
from the left in the worksheet grid. If it were column D, the syntax notation
would be columns (4) and so on. There is no schematic advantage to using one
style of expression over the other, but I included the numeric expression here
so you can be aware of it, and use it in your macros if it feels more intuitive for

you to do so.

It’s a good practice when constructing UserForms to give the users an indication that confirms what
they’ve just done. In this example, a Label control can be near the CommandButton that confirms

the visible or hidden status of column C, with the following code:

Private Sub CommandButtonl_Click()
Columns (3) .Hidden = Not Columns (3).Hidden

Labell.Caption = "Column C is " & _
IIf(Columns(3).Hidden = True, "hidden", "visible")
End Sub

TextBoxes

A TextBox is most commonly used to display information that is
entered by a user, or is associated with a cell through the TextBox’s
ControlSource property, or is entered programmatically, such as
to display a calculation result or a piece of data from a worksheet
table. You have probably seen TextBoxes when you’ve entered infor-
mation on electronic forms, such as when you’ve entered your name,
address, and credit card number when making a purchase online.

Figure 19-3 shows a UserForm with three TextBox controls. In
this example, I’ve entered my first and last name, and a password
that is represented in the figure as a series of asterisks. UserForms
are a good way to greet your user and ask for a password with a
TextBox, and with the TextBox’s PasswordChar property, you can
set any character (in this case an asterisk) to appear instead of the
password, so no one else sees the password as it is being typed.

TextBox example

First name Last name
[Tom | urtis

Enter password to proceed:
I P

FIGURE 19-3

Formatting of TextBoxes is limited to the entire TextBox entry. For example, if
you want any portion of the TextBox’s contents to be bold, the entire contents

must be bold.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Frequently Used UserForm Controls | 235

Sometimes you will want a TextBox to accept only numeric entries, such as a dollar figure, or a
calendar year, or a person’s age in years. The following code monitors each keystroke entry into
TextBox1, and disallows any character that is not a number. As a courtesy to the user, a message
appears to immediately inform the user that an improper character was attempted and disallowed.

Private Sub TextBoxl_KeyPress (ByVal KeyAscii As MSForms.ReturnInteger)
Select Case KeyAscii

Case 48 To 57

Case Else

KeyAscii = 0

MsgBox "You typed a non-numeric character", _

vbExclamation, _

"Numbers only, please!"

End Select

End Sub

@ In the preceding code example, you might not be familiar with the term “ASCII”
(pronounced “askee”), which is an acronym for American Standard Code for
Information Interchange. Computers can only understand numbers, so a numer-
ical representation is needed for alphanumeric characters and other symbols
such as # and @. In the preceding code, numbers 0-9 are recognized by virtue of
their ASCII representation of 48=57. If you'd like to see a list of all 255 ASCII
and Extended ASCII characters, you can produce it yourself on an Excel work-
sheet by entering the formula =CHAR (Row ()) in cell A1, and copying it down to
cell A25S. Each cell will hold a character (some characters will not be visible)
whose ASCII number will correspond to the cell’s row number.

TextBoxes can display calculated results, and when using numbers for mathematical operations,
you’ll need to use the Val function, which returns the numbers contained in a TextBox string as a
numeric value. Suppose your UserForm contains seven TextBoxes, into which you enter the sales
dollars for each day of the week. As shown in Figure 19-4, an eighth TextBox can display the sum
of those seven numbers when a CommandButton is clicked, with the following code:

Private Sub CommandButtonl_Click()

Dim intTextBox As Integer, dblSum As Double

dblSum = 0

For intTextBox = 1 To 7

dblSum = dblSum + Val (Controls ("TextBox" & intTextBox) .Value)
Next intTextBox

TextBox8.Value = Format (dblSum, "#,###")

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

236 | LESSON19 USERFORM CONTROLS AND THEIR FUNCTIONS

=
Daily Sales

Sunday 108
Monday 123

Tuesday 214
Wednesday 233
Thursday 382

Friday 144

Saturday 176

eekl Total 1,380
Sum the Dally Sales| Exit |

FIGURE 19-4

ListBoxes

A ListBox displays a list of items and lets you select one or more. ListBoxes are fairly versatile in
their display of information, and their options for allowing you to select one, many, or all listed
items.

Suppose you want to list all 12 months of the year, so any particular month can be selected to per-
haps run a report for income and expenses during that month. You might also want the flexibility
to run a single report that includes activity for any combinations of months. The ListBox control
is an excellent choice because its MultiSelect property can be set to allow just one item, or mul-
tiple items, to be selected. Figure 19-5 shows an example of how you can control the way the items
appear with the ListStyle property, and selection options for your ListBox (allow only one, or
more than one item to be selected) with the Multiselect property.

x
Single or Multiple Select Single Select Multiple Select
Plain Style Option Style Option Style
January © January O January
February © February February
March Q March]
April © April O April
May CIETAN O May
June Q June O June
July © July O July
August © August
September O September O September
October © October
November O November O November
December O December O December
FIGURE 19-5

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Frequently Used UserForm Controls | 237

There are two common methods by which a ListBox is populated with items. In the preceding
example, the 12 months of the year could be listed on a worksheet, say on Sheet2 in range A1:A12.
To have the ListBox display the list of months, you can enter Sheet2!a1:A12 as the RowSource
property for that ListBox.

In many cases, however, you’ll want to populate your ListBox without having to store the items

on a worksheet. The UserForm’s Tnitialize event is perfect for populating your ListBox with a
dynamic or static list of items. Suppose you want to list the names of various countries. The follow-
ing code does that using the AddTtem method in the UserForm’s Tnitialize event, which you can
easily append when you want to add or omit a country name.

Private Sub UserForm_Initialize()
With ListBoxl

.AddItem "England"

.AddItem "Spain"

.AddItem "France"

.AddItem "Japan"

.AddItem "Australia"

.AddItem "United States"

End With

End Sub

When you programmatically populate a ListBox (or, as you'll see, a ComboBox),
be sure to clear the control’s RowSource property or you will get a runtime error
when you call (initialize) the UserForm.

The following code lists all the visible worksheets in your workbook, and excludes the worksheets
that are hidden:

Private Sub UserForm_Initialize()

With ListBoxl

.Clear

Dim wks As Worksheet

For Each wks In Worksheets

If wks.Visible = xlSheetVisible Then .AddItem wks.Name
Next wks

End With

End Sub

ListBoxes support many events, and using the click event, for example, this code activates the
worksheet whose name you click, with the ListBox’s MultiSelect property set to
0 - fmMultiSelectSingle:

Private Sub ListBoxl_Click()

Worksheets (ListBoxl.Value) .Activate
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/
detlef
Hervorheben

238 | LESSON19 USERFORM CONTROLS AND THEIR FUNCTIONS

ComboBoxes

A ComboBox combines the features of a ListBox and a TextBox, in that you can select an item from
its drop-down list, or you can type an item into the ComboBox that is not included in its list. Most
of the time, you’ll use the ComboBox the same way you’d use Data Validation, where a drop-down
arrow is visible for revealing the list of items that are available for selection.

If you want to limit the ComboBox to only accept items from the drop-down
list, set its Style property to 2 - fmStyleDropDownList.

ComboBoxes allow only one item to be selected; you cannot select multiple items in a ComboBox the
way you can with a ListBox. However, ComboBoxes are populated much the same way as ListBoxes,
with a RowSource property and an AddTtem method.

Suppose you want to guide the users of your workbook to select a year that =
is within three years — past or futu.re — of the current year. The followigg [ty
code could accomplish that, with Figure 19-6 showing the ComboBox’s list 1
after the drop-down arrow was clicked, assuming the current year is 2011: 2008
2009
Private Sub UserForm_Initialize()
with ComboBoxl 5015
.Clear 2013
2014

Dim iYear As Integer, jYear As Integer
jYear = Format (Date, "YYYY")

For iYear = 1 To 7 m

ComboBox1.AddItem jYear - 3

jYear = jYear + 1
Next iYear

End With

End Sub

FIGURE 19-6

As with a ListBox, if the items needed to populate the ComboBox are listed on a worksheet, it does
not mean you must refer to them with the RowSource property. You can leave the RowSource prop-
erty empty, and populate the ComboBox (same concept applies to a ListBox) with the following
code example, assuming the values are listed in range A1:A8 with no blank cells in that range:

Private Sub UserForm_Initialize()
ComboBox1.List = Range("Al:A8") .Value
End Sub

If you want the first item in the drop-down list to be automatically visible in
your ComboBox, you can add the following line before the End sub line, assum-
ing the ComboBox is named ComboBox1:

ComboBox1l.ListIndex = 0

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Frequently Used UserForm Controls | 239

Sometimes you’ll need to populate the ComboBox (or ListBox) with items listed in a range that
also contains blank cells. Figure 19-7 shows how horrible that will make the drop-down list
look, if the ComboBox was attempted to be populated with the line of code comboBox1.List =
Range ("Al1:A8") .Value.

A B c D E
< x
i Select a name:
4 |Tom
2 Bill J
6 |Mike Bob
7
8 |Jim Tom
9)
T Mike
o Jim
)
:
14
15
FIGURE 19-7

Much nicer looking is Figure 19-8, which shows empty spaces in its drop-down list even though
empty cells exist among the list of names. The code to do that is shown here, which uses the LEN
function to disregard cells that have no value in them.

Private Sub UserForm_Initialize()

Dim LastRow As Long, cboCell As Range

LastRow = Cells(Rows.Count, 1).End(x1lUp) .Row

For Each cboCell In Range("Al:A" & LastRow)

If Len(cboCell) > 0 Then ComboBoxl.AddItem cboCell.Value
Next cboCell

End Sub
A B z D E
1 zl
: Select a name:
4 |Tom
2 Bill J
6 Mike Elclpb
7 Tom
8 |Jim Mike
: Jim
10
1
[12]
13
:
15
FIGURE 19-8

www.it-ebooks.info

http://www.it-ebooks.info/

240 |

LESSON 19 USERFORM CONTROLS AND THEIR FUNCTIONS

CheckBoxes

A CheckBox on your UserForm can serve one of
two purposes: to provide users with an option that
is of the Yes/No variety, without a superfluous
Message Box to present the option, or to provide a

pair of OptionButtons (covered in the next section).

Simply, a single CheckBox is inferred to mean Yes
or OK if it is checked, and No if it is not checked.

As you develop more complex UserForms, you will
want to provide your users with convenient options
for viewing — or not viewing — interface objects
that might be irrelevant to them in some cases,

and useful in others. For example, Figure 19-9
shows the same UserForm in two situations, where
the user can check or uncheck the CheckBox cap-
tioned Show List of Months. If the CheckBox is
unchecked, neither the ListBox nor the Label above
it will be visible, but if the CheckBox is checked,
those controls do appear. The code associated with

the CheckBox follows.

Private Sub CheckBoxl_Click()
With CheckBoxl

If .Value = True Then
Labell.Visible = True
ListBoxl.Visible = True

Else
Labell.Visible = False
ListBoxl.Visible = False

End If

End With
End Sub

CheckBox example

I"iShow List of Months

Exit

|

CheckBox example

i {Show List of Months

List of Months

January
February
March
April

May

June

July
August
September
October
November
December

Exit

|

FIGURE 19-9

&

Users appreciate having a say as to what they see on a form, which helps give
them some control over the form’s navigation process. However, as the work-
book’s developer, your primary objective is to design a smart form. In this exam-
ple, if the selection of a month name is a mandatory action in the UserForm’s
overall process, you would not consider building in the option of hiding a
ListBox of month names. You’ll often see a single CheckBox on a UserForm
when a simple preference is to be indicated, such as including a header on all
printed pages, or performing the same action on all worksheets.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Frequently Used UserForm Controls | 241

Another popular use of CheckBoxes is to =
provide the user with several options at the

same time. Figure 19-10 shows a UserForm
that asks for users to indicate which regions a ElEast Fast

Select the region(s) for this report: x|

. outh
company report should include. When the OK et ;
button is clicked, you can assign variables to s o]
each CheckBox that was checked, and incor- Lasouth
" Central

porate those variables later in a VBA decision
process that recognizes only the checked
regions. One way to accomplish that is to loop O
through each CheckBox and identify the
selected CheckBox(es), as shown in the FIGURE 19-10
following code.

Private Sub cmdOK_Click()

'Declare an Integer type variable for the five CheckBoxes.
Dim intCheckBox As Integer

'Declare a String type variable for the list of selected Checkboxes.
Dim strCheckBoxNames As String

'Open a For next loop to examine each of the 5 CheckBoxes.

For intCheckBox = 1 To 5

'If the CheckBox is selected, meaning its value is True,
'build the strCheckBoxNames string with the caption of the
'selected CheckBox, followed by a Chr(10) new line character
'for readability in the confirming MsgBox.

If Controls("CheckBox" & intCheckBox).Value = True Then
strCheckBoxNames = strCheckBoxNames & _

Controls ("CheckBox" & intCheckBox) .Caption & Chr (10)

End If

'Continue the loop until all 5 CheckBoxes have been examined.
Next intCheckBox

'Display a Message Box to advise the users what they selected.
MsgBox strCheckBoxNames, , "Regions that were checked:"

End Sub

OptionButtons

An OptionButton is used when you want the user to select one choice from a group of optional
choices. You would use a group of OptionButtons to show the single item that was selected among
the group’s set of choices. For example, on a college application form, in the gender section, an
applicant could select only Male or Female.

In Figure 19-11, a menu for running a financial report might ask the user to select the month of
activity upon which the report should be based. A group of 12 OptionButtons limits the user to only
one selection. Each OptionButton’s caption property was filled in with the name of a month.

www.it-ebooks.info

http://www.it-ebooks.info/

242

| LESSON19 USERFORM CONTROLS AND THEIR FUNCTIONS

OptionButton example [

x|

Select a Month:

© January
" February
 March

© April
 May
 June

< July

“ August

" September
" October
" November
" December

ID Selected Option

Exit |

Info about the OptionButton you select x|

MName: OptionButtond
Caption: August

[|

FIGURE 19-11

Figure 19-11 shows that the month of August was selected, and in real practice, you’d identify that
selection in your code with a variable that refers to the selected month name, and produces the
report for that month. One way to do that is to loop through each of the OptionButtons and stop
when you encounter the selected OptionButton whose value would be True.

To help make the point, there is a button on the form with the caption “ID Selected Option,”
and when you click the button, a Message Box appears, telling you the name of the selected
OptionButton and its caption. The following code examines the OptionButtons’ status and then
produces the Message Box:

Private Sub CommandButtonl_Click()

Dim intOption As Integer, optName As String,
For intOption = 1 To 12

If Controls("OptionButton" & intOption) = True Then
optName = Controls("OptionButton" & intOption) .Name
optCaption = Controls("OptionButton" & intOption) .Caption

optCaption As String

MsgBox _

"Name: " & optName & vbCrLf & _

"Caption: " & optCaption, , _

"Info about the OptionButton you selected:"
Exit For

End If

Next intOption

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Frequently Used UserForm Controls | 243

OptionButtons have a useful property called GroupName that you should be aware of. In

Figure 19-11, a simple UserForm lists 12 OptionButtons, all with the same objective of eliciting

a selection for a particular month. But what if your UserForm has other sections for user options
that require OptionButtons, such as to select a day of the week, or a print orientation preference of
Landscape or Portrait? You’ll find many reasons to apply OptionButtons to your UserForms, and
you will need each set of options to be a mutually exclusive group.

You have two ways to create a group of mutually exclusive OptionButton controls. You can

place the group inside a Frame (a control that is covered in the next section), or you can use the
GroupName property of the related OptionButtons to group them together. In Figure 19-12, the
OptionButtons have been selected in the UserForm’s design window, and the GroupName property
has been defined with the name “Months.”

Properties - frmOptionButtons [x]

x
I ;I ZZ ZZZZZZZZZZZ ZZZ_I

Alphabetic | Categorized |

Accelerator

Alignment 1 - fmAlignmentRight

AutoSize False

BackColor [&HoOECECEDS:

Backstyle 1 - fmBackStyleOpaque

Caption

ControlSource

ContralTipText

Enabled True

Font

ForeColor W &H00000000&

GroupMName St

Height 13

HelpContextiD 0

Left 48

Locked False

[MousePointer |0 - fmMousePointerDefault
PicturePosition | 7 - fmPicturePositionAboveCenter
SpecialEffect | 2 - fmButtonEffectSunken
[TabIndex

TabStop True

Tag

[Textalign 1 - fmTextAlignLeft

[Top | g
[TripleState | False | Exit [
Value False |-
Visible True
Width 87
Wordwrap | True

FIGURE 19-12

Whether organized by GroupName or a Frame control, clicking an OptionButton
sets its value to True and automatically sets the other OptionButtons in the
group (or in the Frame) to False.

Frames

Frame controls group related controls together, to provide an organized look and feel when the
UserForm calls for many controls. Figure 19-13 illustrates an example of employing a Frame.

www.it-ebooks.info

http://www.it-ebooks.info/

244 | LESSON19 USERFORM CONTROLS AND THEIR FUNCTIONS

x

— Contact Information

Hame I— " Male
StrostAddress | ¢ Femak
City l—

state [2] Posaicose]
Telephone l—

Email r

[~ Check if it is OK to email you with special offers.

FIGURE 19-13

When you place controls within a Frame control, manipulating the Frame’s properties can affect all
the controls inside the Frame. For example, assuming the Frame control shown in Figure 19-13 is
named Framel, this line of code would hide that frame along with all the controls inside it:

Framel.Visible= False

Sometimes you will want your Frame to be visible, but you want all the controls inside the Frame to
be temporarily disabled. You can disable the Frame and render its controls unusable with the follow-
ing line of code:

Framel.Enabled = False

If you test that for yourself, you’ll see a curious result, which is the controls inside the Frame are not
“grayed out” but are essentially disabled, because they are rendered useless by virtue of the Frame
being disabled. The controls themselves appear to be enabled and that can fool your users into won-
dering what’s wrong with perfectly good looking controls that do not respond to any keystrokes or
mouse clicks.

If you want to disable the actual controls inside the Frame, and make them look disabled, you must
loop through each of the controls inside the Frame with the following example code. Note that this
code will not disable Framel, only the controls inside it.

Dim FrmControl As Control

For Each FrmControl In Framel.Controls
FrmControl.Enabled = False

Next FrmControl

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Frequently Used UserForm Controls | 245

Naturally, to enable a control that’s been disabled, change the False statement to True, which you
can handle in a separate procedure, or in one single procedure with a line of code that toggles the
Enabled property using the Not statement. The following example shows how to do this:

Private Sub CommandButton4_Click()

Dim FrmControl As Control

For Each FrmControl In Framel.Controls
FrmControl.Enabled = Not FrmControl.Enabled
Next FrmControl

End Sub

MultiPages

A MultiPage control is like having a set of tabbed folders that each contain information and con-
trols that would be too voluminous to fit comfortably within the UserForm’s interface. Figure 19-14
shows an example of how a MultiPage control can come in handy when a lot of information is being
sought from the workbook’s users about their viewing preferences.

MultiPage example for Excal praferences S|

Window | Workbooks | Worksheets

¥ 8how Formula Bar
I 8how Screen Tips

P e R =]

oK Window Workbooks |Worksheets

¥ Show Worksheet Tabs
I” Show Status Bar
¥ Show Developer Tab on Ribbon

Calculation: Manual (:Autnmztu:

MultiPage example for Excel preferences [

Window | Workbooks Worksheets

I” Show Gridlines
¥ Show Row and Column Headers:
I~ Show Page Breaks

I OK Cancel

FIGURE 19-14

The MultiPage control has a collection of Page objects that are each dedicated to a theme. You can
right-click a tab to add a new page, delete the page you right-clicked, rename the page’s caption, or
move the page. MultiPage controls are a terrific way to maximize the space on your UserForm with
a smart, organized look and feel.

www.it-ebooks.info

http://www.it-ebooks.info/

246 | LESSON19 USERFORM CONTROLS AND THEIR FUNCTIONS

TRYIT

In this lesson, you design a UserForm with several controls, including a ListBox that is populated

dynamically with the ability to select multiple items.

Lesson Requirements

To get the sample database files you can download Lesson 19 from the book’s website at

WWW . Wrox . Ccom.

Step-by-Step

1.
2.

Open a new workbook and activate Sheet1.

In column A, enter the items in the cells as you see them displayed in
Figure 19-15.

Press Alt+F11 to get into the Visual Basic Editor.

Select your workbook name in the Project Explorer, and from the menu
bar click Insert = UserForm and accept its default name of UserForm1.

Change the UserForm’s caption property to Shopping List.

Select the UserForm in its design window, and if the Toolbox is not vis-

A
Milk
Eggs

Fruit
Steak
Vegetables

Bread
10 |Oatmeal

(5T - N - I . T R VOR R

12 | Potato Chips
13 |Beer

ible, click View = Toolbox. ol Cheese
16
Draw a ListBox on the UserForm and accept its default name of L}
ListBox1. Set its MultiSelect property to 1 - fmMultiSelectMulti.8. FIGURE 19-15
Draw a CommandButton on the UserForm below the ListBox and accept
its default name of CommandButton1. Change its
caption property to Transfer selected items to Sheet2
column E. Eggs
Fruit
Draw another CommandButton on the UserForm Steak
. 'egetables
below the first CommandButton, and change its cap- Bread
. . . Oatmeal
tion property to Exit. That completes the design of Potato Chips
the UserForm, which should resemble Figure 19-16 her
.. eese
when it is called.

Double-click the UserForm, which will take you
to its module. Type the code under the UserForm’s

Transfer selected items to Sheet2 column E

Initialize event that populates the ListBox with
items in column A of Sheetl, ignoring the empty

cells.

X

. e s FIGURE 19-16
Private Sub UserForm_Initialize()

Dim LastRow As Long, ShoppingListCell As Range

With Worksheets ("Sheetl")

LastRow = .Cells(Rows.Count, 1).End(x1Up).Row

For Each ShoppingListCell In .Range("Al:A" & LastRow)

If Len(ShoppingListCell) > 0 Then ListBoxl.AddItem ShoppingListCell.Value

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 247

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

Next ShoppingListCell
End With
End Sub

While in the UserForm’s module, type the code for CommandButton2 that is the Exit button:

Private Sub CommandButton2_Click()
Unload Me
End Sub

Immediately above the Code window are two drop-down lists. Click the drop-down arrow at
the left belonging to the Object field, and select CommandButton1. That will place these two
statements in the UserForm’s module:

Private Sub CommandButtonl_Click()

End Sub

For the first line of code in the CommandButton1 click event, open a with structure for
Sheet2, which is the destination sheet for selected items:

With Worksheets ("Sheet2")

Declare variables for ListBox items and NextRow:

Dim intItem As Integer, NextRow As Long

Clear column E of Sheet2 to start your shopping list with a clean slate:

.Columns (5) .Clear

Put a header in cell E1 of Sheet2, to start the list:

.Range ("E1") .Value = "Shopping List"

Define the NextRow variable as 2, because column E was just cleared and the Shopping List
header is in cell E1 with nothing below it:

NextRow = 2

Loop through all items in ListBox1 and if any are selected, list them in turn in column E of
Sheet2:

For intItem = 0 To ListBoxl.ListCount - 1
If ListBoxl.Selected(intItem) = True Then
.Range ("E" & NextRow) .Value = ListBoxl.List (intItem)

Add 1 to the NextRow variable to prepare for the next selected item:

NextRow = NextRow + 1
End If

Continue the loop until all ListBox items have been examined:

www.it-ebooks.info

http://www.it-ebooks.info/

248 | LESSON19 USERFORM CONTROLS AND THEIR FUNCTIONS

20.

21.

Next intItem

Close the with structure for Sheet2:
End With

Your final CommandButton1 code will look like this:

Private Sub CommandButtonl_Click()
'Open a With structure for Sheet2
With Worksheets ("Sheet2")

'Declare variables for ListBox items and NextRow

Dim intItem As Integer, NextRow As Long

'Clear column E of Sheet2

.Columns (5) .Clear

'Put a header in cell El

.Range ("E1") .Value = "Shopping List"

'Define the NextRow variable as 2

'because column E was just cleared and the Shopping List
'header is in cell El1 with nothing below it.

NextRow = 2

'Loop through all items in ListBox 1 and if any are selected,
'list them in turn in column E of Sheet2.

For intItem = 0 To ListBoxl.ListCount - 1

If ListBoxl.Selected(intItem) = True Then

.Range ("E" & NextRow) .Value = ListBoxl.List (intItem)

'Add 1 to the NextRow variable to prepare for the next selected item.
NextRow = NextRow + 1

End If

'Continue the loop until all ListBox items have been examined.
Next intItem

'Close the With structure for Sheet2.

End With

End Sub

To view the video that accompanies this lesson, please select Lesson 19, available
at the following website: www .wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

Advanced UserForms

Lesson 18 introduced you to UserForms and showed how to add controls to your form.
Lesson 19 provided several examples of UserForms with frequently used controls to help
you gather and store information. This lesson takes an expanded look at how you can get
more out of UserForms by tapping into their capacity for supporting some interesting and
useful operations.

THE USERFORM TOOLBAR Ungroup

Group Centering Zoom
In the Visual Basic Editor, there’s a handy toolbar for |
working with UserForms, aptly named the UserForm e L.E*Ll % e a
toolbar, shown in Figure 20-1. To display it in the VBE, T

from the menu bar click View = Toolbars = UserForm.

Bring To Front Alignments ‘
The UserForm toolbar has eight features: Send To Back Same Size

> Bring to Front — Brings the selected control to the FIGURE 20-1
front of the other controls.

Send to Back — Sends the selected control to the back of the other controls.
Group — Groups the selected controls.

Ungroup — Ungroups the selected grouped controls.

Y Y VY VY

Alignments — The small drop-down arrow to the right of the Alignments icon provides
options for aligning the selected controls by their Rights, Lefts, Centers, Tops, Middles,
Bottoms, and To Grid.

\

Centering — Centers the selected controls horizontally or vertically on the UserForm.
> Same Size — Sizes the selected controls to be of the same Height, Width, or Both.

> Zoom — Displays the UserForm as a zoomed percentage of its normal size.

www.it-ebooks.info

http://www.it-ebooks.info/

250 | LESSON 20 ADVANCED USERFORMS

If you’re working in a UserForm module and you forget the names of controls,
and you’ve selected the Require Variable Declaration option (on the Editor tab
when you click Tools &> Options in the VBE) type Me followed by a dot. You’ll
see a list of all the methods and properties for the UserForm, including the list of
control names belonging to the UserForm.

MODAL VERSUS MODELESS

Beginning with Excel version 2000, UserForms became equipped with a new property called
ShowModal. When a UserForm’s ShowModal property is set to True, that is, when it is shown as
Modal, it means that while the UserForm is visible, you cannot select a worksheet cell, or another
worksheet tab, or any of the Ribbon or menu icons until you close the UserForm. Most of the time,
this is what you will want — for the UserForm to command all focus and attention while it is visible.

At times your project will benefit from the ability to select cells and generally to navigate work-
sheets while a UserForm is visible. When that’s what you need, call the UserForm by specifying the
ShowModal property as False, for example:

Sub ShowUserForml ()
UserForml.Show vbModeless
End Sub

The preceding code line can also be written as UserForml.Show 0. The default setting for the
ShowModal property is vbModal (or the numeral 1), which you don’t need to specify when calling a
UserForm if you want it to be Modal. The code line UserForml . Show vbModal, or UserForml . Show 1,
or (which you have typically been using all along) UserForm1 . show will show the UserForm as Modal.

@ Here’s a neat trick that might interest you. When you call a UserForm as
Modeless, the UserForm will be the active object and an extra mouse click is
required to actually activate the worksheet. If you want the worksheet itself to
be the active object without manual intervention, add the line AppActivate
("Microsoft Excel") below the Show line; here is a full macro example:

Sub ShowUserForm?2 ()
UserForm2.Show vbModeless
AppActivate ("Microsoft Excel")
End Sub

DISABLING THE USERFORM’S CLOSE BUTTON

Some of your UserForms might require input before the user can proceed further. To enforce user
input, you can disable the Close button, usually located at the far right of the UserForm’s title bar.
This is not an everyday happenstance but when your project requires input at a critical point in a
process, you will need a way to keep the UserForm active until the required information is input.

www.it-ebooks.info

http://www.it-ebooks.info/

Disabling the UserForm’s Close Button | 251

UserForms have a QueryClose event that can help you control such situations. In Figure 20-2, a
Message Box appears if the “X” Close button was clicked in an attempt to close the UserForm with-
out selecting a name from the drop-down list. The code associated with that follows Figure 20-2.

Combobor cxample E =
Selecta name: . |"3 You must select a name to continue.

| [] |-
=1

FIGURE 20-2

Private Sub UserForm_QueryClose _

(Cancel As Integer, CloseMode As Integer)
'Prevents use of the Close button

'if a name has not been selected.

If CloseMode = vbFormControlMenu Then

If Len(ComboBoxl.Value) = 0 Then
Cancel = True

MsgBox _

"You must select a name to continue.",
vbExclamation,

"Name is required"

'Set Focus to the ComboBox for the user.
ComboBoxl.SetFocus

End If

End If

End Sub

Keep in mind that you’ll want to monitor the input requirement through the other controls on the
UserForm as well. The following example is associated with the Continue button:

Private Sub cmdContinue_Click()

If Len(ComboBoxl.Value) = 0 Then

MsgBox _

"You must select a name to continue.", _
vbExclamation,

"Name is required"

'Set Focus to the ComboBox for the user.
ComboBox1.SetFocus

Exit Sub

Else

Unload Me

End If

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

252 | LESSON 20 ADVANCED USERFORMS

MAXIMIZING YOUR USERFORM'’S SIZE

If you want to fill the screen with just your UserForm and nothing else, the following code in the
Tnitialize event can help you do that. Be aware that some adjustment to the code might be needed
with the zoom property, in case the UserForm is so small to begin with that its fully expanded size
exceeds the window’s Zoom capacity.

Private Sub UserForm_Initialize()
With Application

.WindowState = xI1Maximized

Zoom = Int(.Width / Me.Width * 100)
width = .width

Height = .Height

End With

End Sub

@ You don’t need to settle for the UserForm loading in the center of your screen.
You can specify the location, such as with the following example that shows the
UserForm in the top-left corner of the screen:

Private Sub UserForm_Initialize()
Me.StartUpPosition = 0

Me.Top = Application.Top

Me.Left = Application.Left

End Sub

SELECTING AND DISPLAYING PHOTOGRAPHS ON A USERFORM

An Image control helps you display a graphic object, such as a picture, on a UserForm. You have
three ways to place a picture onto an Image file — two are manual methods and one is a VBA
method.

Suppose you have a picture file on your computer, such as your company’s logo, that you want to

show for a customized look on your UserForm. You can use VBA’s LoadPicture method to load the

picture file onto the Image control when you call the UserForm, with the following example:
Private Sub UserForm_Initialize()

Imagel.Picture = LoadPicture("C:\CompanyPictures\CompanyLogo.jpg")
End Sub

This method works great, so long as the picture file exists in that folder path for every computer on
which the UserForm will ever be opened, which is not likely. As you develop UserForms for others’
use outside a shared network environment, you’ll want to manually load a picture onto an Image
control, and forego the VBA route.

www.it-ebooks.info

http://www.it-ebooks.info/

Pre-sorting the ListBox and ComboBox Iltems | 253

You can manually load an Image control in two ways. In the
Iy . . |Imagel Image ;I
UserForm’s design window, place the Image control where you want bbbt | cgore |
it on the UserForm. Activate the Image control’s Properties window T N—
. . . AutoSize False
and locate the Picture property. Placing your cursor inside the Backcolr] sr0oe0E0eeE
. L . BackStyle 1 - fmBackStyleOpaque
picture property will expose a small ellipsis button, as shown in orcercolor [l &-B00000068
. . . . BorderStyle 1 - fmBorderStyleSingle
Figure 20-3. Click that button to show the Load Picture dialog box. ContompText
. . . . Enabled True
From the LoadPicture dialog box, navigate to the picture file you it 168
. . Left 136
want to load, select it, and click the Open button. Mouseicon(vone)
MousePointer |0 - fmMousePainterDefault
I . [ETTR (orne) h—
The other manual alternative is even simpler. After you’ve added PicturcAlignmen 2 - frPictreAlgrmentCenter
. . PictureSizeMode 0 - fmPictureSizeModeClip
your Image control, select your Picture object and press Ctrl+C pictreTing _False
. . SpedalEffect 0 - fmSpedalEffectrlat
to place it onto the clipboard. Select the Image control on the oo
. \ . . . ITe 8
UserForm, select its Picture property in the Properties window, vatle T
. .. . Width 264
click inside the Picture property, and press Ctrl+V to paste the
FIGURE 20-3

picture into the Image control.

UNLOADING A USERFORM AUTOMATICALLY

Have you ever wanted to show a UserForm for a limited period of time, and then unload it without
user intervention? UserForms need not serve the sole purpose of user input. Sometimes they can be
opportunistically employed as a mechanism for a specialized greeting, or, if tastefully designed, an
informative splash screen.

Personally, I do not appreciate most of the splash screens I see when opening various software appli-
cations; many look like cheap advertisements that waste the user’s time. However, a nice opening
welcome message to customize the look and feel of your workbook can be a good thing if designed
well, but do keep the visible time to a maximum of five seconds — any longer than that is an
annoyance.

Call the UserForm as you normally would. The following code goes into the UserForm module, in
this example for a five-second appearance:

Private Sub UserForm_Activate()
Application.Wait (Now + TimeValue("0:00:05"))
Unload Me

End Sub

PRE-SORTING THE LISTBOX AND COMBOBOX ITEMS

Suppose you want to import a list of items into your ListBox (or ComboBox) such as a list of cities
in range A1:A20 as shown in Figure 20-4. You can do that easily with this event code for a ListBox:

Private Sub UserForm_Initialize()
ListBoxl.List = Range("A1l:A20") .Value
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

254 | LESSON 20 ADVANCED USERFORMS

Lists tend to be easier to work with when they are alphabetized. To handle that seamlessly for the user,
the following amendment to the preceding code is a series of loops with variables that examine each ele-
ment in the ListBox, and sorts it in ascending alphabetical order. The result is shown in Figure 20-4.

A B C D E F 5

i Tokyo ListBox sort example]|
2 |Sedul
3 |Mexico City
4 |New York List of Cities
5 |Mumbai BEiiil'Ig
6 |Jakarta Cairo
7 |sdo Calcutta
8 |Delhi Delh
9 |Osaka Detroit
10 |shanghai Jakarta
11 |Manila Karachi
12 |Los Angeles London
13 |Calcutta Los Angeles
14 |Moscow Man_lla .
15 |cairo Mexico City
16 |San Francisco Moscov_v
17 |London Mumbai

o New York
18 |Beijing Osaka
2| Karachi San Francisco
20 |Detroit Seéul
z Shanghai
= Sao
= Tokyo
24
25
2% Sort Up Sort Down |
27
2 Exit |
29
30
FIGURE 20-4

Private Sub UserForm_Initialize()
ListBoxl.List = Range("Al:A20") .Value
Dim x As Integer, y As Integer, z As String
With ListBox1l

For x = 0 To .ListCount - 2

For y = x + 1 To .ListCount - 1

If .List(x) > .List(y) Then

z = .List(y)

.List(y) .List(x)

List(x) = z

End If

Next y

Next x

End With

End Sub

Notice two additional CommandButtons near the bottom of the UserForm. One is captioned Sort
Up and the other is captioned Sort Down. Users appreciate the ability to customize the look of their
interface. If it is easier for some people to read a list from Z to A, and others from A to Z, so be

www.it-ebooks.info

http://www.it-ebooks.info/

Populating ListBoxes and ComboBoxes with Unique Items | 255

it. The following code shows an example of how each button, when clicked, will sort the ListBox.
First, ascending:

Private Sub cmdSortUp_Click()
Dim x As Integer, y As Integer, z As String
'Sort ascending

With ListBoxl

For x = 0 To .ListCount - 2

For vy = x + 1 To .ListCount - 1
If .List(x) > .List(y) Then

z = .List(y)

.List(y) = .List(x)

List(x) = z

End If

Next y

Next x

End With

End Sub

Then, descending:

Private Sub cmdSortDown_Click()
Dim x As Integer, y As Integer, z As String
'Sort descending

With ListBoxl

For x = 0 To .ListCount - 2

For y = x + 1 To .ListCount - 1
If .List(x) < .List(y) Then

z = .List(y)

.List(y) = .List(x)

List(x) = z

End If

Next y

Next x

End With

End Sub

If you were to do this in real practice, you'd eliminate the redundancy of declar-
ing the same variables for each event, and instead publicly declare them once.

POPULATING LISTBOXES AND COMBOBOXES WITH UNIQUE ITEMS

As often as not, when you load a ListBox or ComboBox with a source list of items from a work-
sheet, the range will be dynamic, meaning the length of the list will vary. Also, chances are pretty
good that the source list will contain duplicate entries, and there is no need to place more than one
unique item in a ListBox or ComboBox.

www.it-ebooks.info

http://www.it-ebooks.info/

256 | LESSON 20 ADVANCED USERFORMS

In Figure 20-5, column A contains a list of clothing items that were sold in a department store. A
unique list of these items was compiled in a ComboBox as shown in Figure 20-5, with the following
code to demonstrate how to populate the ComboBox in this manner when the length of the source
list is not known, and some cells in the source list might have no entry.

A B c D E F
1 |ltems Sold How many sold x|
2 |Jackets 32
2l Socks a Unigue List of items Sold
4 |Skirts 53
5 |Jackets 17 j
6 |Shoes 31 Jackets
7 |Socks 23 :::I"r'::
8 |Hats 72 Shoes
9 |Shoes 49 Hats
10 | Jackets 22 Pants
11 | Pants 67 Dresses
12 | Socks 73
13 |Hats 40
14 | Pants 89 Exit
15 |Hats 96
16 | Skirts 98
17 | Dresses 30
18 |Pants 55
19 |Dresses 10
20 | Skirts 99
21 | Socks 65
22 | Dresses 63
23 |Socks 33
24 | Jackets 62
25 | Shoes 71
FIGURE 20-5

Private Sub UserForm_Initialize()
'Declare variables for a Collection and cell range.
Dim myCollection As Collection, cell As Range

'Exrror bypass to set a new collection.
On Error Resume Next
Set myCollection = New Collection

'Open a With structure for the ComboBox
With ComboBoxl

'Clear the ComboBox

.Clear

'Open a For Next loop to examine every cell starting with A2
'and down to the last used cell in column A.
For Each cell In Range("A2:A" & Cells(Rows.Count, 1).End(x1Up).Row)

'If the cell is not blank...

If Len(cell) <> 0 Then

'Clear the possible error for a Collection

'possibly not having been established yet.

Err.Clear

'Add the cell's value to the Collection.
myCollection.Add cell.Value, cell.Value

'If there is no error, that is, if the value does not

www.it-ebooks.info

http://www.it-ebooks.info/

Populating ListBoxes and ComboBoxes with Unique Items | 257

'already exist in the Collection, add the item to the ComboBox.
If Err.Number = 0 Then .AddItem cell.Value
End If

'Loop to the next cell.
Next cell

'Close the With structure for the ComboBox.
End With
End Sub

@ If you want the first item in the ComboBox’s list to be visible when the UserForm
is called, add this line before the End sub line:

ComboBox1 .ListIndex = 0

To expand a bit on the possible usefulness of listing unique items in a ComboBox, see the example
in Figure 20-6, where two Label controls were added (named Label2 and Label3) to the right of
the ComboBox. When the ComboBox value is changed with the following code, Label2’s caption
reflects the value item, and Label3’s caption sums the items sold in column B for the item that was
selected in the ComboBox.

L B c D E F G H |
f orse Sold_How many sold =
2 Jackets 32
i gz‘ﬂ? :é; Unique List of Items Sold Total Shoes Sold:
5 Jackets 17 ,“"ES—LI 151
6 Shoes 31
7 Socks 23
8 Hats 72
9 Shoes 49
10 Jackets 22
11 Pants 67
12 Socks 73
13 Hats 40
14 Pants 89 Exit
15 Hats 96
16 Skirts 98
17 Dresses 30
18 Pants 55
19 Dresses 10
20 Skirts 99
21 Socks 65
22 | Dresses 63
23 Socks 33
24 | Jackets 62
25 Shoes 71
FIGURE 20-6

Private Sub ComboBoxl_Change ()

Label2.Caption = _

"Total " & ComboBoxl.Value & " Sold:"

Label3.Caption = _

WorksheetFunction.SumIf (Columns (1), ComboBoxl.Value, Columns(2))
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

258 | LESSON 20 ADVANCED USERFORMS

DISPLAY A REAL-TIME CHART IN A USERFORM

Earlier in this lesson you saw how to load a picture into an Image control. You can also create a
temporary graphic file on the fly, load that file into a UserForm’s Image control, and delete the tem-
porary graphic file, all with the user being none the wiser.

Figure 20-7 shows a list of cities, ranked by their approximate population. Elsewhere in the work-
book is a Chart sheet named Chartl with a bar chart of this city population data. You can repre-
sent the Chartl sheet’s chart in real time by exporting its image as a .gif file and loading it onto an
Image control when the UserForm is called. Figure 20-7 shows the result and following that is the
Initialize event code that handles this task.

A 8 R s
1 Population x|
2 Shanghai 13,831,900
3 Mumbai 13,830,884
4 Karachi 12,991,000 Population
5 12,565,901
& Istanbul 12,517 664 16,000,000
7 Moscow 10,563,038
8 Seoul 10,464,051
9 Beijing 10,123,000 14,000,000
10 Jakarta 9,588,198
11 Tokyo 8,887 608
12 Mexico 8,873,017 12,000,000
13 NY 8,363,710
1a London 7,753,600
15
o 10,000,000
17
18
13 8,000,000
20
2
n 8,000,000
b]

2
25

% 4,000,000
7
2
23 2,000,000
0
1}

u 0 . . T . . T . . .)
:: ShanghalMumbal Karachl Delhl Istanbul Moscow Seoul Belling Jakarta Tokyo Mexico NY London
as
- =]

37
38

FIGURE 20-7

Private Sub UserForm_Initialize()
ActiveWorkbook.Charts ("Chartl") .Export "CityPopulation.gif"
Imagel.Picture = LoadPicture("CityPopulation.gif")
Imagel.PictureSizeMode = fmPictureSizeModeZoom

Kill "CityPopulation.gif"

End Sub

You can print a UserForm, even if it is not open, with the following line:

UserForml .PrintForm

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 259

TRY IT

In this lesson you build a UserForm to browse the Internet.

Lesson Requirements

For this lesson, you design a UserForm to have the basic functionality of a web browser, including
the ability to navigate to the websites of your choice, go backward and forward to websites, and set
the initial website when the UserForm is initialized. To get the sample database files you can down-
load Lesson 20 from the book’s website at www.wrox.com.

Step-by-Step

1.
2.

10.

1.

12.

Open a new workbook and press Alt+F11 to get into the Visual Basic Editor.

If the Project Explorer window is not visible, press Ctrl+R, and if the Properties window is
not visible, press the F4 key.

In the Project Explorer window, select your workbook name, and from the menu bar click
Insert = UserForm.

In the Properties window for that UserForm, accept the default Name property of UserForm1,
set the Height property to 540 and the width property to 852.

Click the Toolbox icon, or from the menu bar click View = Toolbox.

Draw a TextBox near the upper-left corner of the UserForm. Accept the default Name prop-
erty of TextBox1, set its Height property to 24, and its width property to 252.

Draw four CommandButtons along the top of the UserForm to the right of the TextBox.
Each CommandButton should be the same size, with its Height property set at 24 and its
width property set at 120.

Name the first CommandButton cmdNavigate and label its Caption property as Navigate. Set
its Default property to True.

Name the second CommandButton cmdBack and label its Caption property as Back.

Name the third CommandButton cmdForward and label its A
Caption property as Forward. s ||

ption property =l
Name the fourth CommandButton cmdExit and label its (AR =

Caption property as Exit. =g

The final control you’ll place onto your UserForm is a [=———— acationaicontrals..
WebBrowser, and chances are its icon is not on your peleteien

Toolbox’s Cover tab. If that’s the case, right-click the Cover
tab and select Additional Controls as shown in Figure 20-8.

Customize Item

FIGURE 20-8

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

260

LESSON 20 ADVANCED USERFORMS

13. Scroll down the list of available controls and select Microsoft Web Browser as shown in
Figure 20-9. Click OK and that will place the WebBrowser icon on your Toolbox’s Cover tab
as shown in the lower-left corner of Figure 20-10.

4
Auvailable Controls:
L1 Microsaft Slider Contral, version B.0 =] 0K
1 Microsoft StatusBar Control, version 6.0 l_l
O Micrasoft TabStip Cantrol, version 6.0 Cancel
1 Microsoft Temninal Services Clisnt Control - v
O Microsoft Toolbar Contral, version 6.0
O Microsoft TreeWiew Control, version 6.0
O Micrasolt Visio Document
O Microsolt Works Calendar AlDayE vert Carl Eorl |
O Microsoft 'works Calendar AppControl
O Micrasaft Warks Calendar Banner Control Bl ’T A abl
I?M\crosoltw’mksEalendarBIockEonllol ; 2 I~ Selscted ltems Drly Fo& 2o
1 I PRGN e
Microzoft Web Browser Hld s
’7 Location C:\Windows\Sys'wWilwEdNieframe. dll ‘ @
FIGURE 20-9 FIGURE 20-10
14. Click to select the WebBrowser icon on the Toolbox just as you would with any control,

and draw a WebBrowser control onto the open area of the UserForm. Accept the default
Name property of WebBrowser1, and then set its Height property to 450 and its Width
property to 816. This completes the design of the UserForm, which in the VBE will look

like Figure 20-11.

Navigate

FIGURE 20-11

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 261

15.

16.

17.

18.

19.

The code associated with this UserForm is surprisingly simple. Double-click the UserForm

to access its module. In the Object drop-down list, select UserForm and in the Procedure
drop-down list select Initialize. The Initialize event is a single line of code that tells the
WebBrowser which website to navigate to when the UserForm initializes, similar to the
homepage setting on your web browser. In this example, I entered the website for wrox.com.
Here is the entire Tnitialize event with that navigation command:

Private Sub UserForm_Initialize()
WebBrowserl.Navigate "http://www.wrox.com"
End Sub

You have an Exit button named cmdExit, so use the Unload Me command for that:

Private Sub cmdExit_Click()
Unload Me
End Sub

Regarding the CommandButton for navigation, the process will start by the user entering a
website address in the TextBox. The user can then either click the cmdNavigate button, or
press the Enter key because you set the Default property to True for the cmdNavigate but-
ton in Step 8. Thinking ahead for more convenience, you can structure the cmdNavigate’s
Click event to assume that all web addresses start with “http://www.”, which will save the
user time and effort by just entering the web address’s domain name. For example, instead of
entering http://www.somewhere.com in the TextBox, a user need only enter somewhere.com
with this code for the cmdNavigate button:

Private Sub cmdNavigate_Click()
WebBrowserl.Navigate "http://www." & TextBoxl.Text
End Sub

All that’s left are the two buttons for Back and Forward, easily handled with the WebBrowser
control’s GoBack and GoForward methods. For both methods, on Error Resume Next is
utilized to avoid a run time error if the browsing session is at its starting or ending point
when the cmdBack or cmdForward button is clicked. Here is the code for GoBack:

Private Sub cmdBack_Click()
On Error Resume Next
WebBrowserl.GoBack
Err.Clear

End Sub

Here is GoForward:

Private Sub cmdForward_Click()
On Error Resume Next
WebBrowserl.GoForward
Err.Clear

End Sub

When you call the UserForm, Figure 20-12 shows an example that is similar to what
you will see.

www.it-ebooks.info

http://www.it-ebooks.info/

262 |

LESSON 20 ADVANCED USERFORMS

X
Exit
Al
wirox Programmer to Pr ount | Support
Home | Bookstore/E-Books P2P Programmer Forums Wrox Blogs Connect with Wrox
Find Wrox Titles Featured Wrox Titles n <3
Browse by Topkc: . Ektron Developer's Guide: Building an .
. e 1 Ektron Powered Website escorts you i
— Microsoft Servers PEER AR through the detailed steps of building a WROX E-BOOKS
ASP.NET Mobile g protolype company site, and upon 35% OFF! ®
B Ektri completion, you will have a complete ENTER FROST
i Quen Souice B and functional coded Web site thal you ! toreceive this
Database PHPMYSOL can use as a template for future | special discount.
projects. -
Py s P
dava Visual Basic
Parallel
M Wb with C#: Master Paraliel Extensions | Development
MicrosoRt Office XML with NET 4 dives Geep into the latest
technologies available to SharePoint Admin
programmers for creating professional | ook Real World
Search Titles: parallel applications using C#, NET 4, SharePoint 2007 MVE
and Visual Studio 2010, covering task-
[Enter keyword, author or ISEN based programming, coordination
data structures, PLINQ. thread pools, ALP2P forums
asynchronous programming model, A P2P forums.
Need to download code? and more.
View our list of code downloads »
lore Infa SharePoint Related
Resources
Accessible Download the Wrox chapters you
Portable Solu et e o e 1| [d

FIGURE 20-12

To view the video that accompanies this lesson, please select Lesson 20, available
at the following website: www .wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

Class Modules

Class modules — the very name has caused many an Excel VBA programmer to turn away
from the topic as if it doesn’t or shouldn’t exist. For some reason, the use of class modules is
not a skill held by many otherwise knowledgeable VBA programmers, despite the power and
flexibility class modules can provide to your workbook projects.

Class modules are not rocket science, but they are a different kind of VBA animal that takes
some extra attention to grasp. I want to express three objectives in this lesson:

> Explain what classes and class modules are.
> Describe what class modules can do for you.
> Provide examples of class modules applied to UserForm and embedded

worksheet controls.

Here is an opportunity for you to set yourself apart from the VBA crowd and learn a valuable
skill that has actually been available in Excel since Office 97. Though you won’t need class
modules for most of your projects, you’ll learn how to recognize when the time is right to use
class modules, and most importantly, how to program them.

WHAT IS A CLASS?

A class is the formalized definition of an object that you create. Your first reaction might be

to wonder why you’d ever need to create yet another object in Excel, which seemingly has no
shortage of objects. Actually, you normally don’t need to, but there will be times when your

workbook will be better off if you do.

www.it-ebooks.info

http://www.it-ebooks.info/

264 | LESSON 21 CLASS MODULES

@ It’s easy to get lost on any new topic if the emphasis on learning it is based

on definitions and theory. That is why most of this lesson relies on real-world
examples to show what class modules are all about. Though kept to a minimum,
the definitions and theory in this lesson are useful for you to gain a perspective
on class modules. If you don’t fully comprebend all definitions the first time
around, don’t worry — the VBA examples will be your biggest ally in belping
you understand the process of developing class modules.

A new class (as in classification) is like a blueprint for your created object and its properties, meth-
ods, and events. In Lesson 16 you learned about User Defined Functions; where class modules are
concerned, you can think of a class as a user-defined model for an object that you create. You’ll see
examples later in the lesson that will help clarify the theory.

WHAT IS A CLASS MODULE?

A class module is a special module in the Visual Basic Editor whose purpose is to hold VBA code
that defines classes. A class module looks like any other kind of module you have seen, and in its
own way acts like one, too. For example, whereas the code for worksheet event procedures goes
into worksheet modules, the code for creating and defining classes goes into class modules.

You create a class module in the VBE by clicking Insert &> Class Module from the menu bar as
shown in Figure 21-1. A class module is created with the default name of Class1 as shown in
Figure 21-2.

soft Visual Basic for Applications - Lesson 21.xlsm

Eile Edit View | Insert | Format Debug Run TJools AddIns Window Help

G- | 4 |~ Drocedure.. m W NFW E @

Project - VBAProject [JIERGH)

a&% Module
Class Module

@ ThisWorkbook

FIGURE 21-1

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own Objects | 265

i Microsoft Visual Basic for Applications - Lesson 21.xlsm - [Class1 (Code)] i P [=]
i@ File Edit View Inset Format Debug Run Tools Addins Window Help .8 x
90) 0 a BEFY 2 @ Eig

[(General) 7| [iDectarations) _;I

Option Explicit =

i ThiswWorkbook
-5 Class Modules
g 51

i
e
ILI

FIGURE 21-2

@ There is a one-to-one relationship between a class and a class module. A

class module provides for only one class to be defined. If you need to define
three classes in your workbook, you’ll need three class modules, one for each
class. For example, suppose you have several CheckBox controls on your
UserForm, and you want to color the Check Boxes green when they are checked,
and red when they are unchecked. Instead of coding this functionality for
every CheckBox’s Click event, you can use a class module that groups all the
CheckBoxes as a single collection object. That way, all Check Boxes respond to
the same Click event, with one VBA class procedure. If you also want some (or
all) of the CommandButtons on a UserForm in that same workbook to respond
to, say, a MouseMove event, you'd create another class module for that.

CREATING YOUR OWN OBJECTS

I started this lesson saying that many VBA programmers have avoided the topic of class modules,
and it wouldn’t surprise me if a primary culprit is VBA’s intentionally vague concept of class objects.
Seeing actual VBA examples of class modules in everyday situations is the best way to pick up the
concept of class objects.

www.it-ebooks.info

http://www.it-ebooks.info/

266 | LESSON 21 CLASS MODULES

@ Here’s the theoretical synopsis: A class is defined in a class module, and you
can think of a class as a blueprint or template for an object. In the context
of class modules, the term object can be almost any object in Excel whose
functionality you want to expand. This concept becomes clearer with VBA
examples you’ll see in this lesson dealing with controls that are embedded in
a worksheet, or are placed onto UserForms. You can have those controls all
respond to one single event, instead of needing to write numerous redundant
procedures for each control.

As you’ll see, a class module only serves the purpose of holding the code that defines (but does not
create) a class object. In some other module that is not a class module, such as a UserForm module
or workbook module (depending on the task you are solving), you can declare a variable of the class
type and create an instance of that class (known as instantiating the class) with the New keyword.
Upon instantiation, your declared variable becomes an object whose events, properties, and meth-
ods are defined by your code in the class module.

AN IMPORTANT BENEFIT OF CLASS MODULES

Suppose you have a UserForm with 12 TextBoxes, into which]
a dollar figure for budgeted expenses is to be entered for each

10 hd e

Enter your y get exp

month of the year, as in the example shown in Figure 21-3.
January li
It’s important that only numbers are entered, so you want to February [
validate every TextBox entry to be numeric, while disallowing March .
entry of an alphabetic letter, symbol, or any character other April -
than a number. The following example can handle that for May .
TextBox1 in the UserForm module: June .
Private Sub TextBoxl_ KeyPress _ July [
(ByVal KeyAscii As MSForms.ReturnInteger) August r_______
Select Case KeyAscii September li

Case 48 To 57 'numbers 0-9

October
Case Else
KeyAscii = 0 November

MsgBox "You entered a non-numeric character.", _ December [
vbCritical,
"Numbers only please!" 0K | Exit |
End Select
End Sub

FIGURE 21-3

You can maybe get away with the redundancy of writing 12

separate events to monitor the entries in each TextBox. But what happens if your project requires
100 TextBoxes, or if the numeric validation process expands to allow decimals or negative numbers?
You’d have to do a lot of updates for each TextBox, and the volume of redundant code will create a
bad design that’s destined for human error and runtime failure.

www.it-ebooks.info

http://www.it-ebooks.info/

An Important Benefit of Class Modules | 267

If you insert a class module instead, you can define an object that would be a group of 12 TextBoxes.
You can name your group object TxtGroup and declare it as a TextBox type variable. There is nothing
special about the variable name TxtGroup. I chose it because the idea is to group TextBoxes, but what-
ever object variable name makes sense to you will work just as well.

The following VBA declaration statement is a common example that gets placed at the top of your
class module. It defines the class object, and includes the withEvents keyword, which exposes the
events associated with TextBoxes:

Public WithEvents TxtGroup As MSForms.TextBox

Now that you have defined the TxtGroup variable as a TextBox type object, you can invoke it to
handle the same KeyPress event that you might have written individually for all 12 TextBoxes. As
shown in the following code, you now use the TxtGroup object to have VBA recognize the KeyPress
event triggered by keyboard data entry upon any one of the 12 TextBoxes in your TxtGroup object.
The code to handle an event for all 12 TextBoxes is the same for TxtGroup as it is for TextBox1,
except for the name of the object.

Private Sub TxtGroup_KeyPress _

(ByVal KeyAscii As MSForms.ReturnInteger)
Select Case KeyAscii

Case 48 To 57 'numbers 0-9

Case Else

KeyAscii = 0

MsgBox "You entered a non-numeric character.",
vbCritical,

"Numbers only please!"

End Select

End Sub

Keep in mind that, so far, all you have done is define the object, but it still exists only as a concept.
The next step is to create your defined object (formally known as instantiating it) to make it a work-
ing object that responds to events, and becomes associated with methods and properties. At this
moment, with the UserForm created and the class module selected with the preceding code in it,
your work in the class module is complete. Your VBE window will look similar to Figure 21-4.

The final step is to go into the UserForm module and instantiate the TxtGroup object that will be a
group of 12 TextBoxes. At the top of the UserForm module, declare a variable for 12 TextBoxes to
instantiate the TxtGroup class object, with the New keyword for the Class1 module name:

Dim txtBoxes(l To 12) As New Classl

Using the Tnitialize event, declare an Integer type variable that will assist in looping through the
12 TextBoxes. Set each TextBox as a member of the TxtGroup class.

Private Sub UserForm_Initialize()

Dim intCounterTextBox As Integer

For intCounterTextBox = 1 To 12

Set txtBoxes (intCounterTextBox) .TxtGroup =
Controls ("TextBox" & intCounterTextBox)
Next intCounterTextBox

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

268

| LESSON 21 CLASS MODULES

Your entire coding process relating to the class module is complete, and it is quite a bit shorter than
all the code you’d have amassed if you coded the KeyPress event for every TextBox! If you were to
open the UserForm and attempt a non-numeric character in any of the 12 TextBoxes, that character
would be disallowed and the Message Box would appear, looking like Figure 21-5.

/i Microsoft Visual Basic for Applications - Lesson 21z.xlsm - [Class1 (Code)] x
iFE File Edit View Inset Format Debug Run Tools AddIns Window Help
. o = Enter your monthly budget expenses:
EHE-H £ 2a@3n 9@ » n s §EF = @ !s,,.,.L'«;A:
Project - VBAProject =] |T iGroup January 1234
= 3 ! Februal
Option Explicit helhgaty 56
E-43 VBAProject (Lesson 21z.xism) March l—
-3 Microsoft Excel Objects Public WithEvents TxtGroup As MSForms.TextBox
8] sheet1 (sheett) April
- 8] Sheet2 (sheet2) Private Sub TxtGroup FeyPress _ May .
i EF] Sheet3 (Sheet3) (BvyVal KeyhAscii As MSForms.ReturnInteger) x|
.48 ThisWarkbook Select Case KeyAscii
(-4 Forms Case 48 To 57 'numbers 0-9 .
D B e wonpenses fooe io T [P —

=425 Class Modules Keyhscii = 0

MsgBox "You entersd a non-numeric character.", _
vbCritical, _
"Numbers only please!"

Properties - Class1 x] End Select
End Sub
Class1 ClassModule =

Alphabetic |cztegm,ed |

Class1
lnstancing 1 -Private ok | Ext |

FIGURE 21-4 FIGURE 21-5

CREATING COLLECTIONS

In the preceding example, you created a class for 12 TextBoxes. You knew ahead of time the number
of TextBoxes was 12 because there was a TextBox for each of the 12 calendar months. The question
becomes, what do you do if the count of inclusive TextBoxes is not known? What if your project is
so wide in scope that TextBoxes are being frequently added and subtracted from the UserForm, and
you don’t want to keep modifying the code with every change in TextBox count?

The answer is, you create a collection of TextBoxes by looping through all the controls in the
UserForm. Then, when a TextBox is encountered in the loop, it is automatically added to the collec-
tion, which is then transferred to the class object. Assuming the event code you placed in the class
module has not changed, all that needs to be adjusted is the code in the UserForm module using the
previous example. The first item of business is to prepare a declaration statement at the top of the
module that does not specify a count of TextBox names, such as the following example:

Dim TxtGroup() As New Classl

Next, the following code in the UserForm’s Tnitialize event will wrap up all the TextBoxes into
one array package using the ReDim Preserve keywords. This method does not depend on how many
TextBoxes are embedded on Sheetl; it simply collects all the ones into the TxtGroup object that it finds.

Private Sub UserForm_Initialize()

Dim intCounterTextBox As Integer, ctl As Control
intCounterTextBox = 0

For Each ctl In Controls

If TypeName (ctl) = "TextBox" Then
intCounterTextBox = intCounterTextBox + 1

www.it-ebooks.info

http://www.it-ebooks.info/

Class Modules for Embedded Objects | 269

ReDim Preserve TxtGroup(l To intCounterTextBox)
Set TxtGroup (intCounterTextBox) .TxtGroup = ctl
End If

Next ctl

End Sub

CLASS MODULES FOR EMBEDDED OBJECTS

So far, UserForms have been the backdrop for objects in a class module. You can also create a class
of objects embedded on worksheets, such as charts, pivot tables, and ActiveX controls. In the case of
ActiveX controls, it’s worth mentioning a syntax difference when referring to them.

Suppose you have an unknown number of CommandButtons on Sheet1 and you want to create a class
module to determine which button was clicked, without having to program every CommandButton’s
Click event. This example of code in a class module named Class1 demonstrates how to extract the
name, caption, and address of the cell being touched by the top-left corner of the CommandButton
object. Figure 21-6 shows the Message Box that appears when you click one of the CommandButtons.

A B B D E F G H 1 J
5
2 You just clicked me, here's my info x|
3
4 1 @ Helo, my name is "CommandButton1".
5 Have a nice day QP +y coption i "Have anice day.
6 = My top left corner is setin cell A3,
:
3
3

1 This is the second command button

Who's paying for the next round of beers?

2 Weekends are my favorite time of year

FIGURE 21-6

Public WithEvents cmdButtonGroup As CommandButton

Private Sub cmdButtonGroup_Click()

MsgBox _

"Hello, my name is ''" & _
cmdButtonGroup.Name & "''." & vbCrLf & _
"My caption is ''" & _
cmdButtonGroup.Caption & "''." & vbCrLf & _

"My top left corner is set in cell " & _
cmdButtonGroup.TopLeftCell.Address (0, 0) & ".",
64, "You just clicked me, here's my info :"
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

270 | LESSON21 CLASS MODULES

You can also tap into other events in the same class module. All that’s required is that you use the
same class object (cmdButtonGroup in this example), and that the event is supported by the object.
With CommandButtons, the Mouseover event can help you identify which button you are hovering
your mouse over by shading it orange, while all other CommandButtons on the sheet are colored gray.

[used hex codes in this example for the buttons’ BackColor property, to show
how you'd use hex in code to refer to colors. These hex values are always shown
in the Properties window of ActiveX controls for BackColor and ForeColor
properties, and I personally find them very reliable in VBA code

with any version of Excel.

Private Sub cmdButtonGroup_MouseMove _
(ByVal Button As Integer,
ByVal Shift As Integer, _
ByVal X As Single, _
ByVal Y As Single)

Dim myBtn As Object

For Each myBtn In ActiveSheet.OLEObjects

If TypeName (myBtn.Object) = "CommandButton" Then _
myBtn.Object.BackColor = &HCOCOCO 'turn all to gray
Next

cmdButtonGroup.BackColor = &H80FF& 'orange

End Sub

ﬂ As you can probably tell, despite the appearance of differently shaped
CommandButtons with comical captions, the larger point of this example
is that you can capture various properties of class objects, assign them to a
variable, and utilize that variable information in other macros, or even as
part of the class module’s event code. For example, in real practice, you
don’t need or want a Message Box to pop up and tell you which button
you just clicked; you already know that. If, for example, your project is
such that the CommandButtons’ captions have a word or phrase to be used
as a criterion for automatically filtering a table of data, this application of
flexible class module coding will save you a lot of work.

For embedded ActiveX controls, you can instantiate the collection of OLE objects, in this example
for CommandButtons, with the following code that goes into the ThisWorkbook module. Be sure to
place this example declaration statement at the top of the ThisWorkbook module:

Dim cmdButtonHandler () As New Classl

www.it-ebooks.info

http://www.it-ebooks.info/

Class Modules for Embedded Objects | 271

Finally, utilize the open event to collect the CommandButtons that are only on Sheet1. Notice the ref-
erences to the OLEObject and OLEObjects keywords when dealing with embedded ActiveX controls.

Private Sub Workbook_Open ()

Dim cmdButtonQuantity As Integer,
cmdButtonQuantity = 0

With ThisWorkbook

MycmdButton As OLEObject

For Each MYcmdButton In .Worksheets("Sheetl").OLEObjects

If TypeName (MYcmdButton.Object) =

cmdButtonQuantity = cmdButtonQuantity + 1

"CommandButton"

Then

ReDim Preserve cmdButtonHandler (1 To cmdButtonQuantity)
Set cmdButtonHandler (cmdButtonQuantity) .cmdButtonGroup _

= MYcmdButton.Object

End If

Next MYcmdButton

End With

End Sub
Not all controls recognize the same event types though, A B g
so you’d need to set a class event that the object type can ;
recognize. 3 Apartment Community

4 Capital Expense Approval
There is another technique using the collection keyword :
. . . . New Roof
for grouping the same types of objects into a class. In this 7
example, Sheetl has a number of embedded CheckBox : I" Redesign Landscape
controls, and you want to write one small piece of VBA) I New Swimming Pool
code that will apply to all CheckBoxes. L
:

. . 13
The visual effect you wanthls' er any CheckBox on =
Sheet1 to be shaded black if it is checked, and white if it 15
is unchecked. Figure 21-7 shows the differences in color B [Install Tennie Court
shading depending on the status of the CheckBoxes. E
The code to do this is surprisingly minimal. Insert a new FIGURE 21-7

class module, and assuming it is named Class2 because
you already have a Class1 module established, this code
will go into the Class2 module:

Public WithEvents grpCBX As MSForms.CheckBox

Private Sub grpCBX_Click()
With grpCBX

If .Value = True Then

.BackColor = &HO& 'Black background
.ForeColor = &HFFFFFF 'While font

Else

.BackColor = &HFFFFFF 'White background
.ForeColor = &HO& 'Black font

End If

End With

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

272 | LESSON 21 CLASS MODULES

The rest of the code goes into the ThisWorkbook module. It instantiates the grpCBx object and is
refreshed each time the workbook opens by utilizing the workbook_Open event.

Public myControls As Collection

Private Sub Workbook_Open ()

Dim oleCtl As OLEObject, ctl As Class2

Set myControls = New Collection

For Each oleCtl In Worksheets("Sheetl").OLEObjects
If TypeOf oleCtl.Object Is MSForms.CheckBox Then
Set ctl = New Classl

Set ctl.grpCBX = oleCtl.Object

myControls.Add ctl

End If

Next

End Sub

TRY IT

In this lesson you create a class module to handle the c1ick event of some of the OptionButtons on
a UserForm, purposely not involving all OptionButtons in the class.

Lesson Requirements

For this lesson, you design a simple UserForm with eight OptionButtons, of which only five will be
a part of a class module that identifies which OptionButton by name and caption was clicked. To
get the sample database files, you can download Lesson 21 from the book’s website at http: / /www

.wrox.com/.

Step-by-Step
1. Open a new workbook.
2. Press Alt+F11 to get into the Visual Basic Editor.

3. From the menu bar, click Insert = UserForm, and size the UserForm to a Height of 200 and a
Width of 400.

4. Draw a Label control near the top-left corner of your UserForm, and caption it as
OptionButtons In Class Module.

5. Draw a Label control near the top-right corner of your UserForm and caption it as Other
OptionButtons. Figure 21-8 shows how your UserForm should look so far.

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 273

FIGURE 21-8

Under the first Label control, draw a vertical column of five OptionButtons. A fast way to do
this is to draw one OptionButton, and then copy and paste it four times. Change the captions
of those five OptionButtons to Apples, Bananas, Peaches, Grapes, and Oranges, as shown in
Figure 21-9.

(Class Module Test With OptionButtons E x|

. OptionButt: in Class Modul -+ - Other OptionButtons: - - -

... CApples
. £ Bananas

... T Peaches

1. Grapes

. COranges

FIGURE 21-9

Paste three more OptionButtons below the second Label control. Change the captions of those
three OptionButtons to Plums, Pears, and Tangerines. You now have eight OptionButtons

on your UserForm, all with different captions that are the names of fruits. The actual VBA
names of the eight OptionButtons have not changed — they all are still named by default as
OptionButton1, OptionButton2, and so on, to OptionButton8. For example, if you were to
select the OptionButton that is captioned Oranges, you would see in its Properties window that
it is named OptionButton3. Figure 21-10 shows how your UserForm looks at this point.

*' OptionButtons in Class Module - - Other OptionButtons -

‘CApples Ui CPums

.. © Bananas S C Pears

i Peaches iiiiiiiiiii O Tangerines

”f"Grapes L

' ¢ Oranges

FIGURE 21-10

www.it-ebooks.info

http://www.it-ebooks.info/

274 | LESSON 21 CLASS MODULES

10.

1".

Draw a CommandButton in the lower-right corner of the UserForm. Name it cmdExit and
caption it as Exit.

Double-click the cmdExit button, which will take you into the UserForm’s module, with the
cmdExit button’s click event ready for your code. Type Unload Me, and your UserForm
module in the VBE will look like Figure 21-11.

i Microsoft Visual Basic for Applications - Lesson 21.xlsm - [UserForm (Code)]

File Edit View Insert Format Debug Run Tools AddIns Window Help Type a question for help

i s I T T " -) |- HEE RN
[emdexit =] [ciex

Option Explicit

Sheet1 (Sheet1)
Sheet2 (Sheet2)
Sheet3 (Sheet3)
| L e ThisWorkbaok
(=1-£24 Forms
- |

Private Sub cmdExit Click()
Unload Me
End Sub

[T |

1]

Propertics - UserForm1

IUserForml UserForm
Alphabetic Irjtggm'ilgd |
UserForm1
[sHB000000F&
W sHE00000124
0 - fmBorderStyleNone
Class Module Test With OptionButtons
0 - fmCydeAlFarms
32000
True

e

Tahoma -
W =HE00000124

FIGURE 21-11

Insert a class module. From the menu bar, click Insert & Class Module and accept the default
name of Class1. Your cursor will be blinking in the Class1 module’s Code window.

The purpose of this particular class module is to capture an event that is associated with
OptionButton controls. At the top of the Class1 module, publicly declare a variable that
refers to the group of OptionButtons you will involve in the class module code. In that same
statement, expose the events associated with OptionButtons using the withEvents keyword.
The following statement accomplishes this task:

Public WithEvents OptGroup As msforms.OptionButton

There is nothing special about the optGroup variable name; you can give your
class module variable whatever name makes sense to you. What makes sense to
me is that [am grouping some OptionButton controls for a demonstration, so
OptGroup Is an intuitive name.

12.

To demonstrate the point of this lesson, you can use the click event for your optGroup
class. A Message Box will display the name and caption of the OptionButton that was clicked
if that OptionButton is included in the class. Figure 21-12 shows how the VBE will look after
inputting the following class module code.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 275

i Microsoft Visual Basic for Applications - Lesson 21.xism - [Class1 (Code)]

@ Eile Edit View [nset Format Debug Run Tools Add-Ins Window Help

E-H 4 oEsA e » o abkd BEY > @ wizon

!mﬁggpé;

Project - VBAProject x|

IOptGronp
= 3 B . =
Option Explicit
- & VBAPraject (Lesson 21.xdsm)
(=42 Microsoft Excel Objects Public WithEvents OptGroup As msforms.CptionButton
- heet1 (Sheetl)
heet2 (Sheet2) Private Sub OptGroup Click()
heet3 (Sheets) MsgBox
. ThiswWorkbook "Hello, my name is " & OptGroup.Name & "." & vbCrLf & _
=5 Forms "My caption is " & OptGroup.Caption & ".", _
UserForm1 vbInformation, _
=425 Class Modules "You just clicked me, here's my info :"
[(Class1 End Sub
Properties - Class1
Class1 ClassModule |
Alphabetic | categorized |
Class1
Instancing 1 - Private
FIGURE 21-12
Private Sub OptGroup_Click()
MsgBox _
"Hello, my name is " & OptGroup.Name & "." & vbCrLf & _

"My caption is " & OptGroup.Caption & ".",

vbInformation,

"You just clicked me, here's my info :"

End Sub

If this were an actual workbook project, you would not need a Message Box
to tell you which OptionButton was just clicked. More realistically, you might
assign a String type variable to the selected optGroup.Caption if that caption

string is needed as part of an operation elsewhere in your project.

13.

14.

Return to the UserForm module. At the top of the module, identify which OptionButtons you
want to be grouped into the OptGroup class. For this example, the first five OptionButtons
will be grouped, so create an instance of the optGroup class with the New keyword for the

Class1 module name:

Dim optButtons(l To 5) As New Classl

The UserForm’s Tnitialize event is a good opportunity to do the actual grouping of the
five OptionButtons. From the Object drop-down list select UserForm, and in the Procedure
drop-down list select Initialize. VBA will enter the UserForm_TInitialize and End Sub
statements with an empty space between the two lines, as follows:

Private Sub UserForm_Initialize()

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

276 | LESSON 21 CLASS MODULES

15.

16.

17.

18.

19.

20.

21.

Declare an Integer type variable that will help loop through the five OptionButtons that will
become a part of the class module:

Dim intCounterOptionButton As Integer

Open a For Next loop to loop through the five OptionButtons:

For intCounterOptionButton = 1 To 5

Set each of the five OptionButtons as members of the OptGroup class:

Set optButtons (intCounterOptionButton) .OptGroup = _
Controls ("OptionButton" & intCounterOptionButton)

Continue and close the For Next loop with the Next statement:

Next intCounterOptionButton

All of your coding is complete. The entire UserForm module contains the following

VBA code:

Option Explicit
Dim optButtons(l To 5) As New Classl

Private Sub UserForm_Initialize()

Dim intCounterOptionButton As Integer

For intCounterOptionButton = 1 To 5

Set optButtons (intCounterOptionButton) .OptGroup = _
Controls ("OptionButton" & intCounterOptionButton)
Next intCounterOptionButton

End Sub

Private Sub cmdExit_Click()
Unload Me
End Sub

Test your class module by showing the UserForm. Press Ctrl+G to open the Immediate win-
dow, type the statement UserForml.Show, and then press the Enter key.

Click any of the five OptionButtons on the left to display the Message Box that identifies the
name and caption of the OptionButton you click. In Figure 21-13 I clicked OptionButton4,
having the caption Grapes. The OptionButtons on the right side of the UserForm are not
included in the class, and if clicked will not invoke a Message Box.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 277

Hello, my name is OptionButton4.
My caption is Grapes.

FIGURE 21-13

To view the video that accompanies this lesson, please select Lesson 21, available
at the following website: www.wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

22

Add-Ins

Add-ins are a useful feature in Excel, considered by many Excel developers to be an indispens-
able tool when distributing their custom projects to a wider audience. Anyone can create an
add-in — it’s the kind of thing that’s easy to do once you know how. This lesson discusses the
concept of add-ins and how to incorporate them into your Excel projects.

This lesson discusses standard Excel add-ins. Two other types of add-ins exist that
are not developed with VBA and are not discussed in this lesson. One of the other
types is called cou add-ins, developed with languages such as Visual Basic, C++,
and J++ that support Component Object Model components. The other type is
DLL add-ins, which are Windows files known as Dynamic Link Library files.

WHAT IS AN EXCEL ADD-IN?

An Excel add-in is a special type of Excel workbook that has been converted to an add-in file.
There is no magic to the add-in conversion process, but after you create an add-in file, you’ll
notice its unique characteristics:

> The file extension is.x1a for Excel versions prior to 2007, and .xlam for Excel versions
2007 and 2010.

> Add-ins are always hidden; you do not open and view them as you would an Excel
workbook.

You cannot show sheets of any kind belonging to the add-in file.

The add-in file is not recognized as an open workbook in the workbooks collection.

www.it-ebooks.info

http://www.it-ebooks.info/

280 | LESSON 22 ADD-INS

WHY CREATE AN EXCEL ADD-IN?

Add-ins commonly use VBA macros, event procedures, User Defined Functions,
and UserForms to make everyday tasks faster and easier to accomplish. Many Excel
users don’t find the need to create an add-in, but here are some reasons why you
might want to:

>

Add-in files are hidden and therefore provide seamless integration to open
Excel workbooks. Novice Excel users won’t need to worry about opening
an add-in once it’s been loaded, and they won’t wonder about an extra open
Excel file because add-ins cannot be seen or unhidden.

Even if the macro security is set to its most restrictive level, the VBA program-
ming for an installed add-in can still run.

Add-ins open automatically when Excel starts.

The custom feature(s) contained within the add-in file are usually available to
any of the open workbooks.

The programming code is contained in the add-in file itself, and does not travel
with the workbooks that use it. This gives you more control over how the file
is distributed and who can access its code.

Where add-ins really shine is in their ability to perform actions on several
objects, such as cells or sheets, that if done manually would be cumbersome,
time-consuming, and require some knowledge of Excel for the user to com-
plete. Novice Excel users will especially appreciate the ease of clicking a but-
ton to do tasks that they might not know how to do manually, or might not
know the most efficient methods by which to handle those tasks quickly.

CREATING AN ADD-IN

You create an Excel add-in file manually, but you make its features available by using VBA. To cre-
ate an add-in, the first thing you do is open a new workbook. Because you’ll be adding VBA code
that will become the add-in’s functionality, you’ll want to test and retest your code before releasing
the add-in for others to use. I mention this obvious point because if your add-in deals with manipu-
lating worksheets in the active file, you’ll need to observe the code’s effect on those worksheets to
make sure everything is working properly. Once you convert the workbook to an add-in, you’ll no
longer be able to view the worksheets, so you’ll want to construct and test all your code before con-

verting your workbook as an add-in.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Add-In | 281

PLAN AHEAD FOR BEST RESULTS

Any workbook can be converted to an add-in file, but not every workbook after

it is created is a good candidate as an add-in. When I create an add-in, I know in
advance what features I want the add-in to have, and what kind of code to avoid.
This is important, because the add-in file is a hidden workbook that cannot contain
code for activating a sheet or a range of cells.

You are allowed to write data to your add-in file, but you cannot activate the add-
in file at any time. If you want to keep any data you’ve written to the add-in file,
you’ll need to save the file in the Workbook_BeforeClose event, because when an
add-in closes, it does not prompt the user to save unsaved changes.

Suppose you want to create an add-in that offers the options to hide, unhide, protect, or unprotect mul-
tiple worksheets. A novice Excel user might perform these tasks one sheet at a time — quite an under-
taking if the workbook contains dozens or hundreds of worksheets, and the tasks are a frequent chore.

In your new workbook that is destined to become an add-in, press the Alt+F11 keys to go to the
Visual Basic Editor. From the VBE menu bar, click Insert & UserForm. If the Properties window is
not visible, press the F4 key. Follow these steps to create the add-in:

1. Select your new UserForm in its design area. In the Properties window, name the UserForm
frmSheetManager, enter its caption as Sheet Manager, and set its Height property to 210 and
its Width property to 276.

2. Place the following controls on your UserForm:

>

A Label control near the top, setting its Width property to 228, and its Caption prop-
erty to Please select your action.

An OptionButton control below the Label control, keeping the default name
OptionButtonl, setting its BackColor property to white, its Width property to 228,
and its Caption property to Unhide all sheets.

A second OptionButton control below optionButtoni, keeping the default name
OptionButton2, setting its BackColor property to white, its Width property to 228,
and its Caption property to Hide all sheets except active sheet.

A third OptionButton control below optionButton2, keeping the default name
OptionButton3, setting its BackColor property to white, its Width property to 228,
and its Caption property to Protect all sheets.

A fourth OptionButton control below optionButton3, keeping the default name
OptionButton3, setting its BackColor property to white, its Width property to 228,
and its Caption property to Unprotect all sheets.

www.it-ebooks.info

http://www.it-ebooks.info/

282 | LESSON22 ADD-INS

> A CommandButton near the bottom-left corner [sheetManager

of the UserForm, setting its Name property to = Please selectyour action:

cmdOK, and its Caption property to OK.

. Unhide all sheets

> A CommandButton near the bottom-right cor- . © Hide all sheets except active sheet

X

ner of the UserForm, setting its Name property .. CProtectall sheets
to ecmdExit, and its Caption property to Exit. ;1 O Unprotect all sheets
Your UserForm will end up looking like Figure 22-1. Ok l =
The design work is complete for your UserForm. In the
FIGURE 22-1

UserForm module, enter the following code, which is mostly
triggered by the cmdok button’s c1ick event. The requested
task will be performed depending on whichever OptionButton
was selected.

Private Sub cmdOK_Click()

'Declare an Integer type variable to help loop
'through the worksheets.
Dim intSheet As Integer

'Open a Select Case structure to evaluate each OptionButton.
Select Case True

'If OptionButtonl was selected:

'Unhide all sheets.

Case OptionButtonl.Value = True

For intSheet = 1 To Sheets.Count

Sheets (intSheet) .Visible = x1SheetVisible
Next intSheet

'If OptionButton2 was selected:

'Hide all sheets except active sheet.

Case OptionButton2.Value = True

For intSheet = 1 To Sheets.Count

If Sheets(intSheet) .Name <> ActiveSheet.Name Then
Sheets (intSheet) .Visible = xl1SheetHidden

End If

Next intSheet

'If OptionButton3 was selected:

'Protect all sheets.

Case OptionButton3.Value = True

For intSheet = 1 To Sheets.Count
Sheets (intSheet) .Protect

Next intSheet

'If OptionButtond was selected:

'Unprotect all sheets.

Case OptionButton4d.Value = True

For intSheet = 1 To Sheets.Count
Sheets (intSheet) .Unprotect

Next intSheet

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Add-In | 283

'If no OptionButton was selected:

Case Else

MsgBox "No Action option was selected",
"Please select an option"

'Close the Select Case structure.
End Select

End Sub

Private Sub cmdExit_Click()
Unload Me
End Sub

Create a small macro to call the UserForm. From the VBE menu bar, click Insert = Module and
enter the following macro:
Private Sub SheetManager ()

frmSheetmanager . Show
End Sub

After completing the VBA functionality that your add-in will provide to its users, it’s almost time to
convert the workbook to an add-in. There is an additional step you can take to add a description to

the file’s Properties information. It’s purely optional that you do this, but it’s a good habit to get into
because it will help the add-in’s users know what the add-in does.

The process for accessing the file’s Properties information depends on your version of Excel. To
access the Properties dialog box in Excel versions prior to 2007, click File = Properties from the
worksheet menu bar as shown in Figure 22-2. In the Properties dialog box, some fields may already
be entered for you by default. As you will see later in this lesson, the most useful information to
enter is the Title and Comments fields, as indicated in Figure 22-3.

Book1 Properties |£|
| General | Summary | Statistics | Conkents | Custom |

3 Microsoft Excel - Book1

H File | Edit View Inser! ormat Tools Data FlashPaper itle:

File | Edit Y Insert Format Tools Data Flashp Title ShestManagsr
= L] ew. Ctri+h Subject: |Lessun 22, Excel add-ins |
(| open 0
bt Author: |Thomas Urtis |
Close b
1 ;

|| s s Manager: | |
3 Save fis... Companty ! |Atlas Programming Management, Inc. |

% &y Save as web Page...

e i Ee—— Category: | Add-ins |
7 | Fie search... Keywords: | |
g
g Permission r Comments: | Add-in example For tasks on mulkiple sheets.

10 ‘Wb Page Preview

11
12| (e S o Hyperlink | |
13 | Print Area » base:

14 || & Print Preview Template:

15

5| &4 Print... Chr+P [1save preview picture
17 Send To »

_12 Properties

www.it-ebooks.info

http://www.it-ebooks.info/

284 | LESSON 22 ADD-INS

To reach the Properties information in Excel version 2007, éa FERCEOL
click the round Office button near the top-left corner

Prepare the document for distribution

New
of your window. You will see a vertical pane on the s Froperts
i i i . open e e B e]
left side of the window. Click Prepare, and then in the ® A0
=", Inspect Document
Save @l”l Check the workbook for hidden metadata

pane on the right, click Properties, as shown in i
Figure 22-4. =y savess > gﬁj Encrypt Document

Increase the security of the workbook by
adding encryption

M b Add 2 Digital Signature
5 Ensure the integrity of the warkbook by
adding an invisible digital signature,

Prepare > Mark as Final
Let readers know the workbook is final and

make it read-only.

B ﬁ Run Compatibility Checker

Check for features not supported by earlier

To reach the Properties information in Excel version
2010, click the File tab on the Ribbon, and in the ver-
tical pane at the left, click Info. At the far right, you
will see a Properties label with a drop-down arrow.

Send >

@é@%ﬂ:bg

versions of Excel

. EEE'. Publish »
As indicated in Figure 22-5, selecting the Advanced
. L
Properties item in the drop-down list displays the oo
Properties dialog box.
FIGURE 22-4
EH9- &= Lesson 22 - Microsoft Excel @ o= B 5
_.m Home Insert Pagelayout Formulas Data Review View Developer Format o @ o & =
[save _
Information about Lesson 22 .
Save As
C:\Backup2010\Wiley\Chapter Lessons\Chapter 22\... k 8
5 Open
L4 Close AE5 e
Permissions
g} A Tk Ao
change any part of this Properties ~
Protect workbook. B
Recent Workbook = > Show Document Panel
— =) Edit properties in the Document
. Panel above the workbook.
ew
G ~/igd] Advanced Properties
. = Prepare for Sharing E Show the Properties dialag box.
Print (= Before sharing this file, be aware
= that it contains: T e
save & Send Check for Document properties and g s Gt s
Issues - author's name Created 1/19/2011 6.
et Content that people with Last Printed
©P disabilities are unable to
read
£ Options Related People
Author Tom Urtis
Exit iana
I Versions g 3
,7@ A1 There are no previous Last Modified By Tom Uttis
versiens of this file.
VMEI"EQE Related Documents
ersions -
. Open File Location

FIGURE 22-5

CONVERTING A FILE TO AN ADD-IN

The easiest way to convert a file to an add-in is to save the file as an Excel Add-in type. In ver-

sions of Excel prior to 2007, from the worksheet menu click File &> Save As. In the Save As dialog
box, navigate to the folder where you want the add-in to reside. In Figure 22-6, I named the file
SheetManager, and I created a subfolder named My Addins. From the Save As Type field’s drop-
down list, select Microsoft Office Excel Add-In, as shown in Figure 22-6, and click the Save button.

For version 2007, click the Office button and select Save As. For version 2010, click the File tab and
select Save As. In the Save As dialog box, navigate to the folder where you want the add-in to reside,
and give the file a name. As shown in Figure 22-7, select Excel Add-In from the Save As Type drop-

down list and click the Save button.

www.it-ebooks.info

http://www.it-ebooks.info/

Converting a File to an Add-In | 285

Save As
Save n; ‘ [My Documents ~ | @ Q@ X o ~ Tools =
E Mame = Size Type
[C)My Addins € File Falder
My Recent .
pifaEan [L2)My Drophec: File Falder
)My Info Fils Falder
G Ay Music File Folder
k 2wy pictures File Folder
Deskbop [y Received Files File Falder
BMV Videos File Folder
<
My Documents
My Computer
@ < Il | 3
File pame: ‘SheetManager v | []
Ty Metwork
Places Save asbyps! | Microsoft Office Excel Workbook F Cancel
Texk (M3-D03) ~
5V (Macintosh) b |
€5V (M5-DOS)
DIF (Data Interchange Format)
SYLK (Symbalic Link] |
f v
FIGURE 22-6

Documents + My Documents = My Addins | Search My Addins

Organize v New folder

|»

(3] Microsoft Excel Documents library
My Addins
4 Favorites

Mame =
B Deskiop

Arrangeby: Folder *

Date modified | Type

4 Downloads No items match your search.

] Recent Places

54 Libraries
=) Documents
E| My Documents

| My Addins
My Data Sources
LI My Info
|/ Outlook Files
| Public Documents
o Music
[E5] Fictures =4l

File name: | SheetManager

Save as type: |Excel Workbook

Excel Workbook

Authers: |Exce| Macro-Enabled Workbook.
Excel Binary Workbook

Excel 97-2003 Workbook

XML Data

Single File Web Page

\Wieb Page

Excel Template

Excel Macro-Enabled Template
Excel 97-2003 Template

[Text (Tab delimited)

Unicode Text

XML Spreadsheet 2003
Microsoft Excel 5.0/95 Workbook
CSV (Comma delimited)
Formatted Text (Space deimited)
[Text (Macintosh)

[Text (MS-DOS)

CSV (Madintosh)

Csv (Ms-DOS)

DIF (Data Interchange Format)
SYLK (Symbolic Link}

Hide Folders

Excel 97-2003 Add-In
FOF

¥PS Document
OpenDocument Spreadsheet

FIGURE 22-7

www.it-ebooks.info

http://www.it-ebooks.info/

286 | LESSON 22 ADD-INS

While saving a file as an add-in, you must have a worksheet be the active sheet.
If by chance you have a chart sheet in your file and it is the active sheet, the Save
As Type drop-down list won’t include an Add-in file type.

INSTALLING AN ADD-IN

If your add-in is being distributed to other users,
the first thing you do is to deliver the add-in file to
them in some way, such as by e-mail, or on a Flash
drive if by hand delivery. In any case, your users
would save the add-in file to whatever folder they
prefer, similar to how you saved your add-in file
into a folder on your computer.

The easiest way to install an add-in is to use the
Add-Ins dialog box, which you can do from any
open workbook. In versions of Excel prior to 2007,
from the worksheet menu click Tools = Add-Ins
as shown in Figure 22-8. In versions 2007 and
2010, click the Developer tab on the Ribbon, and
select the Add-Ins icon as shown in Figure 22-9.
An example of the Add-Ins dialog box is shown
in Figure 22-10.

#5] Fle Edt View Insert Format | Inols | Data FlashPaper window Help
(03 savess., | Sh (3T 9 - S spellng... F 5
-
533 = A G Research. .. Ale+Click.
A [8 [¢ T erorchecking... N
1
] Speech 3
5 peech
3 Shared Workspace, ..
% Share Warkboak..,
T Track Changes 3
7 Compare and Merge Workbooks..,
% Brakection b
1_D Online Collaboration >
11 Goal Seek...
iz SCEnarios.
i3 i
14 Formula Auditing »
—15 Macro »
16
KBl AddTns., ~——————————
18 2 futoCorrect Options. ..
i Cuskomize. ..
20
a1 Optians. ..
22 Data Analysis...
FIGURE 22-8

The Add-Ins dialog box shows a list of all the add-ins that Excel is
aware of. An add-in is open if a checkmark is next to its name in the

list. You’ll notice in Figure 22-10 that no add-ins are selected, and T
that the SheetManager add-in is not listed in the Add-lns dlalog box. TR - [
When a new add-in is created, it does not automatically appear in the = |F2ecnenemes Conce
Add-Ins dialog box. To install a new add-in, you first need to list it Bronse...
in the Add-Ins dialog box, and then select it in the list. wlomation...
HEHD--Fs Lesson 22 - Microsoft Excel = B R
m_ﬂnme Insert Page Layout Formulas Data Review View Developer @ 0 o= B R ﬂ
o [F= Record Maaro = "F\' /' [Properties Tt Map Properties [33 Import Y percdysis ToolPak
v ’\% Use Relative References A:ﬁs ,'c;\:‘:? ﬁ R i . & view Code SoEum 22 Expansion Packs (55 Export D‘%nt a;::dasd:m T T e
Basic A\ Macro Security Add-Ins -~ Mode B RunDialog “®} Refresh Data Panel engineering analysis
Code Add-Ins Controls XML Modify
Al - 5 |Add—[ns‘ v
FIGURE 22-9 FIGURE 22-10

The Developer tab is a very useful item to place on your Ribbon. See the section
named “Accessing the VBA Environment” in Lesson 2 for the steps to display

the Developer tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing an Add-In | 287

@ A quick way to open the Add-Ins dialog box from any version of Excel is to press
the Alt+TI keys — that is, hold down the Alt key and with your other hand press
the T key and the I key. If you prefer to work with a mouse instead of the keyboard,
and you prefer not to show the Developer tab, you can access the Add-Ins dialog
box another way. In Excel version 2007, click the Office button, then click the
Excel Options button. In Excel version 2010, click the File tab, click the Options
menu item, and select the Add-Ins menu item. At the bottom of the window, select
Excel Add-Ins from the Manage drop-down list, and click the Go button.

To include an add-in on the Add-Ins list, click the Browse button on the Add-Ins dialog box.
Navigate to the folder where you saved the add-in file, select the filename, and click OK to exit the
Browse dialog box as indicated in Figure 22-11.

You now will see your selected file listed in the Add-Ins dialog box. By default, Excel places a check-
mark next to the selected add-in’s name. If you don’t want the add-in to be open — that is, for its
features to be available to you — simply deselect the add-in by unchecking the box next to its name.

If and when you do select your new add-in, you and the users of that add-in will appreciate the extra
time you spent in the Properties window before you converted the original file to an add-in. Notice
that the selected add-in’s filename and comments appear at the bottom of the Add-Ins dialog box,
informing the user what the add-in does. In any case, now that you’ve listed the add-in file, click the
OK button to exit the Add-Ins dialog box as indicated in Figure 22-12.

Add-Ins 21|
Add-Ins available:

[B Analysis TocPak | ax

[Analysis ToolPak - VBA

Eura Currency Tools Cancel
I Solver Add-in
% Browse... I
Automation...
x
mv | - Documents ~ My Documents = My Addins - @J I Search My Addins E
Organize » New folder =~ O @
i 4 Documents library
B e s srmgeoy: o 2
B &Y Documents | dd-Ins avaiable:
= My Dnems ome Analysis ToolPak = o4 T
m«- Addins -
L Ll B sheetManager viicros Office Excel 2007 Macro-Enabled Add-In I[Analys\s ToclPak - VBA
My Dats Sources Euro Currency Tools Cancel
MyInfo [Shee thanager —
+ My Ini I Solver Add-n e
. Outiock Files =
. Public Documents Automation...
J'# Music
&) Pictures
B8 videos
/% Computer
&) =l
[5 FACTORY_IMAGE (D) = 4] | | T re—
EET e ISheatManager j |Add—1ns | Add-n example for tasks on multiple sheets
!
Tooks - ok <+ Tancel
VA
FIGURE 22-11 FIGURE 22-12

www.it-ebooks.info

http://www.it-ebooks.info/

288 | LESSON 22 ADD-INS

WHERE DID THOSE OTHER ADD-INS COME FROM?

Even before you created your first add-in, you saw there were already some add-ins
listed in the Add-Ins dialog box. Excel ships with four available add-ins; they are
not open until you select them in the Add-Ins dialog box. The four add-ins are:

> The Analysis ToolPak add-in, which provides an expanded set of analysis tools
not available in standard worksheet functions and features

> The Analysis ToolPak VBA add-in, which provides an expanded set of func-
tions for your VBA programming code

> The Euro Currency Tools add-in is a tool for converting and formatting the
euro currency

> The Solver add-in is a what-if analysis tool that attempts to find an optimal
value for a formula in one cell while considering constraints placed on the
values in other cells

CREATING A USER INTERFACE FOR YOUR ADD-IN

Now that the add-in has been created and installed, you need to provide your users with the abil-
ity to access the functionality. As it stands right now, all that’s happened is the add-in is available
behind the scenes. However, because the SheetManager add-in’s functionality is tied to a UserForm,
you’ll need to establish a way for users to click a link of some kind that calls the UserForm.

Before the Ribbon came along, a custom worksheet menu item was created using the CommandBar
object. For this example, I named the menu item SheetManager, and it appears on the Tools menu.
The good news is, Excel versions 2007 and 2010

. il Edit Vi I t F t | Tool Dat FlashP. ‘Wil Hely
still support CommandBars, and you can use the N e il Do FisPocer Yiion ol
. . (02 savess. | (3T 9 - 4% Spelling... FoE
same code to achieve a user-friendly custom menu FETR—— &] mesearch.. I
interface that is compatible with every version of e s i -
—— Speech 3
. . :
Excel starting with Excel 97. 2 e
. . | 4 | Share Warkbook..
For versions of Excel prior to 2007, a menu 2] S .
item named Sheet Manager will appear in the 7| Compare and Merge yarkbaoks. .
. . 8
Tools menu, as shown in Figure 22-13. For ver- 5] e §
R X Efl Online Collsboration »
sions 2007 and 2010, the menu item named 47 e
. . . 12
Sheet Manager will be displayed in the Menu Al Scanaio...
: 3 ER la Audi
Commands section of a new tab on the Ribbon = dilinlin il :
| 15 Macro »
named Add-Ins. The Add-Ins tab appears when -2 .
you apply custom add-in code. In any case, % 7| AuteCorrect opions.
B . . 1| Customize...
clicking the Sheet Manager menu item executes El St
) 1] Optians. ..
the macro that calls the UserForm, as shown in 5] T inms
. 275
Figure 22-14.
FIGURE 22-13

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a User Interface for Your Add-In | 289

EHY-&-E+ Lesson 22 - Microsoft Excel l = B 532
,Home Insert Page layout Formulas Data Review View Developer | AddIns| & e ==
2] Sheet Manager

Menu Commands

=
=
4

W

El
Please select your action:

" Unhide all sheets

" Hide all sheets except active sheets

0o e s |w e

>

. ™
0
o
m
i
o
T
T f] <

 Protect all sheets

il " Unprotect all sheets

12

13

5 oK Exit

15

16

17

18 L
FIGURE 22-14

The following event code, found in the ThisWorkbook module of the add-in file, establishes the cus-
tom user interface:

Private Sub Workbook_Open ()

'Declare a CBC variable for the custom menu item.

Dim objCmdControl As CommandBarControl

'The custom menu item will be named "Sheet Manager"

'and it will go onto the Tools menu for versions before 2007.
Set objCmdControl = _

Application.CommandBars ("Worksheet Menu Bar")
.Controls("Tools") .Controls.Add

'For the new menu item, give it a meaningful caption,
'help it to clearly stand out by starting a BeginGroup.
'The OnAction method will call the UserForm.

'The Face ID is a small icon next to the menu item
'that is optional, but adds a feeling of customization.
With objCmdControl

.Caption = "Sheet Manager"
.BeginGroup = True
.OnAction = "SheetManager"
.FaceId = 144

End With

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

290 | LESSON22 ADD-INS

Private Sub Workbook_BeforeClose (Cancel As Boolean)
'Delete the custom menu item from the Tools menu.

'The error bypass is for cases when the "Sheet Manager"
'item is not listed on the Tools menu.

On Error Resume Next

Application.CommandBars ("Worksheet Menu Bar") _
.Controls("Tools") .Controls("Sheet Manager") .Delete
Err.Clear

End Sub

CHANGING THE ADD-IN’S CODE

You’ll find that some of your add-ins are a work in progress. Users will enjoy the ease of performing
add-in tasks, and you’ll be requested to make enhancements to the add-in for more functionality. As
you pick up more VBA programming skills, you’ll want to improve your original code by making
edits for speed and efficiency.

Any changes you make to your add-in file will be done in the Visual Basic Editor. Open your add-in
file and all you will see is an empty-looking Excel file because all the sheets in an add-in are hidden
and cannot be viewed. Press Alt+F11 to go to the VBE, and just as if it were any Excel workbook,

make whatever changes to the code you need to make. When you are done, save your changes in the
VBE and close the add-in file.

For add-ins that you distribute to other users, you'll want to protect the code
from being inadvertently changed or viewed by others. The process for protect-
ing your add-in code is the same as with any Excel workbook, and that is to lock
and protect the project in the Visual Basic Editor. The steps to do this are dis-
cussed in Lesson 4, in the section “Locking and Protecting the VBE.”

CLOSING ADD-INS

As you saw in the section “Changing the Add-in’s Code,” you can open an add-in file, but you might
like to know how to close an add-in file, because it cannot be closed the same way you close a work-
book. You have three ways to close an add-in file:

> Deselect (uncheck) the add-in’s name in the Add-Ins dialog box.

> Go into the VBE and press Ctrl+G to ensure that the Immediate window is open. In the
Immediate window, enter a line of code that closes the add-in file and press Enter. An exam-
ple of such code for the sheetManager add-in is as follows:

Workbooks ("SheetManager .xlam") .Close

> Close Excel, which closes all files, including add-ins.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 291

REMOVING AN ADD-IN FROM THE ADD-INS LIST

At some point in the future, you might want to remove the add-in from the list of available add-ins
in the Add-Ins dialog box, if the add-in is outdated or you just don’t need it anymore. To accomplish
this is an example of how science meets art, because Excel does not have a built-in way to remove an
add-in’s name from the list. Here are the steps to make this happen:

1.
2.

3.

TRY IT

Close Excel.
Open Windows Explorer and navigate to the folder x|
tha‘t hOIdS your add_in ﬁle‘ 'C:\My Documents\My Addins\SheetManager. xlam’

' 4 could not be found. Check the spelling of the
T file name, and verify that the file location is correct.

Select the add-in filename, and without opening the

If you are trying to open the file from your list of most

file, either change its name, or drag the file to a recently used fles, make e that e e has notbeen
different folder, or, if you really no longer need the
add-in, delete the file altogether.

Open Excel, and when you do, you’ll receive a mes- ~ FIGURE 22-15
sage telling you that the add-in file cannot be found. x|
Click the OK button as indicated in Figure 22-15.

I 7.\] Cannot find add+n 'C:\My Documents\My
WY sdcineisheetmanager. s Delete from stz

Open the Add-Ins dialog box and uncheck the name of the

add-in you want to remove. Excel reminds you that the file o
cannot be found, and asks for confirmation that you want to |

delete the file from the list of available add-ins. Click the Yes
button as indicated in Figure 22-16.

FIGURE 22-16

In this lesson, you create and install an add-in that contains a User Defined Function to return the
text of another cell’s comment.

Lesson Requirements

For this lesson, you create an add-in to return the text of comments in other cells, and you test the
add-in by installing it onto a workbook that has comments in worksheet cells. To get the sample
database files you can download Lesson 22 from the book’s website at www . wrox. com.

Step-by-Step

1.
2.

3.

Open a new workbook.

Go to the Properties window. In the Title field enter Comment Text and in the Comments
field enter Return text of comments in other cells.

Exit the Properties window and press the Alt+F11 keys to go into the Visual Basic Editor.

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

292 | LESSON 22 ADD-INS

From the menu bar in the VBE, click Insert &> Module. Copy the following User Defined
Function into the module:
Function GetComment (rng As Range) As String

Dim strText As String
If rng.Comment Is Nothing Then

strText = "No comment"
Else

strText = rng.Comment.Text
End If

GetComment = strText
End Function

Press the Ctrl+S keys to display the Save As dialog box. Navigate to the folder into which
you want to save this file. Name the file CommentText and select Excel Add-In in the Save
As Type field, as indicated in Figure 22-17. Click the Save button, which will convert this
workbook as a new add-in file named commentText .xlam.

Close Excel.
Restart Excel and open a new workbook.

Right-click cell B2 of the active worksheet, and select Insert Comment. Enter some text in
your comment.

Select cell G1.
Press Alt+TI to show the Add-Ins dialog box.

5I

G'C)v [T~ Documents ~ My Documents - My Adcins = [[search My Addins

Organize ¥ Mew folder = v @

2l Documents library

Arrangeby: Folder =
My Addins 9= by

[l A Libraries
= @ Documents
= | £] My Documents Mame ~ | Type
B vy Addins
My Data Sources
I MyInfo
. Outiook Files
| Public Documents
dﬁ Music
[&5] Pictures
B8 videos

B4 sheetianager Microseft Office Excel 2007 Macro-Enabled Add-In

/% Computer |-
&
] = FACTORY_IMAGE (D7)

Jid JEN |

File name: | CommentText

Ll |

Save as type: [Excel Add-n

Authors: Tom Urtis Tags: Add a tag

. . cos
A

FIGURE 22-17

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 293

1.

12.

13.

Click the Browse button and navigate to the folder where you saved the CommentText
add-in file. Select the commentText file, and click OK. Your Add-Ins dialog box will look
like Figure 22-18, with the commentText add-in loaded. Recall that the file is named

CommentText but the add-

in dialog box shows it as Comment Text, and also shows the

description of the add-in, because that is the information you entered in Step 2 about the
add-in file in its Properties dialog box. Click the OK button to exit the Add-Ins dialog box.

add-tns I

\dle-Ins svailable:
Analysis ToolPak =l R

I Analysis ToolPak - VBA

&l Comment Text)

™ Euro Currency Tools

[sheetManager
I Solver Add-in

[-|

Comment Text
Return text of comments in other cells.

FIGURE 22-18

In cell G1, enter the User Defined Function =GetComment(B1) and press the Enter key. Copy
the formula down to cell G2. You will see that the UDF returned “No comment” in cell G1
because no comment exists in cell B1. However, you did enter a comment into cell B2 in Step
8, so the UDF in cell G2 returns the text of the comment from cell B2. Your worksheet will
look similar to Figure 22-19.

[G2 - (= fe | =GetComment(B2)
A B B D E F G H 1 J K L M N
i e No comment
2 Hello, this is a test of an |Tnm U}tISi Hello, this is a test of an add-in that contains a UDF.
3 add-in that contains a T
LDF.
4
5
FIGURE 22-19

Note that the workbook you are looking at does not contain the GetComment UDF code.

You can utilize that UDF

because its code belongs to the commentText add-in file that you

installed for the active workbook.

To view the video that accompanies this lesson, please select Lesson 22, available
at the following website: www.wrox . com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data

One of the most versatile and useful benefits of Excel is its ability to import data from external
sources. In Lessons 26-30 you will see examples of sharing data back and forth with other
Microsoft Office applications from Excel.

Prior to Excel 97, the data that a person would be working with was entered into Excel manu-
ally. An Excel workbook was essentially a self-contained object that produced and stored its
own data, having almost no contact with the outside world except for the person working in
the project.

Starting with Office 97, Microsoft has been devoted to providing more and better tools for
importing and exporting data to the Internet, database programs, and text-related software
applications. Excel leads the way in this effort among all Office applications. In this lesson,
you learn how to use VBA to share data between Excel and other external sources, including
Access, the Internet, and text files.

CREATING QUERYTABLES FROM WEB QUERIES

The Internet as we know it has only been around since the mid 1990s, not that long ago really,
but it’s hard to imagine what life would be like today without the World Wide Web. The pub-
lic’s desire is only increasing for access to the galaxy of information that is stored on the Web.
With each new release of its Office suite, Microsoft has improved the capacity of its applica-
tions to interact with web-based information.

When you connect Excel to an external source such as the Internet, you add a
QueryTable to your worksheet. Objects that can connect to external data sources
include a cell range, an Excel table, a pivot table, a text file, and a Web query. In
this case, you are adding a QueryTable to a worksheet because you are querying
the Web for information that will be displayed on your worksheet.

www.it-ebooks.info

http://www.it-ebooks.info/

296

| LESSON 23 MANAGING EXTERNAL DATA

Suppose you are interested in monitoring the stock prices of a half-dozen or so technology compa-

nies. If you want to avoid the monotony of going to a financial website and entering the same stock
symbols every time, you can automate the process with a Web query, and refresh the data anytime

you like.

When you build a Web query, you need to tell Excel what website to extract the information from,
and the cell address on the destination sheet where you want the QueryTable to be located. Some
background information about URLs and their parameters might be helpful for you to understand
what is going on.

If you open your Web browser and enter the URL http://money.cnn.com/quote/quote
.html?symb=YHOO, GOOG, you will reach a site that provides a table of stock quotes for Yahoo
and Google. With this URL, you are essentially passing URL parameters that allow you to pass
information such as search criteria to a website. In this case, the URL parameters being used are
the symbols for Yahoo (YHOO) and Google (GOOG).

The following macro places the QueryTable on cell A1, and points to one of the bevy of websites out
there that provide current stock quotes. For demonstration purposes, I chose a few companies that
are all headquartered in Silicon Valley where I live. The stock symbols of those companies are the
criteria that will apply URL parameters through the code to gather the stock quote information that
will populate the QueryTable. Figure 23-1 shows what the result looked like when I ran this macro
in January 2011.

Sub ImportStocks()

'Declare variables for destination worksheet,
'and two halves of the connection string:

'one half for the URL, and the other half for
'the quotes, to make it easier for you to edit.
Dim wsDestination As Worksheet

Dim strURL As String, strStocks As String

'Set the destination worksheet; here it is Sheet2.
Set wsDestination = Worksheets ("Sheet2")

'Define the URL for getting your stock quotes.
'There are many websites where you can do this.
strURL = "http://money.cnn.com/quote/quote.html?symb="

'Define your stocks of interest. I only selected these
'as an example because they are silicon valley businesses
'near where I live and run my Excel development company.
strStocks = "AAPL,CSCO, EBAY,GOOG, INTC, ORCL, YHOO"

'My preference is to activate the destination worksheet
'and select cell Al.
Application.Goto wsDestination.Range("Al"), True

'Clear the cells in the worksheet so you know the data
'being imported will not be confused with other data
'yvou may have imported previously and not yet deleted.
Cells.Clear

www.it-ebooks.info

http://money.cnn.com/quote/quote.html?symb=YHOO,GOOG
http://www.it-ebooks.info/

Creating QueryTables from Web Queries | 297

'Add your QueryTable with the connection string
'and other useful methods you see in the With structure.
With wsDestination.QueryTables.Add _

(Connection:="URL;" & strURL & strStocks,

Destination:=Range ("S$AS1"))

.BackgroundQuery = True
.SaveData = True

.AdjustColumnWidth = True

.WebSelectionType = x1SpecifiedTables

.WebFormatting = x1lWebFormattingNone

.WebTables = """wsod_multiquoteTable"""

.Refresh BackgroundQuery:=False

End With

'Release object variable memory.
Set wsDestination = Nothing

End Sub
A [l el » Bl B

1 |stocks !
2 |Company Price Change % Change P/E Volume YTD change
3 |AAPLAppleInc 343.85 245 0.72% 19.2 3.3K 6.60%
_ 4 |CSCO Cisco Systemsinc | 21.42 -0.12 -0.56% 15.6 65.5M 5.88%
5 |EBAY eBay Inc 31.06 0.1525 0.49% 22.8 13.1M 11.62%
6 |GOOG Google Inc 616.5 -3.41 -0.55% 23.4 2.0M 3.79%
_7 |INTC Intel Corp 21.75 0.2 0.93% 10.6 2.0K 3.42%
8 |ORCL Oracle Corp 32.56 0.27 0.84% 24.3 21.5M 4.03%
_9 |YHOO Yahoo! Inc 15.57 -0.4475 -2.79% 20.2 49.7M -6.36%
10|
FIGURE 23-1

With the worksheet active, you can refresh the data by right-clicking cell A1 and selecting Refresh, as
shown in Figure 23-2. Alternatively, you can execute the VBA expression Range ("A1") .QueryTable
.Refresh in the Immediate window or in a macro. Each time you refresh the data, you see the most
recent version of the information in the data source, including any changes that were made to the data.

A B 5 '

1 |stocks ¥ cu

2 |C 2

R

ppie ne Paste Options:

4 |CSCO Cisco Systems Inc o

5 |EBAY eBay Inc 2

6 |GOOG Google Inc Paste Special...

7 |INTCIntel Corp Insert...

8 |ORCL Oracle Corp Delete..

1

8 |YHOO Yahoo! Inc Clear Contents

10

1n Filter »
12 Sort »
13 @ Insert Comment

14 B Format Cells...

15

16 & Edit Query..

17 % DataRange Properties...
18 “ta

19 A1 Refresh «—————
20

21
FIGURE 23-2

www.it-ebooks.info

http://www.it-ebooks.info/

298 |

LESSON 23 MANAGING EXTERNAL DATA

While on the subject of corporate performance, the following macro opens a .csv file for you,
depending on which stock symbol you are searching for, and copies several years of historical stock

y Does your Web query take too long to refresh? You can cancel the Refresh

method if it’s running longer than you want to wait with this block of code:

If Application.Wait (Now + TimeValue("0:00:10")) Then
With Worksheets (1) .QueryTables (1)

If .Refreshing Then .CancelRefresh

End With

End If

price activity to Sheet3 of your workbook:

There may be times when you are composing Web queries for other people to use. Before they try
running your macros, seeing as an Internet connection is required for the code to perform, it might
be a good idea to programmatically verify that the user has an Internet connection. You can place
the following procedures into a new standard module, and if no Internet connection exists, it would

Sub ImportHistory ()
Dim strStockSymbol As String
Dim strURL1 As String, strURL2 As String

'Download the past years' stock price activity.

strURL1 = "http://ichart.finance.yahoo.com/table.csv?s="
StrURL2 = "&d=2&e=18&f=2010&g=d&a=2&b=13&c=1986&ignore=.csv"
strStockSymbol = "EBAY"

Workbooks.Open Filename:=strURL1 & strStockSymbol & strURL2

'Copy data from the csv file to your worksheet.
Range ("Al") .CurrentRegion.Copy _
ThisWorkbook.Worksheets ("Sheet3") .Range("Al")

'Close the csv file without saving it.
ActiveWorkbook.Close False

'Autofit the columns.
Columns.AutoFit
End Sub

be wise to use this code to halt any web-related activity your project may involve.

y The strange-looking Public Declaration Function is not VBA code. It is

Applications Programming Interface, or API, which is the programming language
of the Microsoft Windows operating system. If you are wondering why API is being
used in this example, the reason is that the task at hand is a query about Internet
connectivity, which is a computer-wide issue that is not related specifically to any
one application, including Excel. In your programming travels, you will see API
being used with VBA for controlling objects that are related to Windows, such as
manipulating the task bar or returning the name of the computer.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a QueryTable for Access | 299

Private Declare Function IsNetworkAlive Lib "Sensapi" _
(lpdwFlags As Long) As Long

Sub IsConnection()

If IsNetworkAlive(lngAlive) = 1 Then

MsgBox "You are connected to the internet."
Else

MsgBox "Connection to the internet not found."
End If

End Sub

There is another example in the Try It section that leads you in a step-by-step
process of creating a Web query.

CREATING A QUERYTABLE FOR ACCESS

In upcoming lessons you learn about importing and exporting data between Excel and Access, using
VBA and a technology called Structured Query Language, or SQL. Because this lesson deals with
external data, you might be interested to know how to quickly, albeit manually, import an Access
table directly to your worksheet.

Click the Data tab on the Ribbon, and find the Get External Data section at the far left. Click the left-
most icon that is labeled From Access as shown in Figure 23-3.

You will see the Select Data Source dialog box. Navigate to the folder holding your Access database,
select the folder, and also select the name of the database file. Click the Open button as shown in

Figure 23-4.
|
mv [+ computer - 1P (c:) ~ YourFiepatn ~ ~ (5 [search vourFiepath =)
Organize v New folder = ~ 0 @
)| Intel 2| Mame + | Date modifed | Type
| Perflogs
B Frogram Fes Ji Temp 12/16/20108:51PM File folder
| Program Fies (xa5)
I). Users
= P @} Windows
(]| n-&-Ei Yahoo Messenger
Home Insert Pagelayout Formulas | Data | Review e
)| Temp
L By L) L) [connections
: al al -1 3 .
A FACTORY_IMAGE (D:)
228 B B Foroperes | 2 =
From From From From Other Existing Refresh z s .
Access| Web Text Sources~ | Connections All- 2 EditLinks & W Network
Get External Data Connections q LI
Get External Data From Access |' b | New Source
A B C D E F G
1 1 File name; [Databasel 1= [Access Databases =l
: o o o e
3 v

FIGURE 23-3 FIGURE 23-4

www.it-ebooks.info

http://www.it-ebooks.info/

300 | LESSON 23 MANAGING EXTERNAL DATA

The Select Table dialog box will appear, so all you need to do is click to select the name of the table,
and then click the OK button as shown in Figure 23-5. After that, the Import dialog box will
appear. I chose to keep the imported table as a Table format, placed onto my worksheet, starting in
cell A1 as shown in Figure 23-6. Your Access table will load onto your worksheet as shown in
Figure 23-7, with the top row having AutoFilter buttons to help you with your future searches.

‘I: bon|M<xiﬁEd |r.-gated ‘Type Select how you want to view this data in your workbook.
1/12/2011 12:08:40 AM 1/11/2011 12:22:58 AM TABLE :: &3
thEmployees 112/2011 1:24:41AM 1/12/2011 1:16:56 AM TABLE Eaii Ry

i " PivotChart and PivoTable Repart
[ty ¢ Only Create Connection

Where do you want to put the data?
% Existing worksheet:

[I
1 € New worksheet
Properties... | ok | Cancel |
FIGURE 23-5 FIGURE 23-6

D

2 1 Tom North Monday January Widgets Red 507 1
3 2 Mike West Tuesday February Witches Purple 23 2
4 3 Jim East Wednesday March Wombats Blue 116 3
5 4 Tom South Thursday April Warlocks Red 618 4
6 5 Mike West Friday May Widgets Green 712 5
7 6 Mary South Saturday June Warlocks Blue 714 6
8 7 Bill West Sunday July Wallabees Yellow 600 7
5l 8 Bob East Monday August Witches Blue 654 8
10 9 Tem North Tuesday September Widgets Red 644 9
11| 10 Mike North Wednesday October Warlocks Purple 570 10/
12| 11 lJim West Thursday MNovember Wallabees Purple 148 11
13| 12Tom East Friday December Warlocks Yellow 822 12,
14| 13 Mike West Saturday January Wombats Black 562 13
15| 14Jim East Sunday February Warlocks Red 456 14
16| 15 Nancy North Monday March Witches Red 323 15,
17| 16 Zelda West Tuesday April Widgets Green 133 16
18| 17 william South Wednesday May Warlocks Blue 728 17,
19| 18 Mary West Thursday June Warlocks Black 910 18
20| 19 Bill East Friday July Wombats Black 898 19
21| 20Bob West Saturday August Warlocks Yellow 240 20,
22| 21 Tom South Sunday September Witches Black 871 21
23| 22/ Mike South Monday October Witches Blue 892 22
24| 23 Jim West Tuesday November Wombats Black 66 23
FIGURE 23-7

The Select Table dialog box may contain tables and queries, and you can import
data from either of them. You might want to be aware that Parameter queries
will not appear in this dialog box.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Text Files to Store External Data | 301

USING TEXT FILES TO STORE EXTERNAL DATA

Hail the text file, the true foot soldier interface for transferring information between two or more
otherwise disparate platforms. In the modern age of computing, it’s always been the text file that
could be relied on for one application downloading its information in a comma-delimited or fixed-
length file, and another application like Excel being able to accept the data.

Text files are not pretty, they are almost never formatted, and they are not easy to read. But when all
else fails, they come through and are fairly easy to program. The following examples show how text
files can help you in your everyday work.

Suppose you want Excel to add a new record to a text file that records the date and time a particular
Excel workbook was saved. In the folder YourFilePath is a text file named LogFile. txt. The fol-
lowing VBA code goes into the ThisWorkbook module of the Excel file you are monitoring:

Private Sub Workbook_ BeforeSave (ByVal SaveAsUI As Boolean, Cancel As Boolean)
Dim intCounter As Integer, myFileName As String

myFileName = "C:\YourFilePath\LogFile.txt"

intCounter = FreeFile

Open myFileName For Append As #intCounter

Write #intCounter, ThisWorkbook.FullName, Now, Application.UserName

Close #intCounter

End Sub

This macro will create four new text files, naming each with the prefix MyFile, followed by a num-
ber suffix in order from 1 to 4. For example, the first file will be named MyFi1e001 . txt, the second
file will be named MyFi1e002. txt, and so on. The starting number of 1 is derived by the code line
For intCounter = 1 to 4.If you wanted to create four new text files starting with the name
MyFile038.txt, you'd establish the starting number of 38 by specifying it with the line of code For
intCounter = 38 to 41

Sub CreateTextFiles()

Dim intCounter As Integer, strFile As String
For intCounter = 1 To 4

strFile = "MyFile" & Format (intCounter, "000")
strFile = "C:\YourFilePath\" & strFile & ".txt"
Open strFile For Output As #1

Close

Next intCounter

End Sub

The following macro will copy the text of your comments in your worksheet’s used range into a text
file, where they will be listed along with the cell values in that range. This is a very fast macro.

Sub Comment2Text ()

Dim cmt As Comment, rng As Range
Dim iRow As Long, iCol As Long
Dim strText As String

www.it-ebooks.info

http://www.it-ebooks.info/

302 | LESSON 23 MANAGING EXTERNAL DATA

Set rng = Range("Al").CurrentRegion
Open "C:\YourFilePath\YourFileName.txt" For Output As #1
For iRow = 1 To rng.Rows.Count
For iCol = 1 To rng.Columns.Count
If Not Cells(iRow, iCol).Comment Is Nothing Then
strText = strText & Cells(iRow, 1Col).Text & _
"(" & Cells(iRow, 1iCol).Comment.Text & ")" & ";"

Else

strText = strText & Cells(iRow, iCol).Text & ";"
End If

Next iCol

strText = Left (strText, Len(strText) - 1)

Print #1, strText

strText = ""

Next iRow

Close

End Sub

If you want to know how many lines a particular text file has, this macro will tell you:

Sub Testl()

Dim MyObject As Object, LineCount As Variant

Set MyObject = _

CreateObject ("Scripting.FileSystemObject")

With MyObject.OpenTextFile("C:\YourFilePath\YourFileName.txt", 1)
LineCount = Split(.ReadAll, vbNewLine)

End With

MsgBox UBound (LineCount) - LBound(LineCount) + 1

End Sub

Export each sheet in this workbook as a text file, with each file named as the sheet tab name. Text
file macros compile very quickly.

Sub TextExport ()

Dim rng As Range

Dim iWks As Integer, LRow As Long, iCol As Long
Dim sTxt As String, sPath As String

sPath = "C:\YourFilePath\"

For iWks = 1 To Worksheets.Count

Open sPath & Worksheets(iWks).Name & ".txt" For Output As #1
Set rng = Worksheets (iWks) .Range("Al").CurrentRegion

For LRow = 1 To rng.Rows.Count

For iCol = 1 To rng.Columns.Count

sTxt = sTxt & Worksheets (iWks) .Cells(LRow, iCol).Value & vbTab

Next iCol
Print #1, Left(sTxt, Len(sTxt) - 1)
sTxt = ""

www.it-ebooks.info

http://www.it-ebooks.info/

Using Text Files to Store External Data | 303

Next LRow

Close #1

Next iWks

MsgBox "The text files can be found in " & Left(sPath, Len(sPath) - 1)
End Sub

If you would like to see a text file’s contents in a Message Box, you can use the following code.

Sub GetTextMessage ()
Dim sTxt As String, sText As String, sPath As String

sPath = "C:\YourFilePath\YourFileName.txt"
If Dir(sPath) = "" Then

MsgBox "File was not found."

Exit Sub

End If

Close

Open sPath For Input As #1
Do Until EOF (1)

Line Input #1, sTxt

sText = sText & sTxt & vbLf

Loop

Close

sText = Left(sText, Len(sText) - 1)
MsgBox sText

End Sub

Suppose you want to save the contents of cell A1 on Sheet1 as a text file. The following example
shows how that can be done:

Sub SaveCellvalue ()

Open "C:\YourFilePath\YourFileName.txt" For Append As #1
Print #1, Sheets("Sheetl").Range("Al").Value

Close #1

End Sub

Finally, this macro demonstrates how to delete a text file if it exists, and replace it with a new text
file of the same name. If the text file does not exist, the macro will create a new text file.

Sub DeleteAndCreate ()

Dim strFile As String, intFactor As Integer

On Error Resume Next

strFile = "C:\YourFilePath\YourFileName.txt"

Kill strFile

Err.Clear

intFactor = FreeFile

Open strFile For Output Access Write As #intFactor
Close #intFactor

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

304 | LESSON 23 MANAGING EXTERNAL DATA

TRYIT

What is today’s date, and what is the current time of day? In this lesson you create a Web query to
import a display of the current day and time for several North American time zones.

Lesson Requirements

For this lesson, you access the website to the United States Naval Observatory, where the day and
time are recorded on the Master Clock of the United States Navy. To get the sample database files
you can download Lesson 23 from the book’s website at www.wrox. com.

Step-by-Step

1.

2.
3.
4.

Open a new workbook.
From your worksheet, press Alt+F11 to go to the Visual Basic Editor.
From the menu bar in the VBE, click Insert = Module.

In your new module, type Sub TimeAfterTime and press the Enter key. VBA will produce the
following two lines of code, separated by an empty line:

Sub TimeAfterTime ()

End Sub

Open a with structure for the destination worksheet:

With Worksheets ("Sheetl")

Declare a string type variable for the website address:

Dim strURL As String

Define the website address from which the information will be imported to your worksheet:
StrURL = _
"http://tycho.usno.navy.mil/cgi-bin/timer.pl"

For consistency, I prefer to activate the worksheet that will receive the web data. Cell Al is a
convenient cell to start with:

Application.Goto .Range("Al"), True

Clear the cells in the worksheet so you know the data being imported will not be confused
with other data you may have imported previously and not yet deleted:

Cells.Clear

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 305

10.

1.

12.

13.

Open a with structure for the Add method of your new QueryTable. The connection, URL,
destination sheet, and other information that follows must be specified.

With .QueryTables.Add _

(Connection:="URL;" &strURL, Destination:=.Range("Al"))
.BackgroundQuery = True

.TablesOnlyFromHTML = False

.Refresh BackgroundQuery:=False

.SaveData = True

Close the with structure of the QueryTable’s add method:

End With

Close the with structure for the destination worksheet:

End With

Your entire macro will look as follows:

Sub TimeAfterTime ()

'Open a With structure for the destination worksheet.
With Worksheets ("Sheetl™")

'Declare a String type variable for the website address.
Dim strURL As String

'Define the website address, from which the information
'will be imported to your worksheet.

strURL = _

"http://tycho.usno.navy.mil/cgi-bin/timer.pl"

'For consistency, I prefer to activate the worksheet
'that will receive the web data.

'Cell Al is a convenient cell to situate yourself.
Application.Goto .Range("Al"), True

'Clear the cells in the worksheet so you know the data
'being imported will not be confused with other data
'you may have imported previously and not yet deleted.
Cells.Clear

'Open a With structure for the Add method of your new
'QueryTable. The connection, URL, and destination sheet,
'and other information that follows, must be specified.
With .QueryTables.Add _

(Connection:="URL;" &strURL, Destination:=.Range("Al"))
.BackgroundQuery = True

.TablesOnlyFromHTML = False

.Refresh BackgroundQuery:=False

.SaveData = True

www.it-ebooks.info

http://www.it-ebooks.info/

306 | LESSON 23 MANAGING EXTERNAL DATA

'Close the With structure of the QueryTable's Add method.
End With

'Close the With structure for the destination worksheet.
End With

End Sub

14. Press Alt+Q to return to the worksheet.

15. You can test the macro by pressing Alt+F8 to display the Macro dialog box as shown in
Figure 23-8. Run the macro named TimeAfterTime. The result will resemble Figure 23-9.

| Al bl - fr| US Naval Observatory Master Clock Time
el 0 T s T
1 |US Nawal Observatory Master Clock Time
2]
i 4 |Jan. 27, 08:37:44 UTC Universal Time
E T ES i
6 |Jan. 27, 03:37:44 AM EST Eastern Time
= | stepmno =
= zﬂan. 27, 02:37:44 AM CST Central Time
- 9
Create Eﬂan. 27, 01:37:44 AM MST Mountain Time
Dekte 2
12 |Jan. 27, 12:37:44 AM PST Pacific Time
Options... 13
- 14 |Jan. 26, 11:37:44 PM ARST Alaska Time
Macros in: |All Open Workbooks j E
Description 16 |Jan. 26, 10:37:44 PM HAST Hawaii-Aleutian Time
17
18 |US Naval Observatory
— o
20

FIGURE 23-8 FIGURE 23-9

To view the video that accompanies this lesson, please select Lesson 23, available
at the following website: www .wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

Data Access with
ActiveX Data Objects

The topic of data access has become one of the most intensive forces in driving the recent
development of commercial software applications. Data storage and search engine companies
have become the face of the worldwide voracious demand for accessing information.

Excel is without peer in its powerful features for calculating and analyzing data, and in its abil-
ity to produce customized reports in an instant with VBA. For users who deal with extremely
large volumes of source data, Excel can still fall short as a data storage application. Microsoft
has built Excel with some robust methods for importing external data into your workbooks,
making Excel a terrific front-end application that analyzes data it does not need to store.

INTRODUCING ADO

ADO is an acronym for ActiveX Data Objects, which is the technology Microsoft recom-
mends for accessing data in external databases. Excel’s spreadsheets, being tabular row and
column objects, share common features with database tables, providing a natural environment
for data to be transferred between Excel and relational databases.

From Excel, using ADO you can

> Connect to most any external database in the Windows operating system, as long as
that database has, as many do, an ODBC (Open Database Connectivity) or OLE DB
(Object Linking and Embedding Database) driver.

> Add, delete, and edit records from a database to your workbook, or from your work-
book to a database.

> Query data to return a recordset, allowing you to import some or all records from a
database table directly to your worksheet, for whatever analysis you want to perform,
just as if the data was already in Excel.

www.it-ebooks.info

http://www.it-ebooks.info/

308 | LESSON 24 DATA ACCESS WITH ACTIVEX DATA OBJECTS

DEFINITIONS OF DATABASE TERMS

Because this lesson introduces concepts for external data access, there is more
descriptive theory about databases than actual code examples. In Lesson 29, you’ll
see several working examples of how Excel utilizes ADO and SQL in conjunction
with Access databases. If you are unfamiliar with database terminology, the follow-
ing definitions for common database terms might help you throughout this lesson.

A database is an organized collection of related information.

DAO (Data Access Objects) is a library of objects and their associated methods
and properties that can be used to represent objects in databases, enabling Excel to
interact directly with databases through VBA.

DBMS is an abbreviation for database management system. Popular examples of
database management systems include dBASE, Paradox, and Microsoft Access.

A field is a column in a list such as in an Excel worksheet or Access database that
describes a characteristic about records, such as first name or city.

ODBC (Open Database Connectivity) is a database standard that enables a pro-
gram to connect to and manipulate a data source, allowing a single user to access
many different databases.

A primary key is one or more fields that determine the uniqueness of each record in
a database.

A query is a series of statements written in Structured Query Language to specify
the tables and fields you want to work with that add, modify, remove, or return
data from a database.

A record is a row of data in a table.
A recordset is one or more records (rows) of data derived from a table.

A relational database is a collection of data items organized as a set of formally
described tables from which data can be accessed or reassembled in many ways.

@ Prior to ADO, Microsoft’s primary recommended tool for accessing external
data was an interface called DAO, or Data Access Objects. The DAO interface
has become all but obsolete due to its limitations as compared to ADO, though
DAO is still supported by ADO. The two technologies share many of the same
code syntaxes but they are not the same in terms of flexibility and performance.
You still do have a choice between the two, but you’ll be much better served by
ADO, which is why it is covered in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing ADO | 309

With entire books devoted to database integration with ADO, there is much more complexity to the
topic than this lesson is meant to cover. The best way to start becoming familiar with ADO is to
examine the three primary tools in its object model: the connection object, the Recordset object,
and the command object.

The Connection Object

The connection object establishes a path that connects Excel and the database. With ADO from
Excel, you normally issue commands that pass information back and forth through the connection
object. Among the key methods belonging to the Connection object are open, which establishes

the database connection, and close, which closes the connection. The connection object’s
ConnectionString property defines how to connect to the database.

Connecting to the database is accomplished with the provider keyword. The following line of code
is a common syntax for Excel versions 2007 and 2010:
Provider = "Microsoft.ACE.OLEDB.12.0;Data Source= _
C:\YourFilePath\Databasel.accdb";Persist Security Info=False;"

In versions of Excel prior to 2007, the Provider would have been specified as the Microsoft Jet data-
base engine of Access:

Provider = "Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=C:\YourFilePath\Databasel.accdb; Extended Properties=Excel 8.0;"
Or, depending on the circumstance, more simply:

Provider = "Microsoft.Jet.OLEDB.4.0"

When working with databases, you almost always connect to them, meaning you
do not open them in a way you'd open a Word document if you were working
with Word from Excel. The connection object is like a conduit between Excel
and your database.

The Recordset Object

The Recordset object is probably the most commonly used object in ADO. When you instruct
ADO to retrieve a single record or the entire count of records from a database table, you use the
Recordset object to do that.

Among the key members of the Recordset object are the following:

> The ActiveConnection property, which is a connection string or a Connection object
that identifies the connection being used to access the database. As with this property for
the command object, where objRecordset and objConnection are object variables, the
ActiveConnection syntax is

Set objRecordset.ActiveConnection = objConnection

www.it-ebooks.info

http://www.it-ebooks.info/

310 | LESSON 24 DATA ACCESS WITH ACTIVEX DATA OBJECTS

> The open method opens the Recordset object so you can access the data. Its syntax is

recordset.Open Source, ActiveConnection, CursorType, LockType, Options

Note that the Source argument is often a string that names the table from which the record-
set should be retrieved.

> The close method closes an open Recordset object. With the Recordset object declared as
dbRecordset, the syntax for close would be

dbRecordset.Close

The Command Object

The command object holds information about the kind of task being run, which is usually related to
action queries in Access, or procedures in SQL, which are described in the next section. A command
object can also return a list of data records, and is most often run with a combination of param-
eters, of which there are more than this lesson can possibly cover.

The command object has three important properties:

> The ActiveConnection property, which, like the ActiveConnection property for the
Recordset object, is a connection string or a Connection object that identifies the connec-
tion being used to access the database. For example, this syntax assigns a Connection object
to the ActiveConnection property, where objRecordset and objConnection are object
variables:

Set objRecordset.ActiveConnection = objConnection

> The commandText property, which sets the command that will be executed by the database,
and will usually be an SQL string.

> The commandType property, which tells the database how to interpret and execute the
CommandText’s instructions.

AN INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)

Structured Query Language (SQL) is a database language used in querying, updating, and managing
relational databases. SQL is used to communicate with the vast majority of databases that are com-
monly in use today.

Structured Query Language is a complex language in response to the rigid nature of table design in
relational database construction. This lesson covers SQL’s four basic operations of SELECT, INSERT,
UPDATE, and DELETE. As a reminder of what [mentioned at the beginning of this lesson, you’ll find
several examples of these operations in Lesson 29 that show how to work with Access from Excel.

www.it-ebooks.info

http://www.it-ebooks.info/

An Introduction to Structured Query Language (SQL) | 311

@ You’ll notice that SQL statements such as SELECT and INSERT are shown in
upper case. This is a standard SOL programming practice and a good habit

to get into from the start. The SQL code examples you’'ll see in this book are
relatively small, but SOL code can be very large and complex. SOL is easier to
read when its statements are shown in upper case, distinguishing them from the
clauses of code with which they are associated.

The SELECT Statement

The SELECT statement retrieves data in the form of one or more rows (records) from one or more
tables. The SELECT statement is probably SQL’s most commonly used operation, because it tells the
data source what field(s) you want to return from what table(s).

If you want to retrieve all columns and all rows from the Vendors table, the expression in SQL
would be as follows:

SELECT *
FROM Vendors

Sometimes you might not want to retrieve all columns. The following example will retrieve the State
column from the Vendors table, if you want to know the count of your vendors per state.

SELECT State
FROM Vendors

If you want to see a list of vendors and the names of their contact people, but only for vendors
in California, the following example would accomplish that. Note that the literal string criterion
California is in single quotes, which is SQL’s required syntax.

SELECT VendorName, ContactName

FROM Vendors
WHERE State 'California'

If you want to retrieve the previous recordset by having it already sorted by the vendorName field,
you could add the orRDER BY statement and specify the field name as follows:

SELECT VendorName, ContactName

FROM Vendors

WHERE State 'California'
ORDER BY VendorName

www.it-ebooks.info

http://www.it-ebooks.info/

312

| LESSON 24 DATA ACCESS WITH ACTIVEX DATA OBJECTS

The INSERT Statement

The TNSERT statement adds a new row (record) to a table. You need to specify the name of the table
where the row will be added. You may optionally omit the field names from the TNSERT statement
but it is advisable that you name them anyway because it will help you to see that the values you are
entering are in the same order as the field names.

An example of using TNSERT is this fictional pair of statements that respectively place the values
5432, Doe, John, Male into a table named Employees, for fields named EmployeelD, LastName,
FirstName, and Gender.

INSERT INTO EmployeeID (EmployeeID, LastName, FirstName, Gender)
VALUES ('5432', 'Doe', 'John', 'Male')

It’s standard SOL programming practice to enter the statements in upper case.
It is mandatory SOL programming practice to place the string literal VALUES
within single quotes, just as you see it here.

If you had opted to enter the preceding SQL code without naming each field, the syntax example for
that same procedure would have been as follows:

INSERT INTO EmployeelID
VALUES ('5432', 'Doe', 'John', 'Male')

The UPDATE Statement

The UPDATE statement allows you to change the values in one or more columns (fields) in a table.
UPDATE is most commonly used to modify the value of a specific record that you identify with the
WHERE clause. You also need to specify each column you want to change, and what each column’s
new value should be.

The following example shows how you could update the contact name of one of your company’s
vendors in the ContactName column of the Vendors table. You need to be careful to specify the
WHERE clause so that only one record is changed, and that it is the correct record.

In the Vendors table, you have a field named VendorID that lists unique vendor identification num-

bers. The vendor name itself is Widgets, Inc. but that is not as important as its vendor identification
number. Suppose that the vendor identification number for Widgets, Inc. is 1234. The new contact

name is John Doe, executed with these three statements in SQL:

UPDATE Vendors
SET ContactName = 'John Doe'
WHERE VendorID = '1234'

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 313

If the ContactName field had many empty (referred to as Null) values, and you wanted to fill those
empty spaces with the word Unknown, the following example would accomplish that:
UPDATE Vendors

SET ContactName = 'Unknown'
WHERE ContactName IS NULL

The DELETE Statement

The DELETE statement deletes one or more rows from a table. If you want to delete the vendor
named Widgets, Inc., you would use the wHERE statement to specify which value in which column
should identify the record for Widgets, Inc. The VendorID column is the perfect column for this task
because a large company might have two vendors with the same name.

The following SQL statements would delete the record from the Vendors table that has the value
1234 in the VendorID column:

DELETE FROM Vendors
WHERE VendorID = '1234'

Make absolutely certain you specify the WHERE clause, because if you do not,
every row from the Vendors table would be deleted. If an empty table is what
you want, this fictional sequence would accomplish that:

DELETE FROM Vendors

Odds are, you don’t want an empty table with all rows deleted from it. The
kicker is, after the rows are deleted, you cannot undo that action as you can in
Excel. Unless you are good friends with an experienced database programmer
who might (or might not) be able to recover your unintentionally deleted rows,
take heed and always specify the WHERE clause in your SOL DELETE actions.

TRY IT

This lesson introduced the fundamentals of ADO and SQL. You will see several examples in
Lesson 29 of VBA macros that show how to program ADO with SQL to interact with Access
databases from Excel.

Here is a way to get a head start on the instruction in Lesson 29 — become familiar with database
tables. Open Access and create a new database. Create a new table and enter some fictional data such
as a mailing list with fields for FirstName, LastName, StreetAddress, City, State, Country, and Postal
Code. Make a dozen or so entries and get a feel for navigating and editing a database table. For exam-
ple, Figure 24-1 shows a table in Access being populated with hypothetical employee information,
such as you might see in a company’s personnel database.

www.it-ebooks.info

http://www.it-ebooks.info/

314 | LESSON 24 DATA ACCESS WITH ACTIVEX DATA OBJECTS

[A]] [) - ™ - |5 Databases : Database [Access 2007) - Micr... \Table;Tools ==
Home Create ExternalData Database Tools Fields | Table o @

ﬁ AB] 2 % B W & Name & caption 50 Modify Lookups AutoMumber - E"

i, = P, Default Value J Modify Expression | Formatting
View Text Number Currency . = e Field
- B ™ Field size ab| Memo Settings $ % v %0 % validation -
Views Add & Delete Properties Formatting
» || = Employees
[[s] Fieldl - Field2 - Field3 = Field4 ~ |Click to Add -
51234 Doe Jane CFO

E 6 6548 Smith John Sales Manager

= 7 5421 Lea Mary Bookkeeper

2 8 8447 Jones Joe Analyst

_gl 92133 Jackson Lisa Receptionist

|| * (New)

Record W < 1of6 b M b | o Filker | Search

Datasheet View Num Lock | [E| @ %

FIGURE 24-1

You’ll notice an important distinction between an Access table and an Excel worksheet. Database
tables do not have row headers as numbers, or columns designated by letters. Columns (called fields in
a database environment) rely on being identified by their field headers such as FirstName, LastName,
and so on. Rows (called records) rely on being identified by one or more key fields, or certain proper-
ties of other fields such as being empty (Nu/l) or having date entries between a start date and end date.

You might also want to surf the Web for sites that list SQL objects and their associated properties
and methods. Keep in mind that SQL’s capacity for database interaction goes far beyond what you’ll
need it to do for your Excel projects, so stick with the basics for now when perusing SQL instruc-
tional material.

www.it-ebooks.info

http://www.it-ebooks.info/

Not Gone, Not Forgotten

With each release of Excel, Microsoft typically introduces new features that are meant to
help make it easier and more productive to work with your spreadsheets. Over the course of
Excel’s evolution, older features that were state of the art in their day have been cast aside
for newer ways of doing things. Some of those older features are still supported in all ver-
sions of Excel, and although they’ve been largely forgotten, they can still be very useful in
some development circumstances.

This lesson looks at two almost-forgotten features: 5.0 dialog sheets and XLM get.cell
functions. You’ll also see examples of the sendkeys method, which is not so much outdated

as it is misunderstood. Each of these features can claim its useful place among your collec-
tion of VBA tools.

USING DIALOG SHEETS

In Lessons 18, 19, and 20 you learned about UserForms, which first arrived on the Excel scene
with ActiveX controls in Office 97. The precursor to UserForms was an interface built from

a type of sheet called a 5.0 dialog sheet, which was used in versions Excel 5 and Excel 95.
Dialog sheets served the purpose of constructing a customized dialog box that that has almost
entirely been superseded by UserForms and their more programmable ActiveX controls.

I like dialog sheets, even in this modern era of Excel VBA. The dialog sheet is a hidden gem
that’s been mostly a forgotten art, which makes it look like a special feature when used in the
right circumstances.

I am not recommending that you forego UserForms for dialog sheets, but dialog sheets do have
several advantages that merit their worth, for example:

> Dialog sheets utilize only Forms controls which, unlike ActiveX controls, are fully inte-
grated with Excel and do not cause as many VBA programming errors.

> You may come across older workbooks with dialog sheets, so it’s a good idea to at
least be familiar with them as you would any Excel object.

www.it-ebooks.info

http://www.it-ebooks.info/

316 | LESSON 25 NOT GONE,NOT FORGOTTEN

Dialog sheets are created on the fly, and then deleted automatically, which means the
workbook has less overhead without a UserForm hanging around for its next infrequent
appearance.

Dialog sheets are fully supported in all versions of Excel up to and including Excel 2010,
having backwards compatibility with earlier versions of Excel.

Dialog sheets are a history lesson in the evolution of Excel, providing a sense as to what gave
rise to the modern-day UserForm.

Dialog sheets have the intangible “wow” factor; you can program and display a custom
UserForm-like dialog box without building a UserForm, with your users appreciating the
simple, straightforward design.

What Does a Dialog Sheet Look Like?

When I use dialog sheets, only the dialog box (called the DialogFrame) is seen by the user, not the
dialog sheet itself. If you'd like to see a dialog sheet, right-click any worksheet tab. From the pop-
up menu, select Insert, and on the General tab of the Insert dialog box, select MS Excel 5.0 Dialog.
Click OK and you’ll insert a dialog sheet that looks like Figure 25-1.

EH9-®-5- BookZ - Microsoft Excel = =57
Home | Insert Page layout Formulas Data Review View Developer @ @ o @ 2

- - General < 5‘ g= Insert = = A éﬁ

B I U A A $ ' & Delete ~ | [g] Zl
. Styles Sort & Find &
[- A - | [EiFormat~ | 2~ Fiiter~ Select~
Font Number Cells Editing

- v
-
-

4 4 » ¥| Dialogl “Sheetl . Sheet? Sheets . Td [IEA 1 A
| EEE N, 1005 (i)

FIGURE 25-1

You can also insert a dialog sheet programmatically, by executing this code line
in the Immediate window:

ActiveWorkbook.Sheets.Add Type:=x1DialogSheet

www.it-ebooks.info

http://www.it-ebooks.info/

Using Dialog Sheets | 317

One look at a dialog sheet and you can see the reason to avoid showing it; they are not pleasant-
looking objects. However, what the dialog sheet lacks in attractiveness is compensated for by its ease
of integration with Excel due to its use of Forms controls, to help make custom dialog boxes a valu-
able part of your VBA programming skill set.

@

A downside to dialog sheets is the volume of code they require for being pro-
duced, designed, and discarded. The amount of code can be visually daunting
at first, but please do not get discouraged. You have already seen most of the
kind of code that’s involved. The only difference is, unlike a UserForm where
you manually draw controls onto the form and then assign code to them, with
dialog sheets you are positioning the controls programmatically and assigning
their associated code all at the same time. There are notes at each step to explain
what’s going on.

You might be surprised at what you can do with dialog sheets. They can produce customized dialog
boxes that resemble UserForms in their basic functionality, but they are actually dialog boxes within
which you place Forms controls such as Buttons, DropDowns, Option Buttons, Labels, and Edit
Boxes. Figure 25-2 shows examples of a few custom dialog boxes that I created using dialog sheets.

Example of a custom button dialog with four buttons. |

Click one of the four custom buttons:

{ Clistom button 1.

Custom button 2 |

Custom button 3 |

x|

Custom button 4 I

Example of a custom option button diz 5[

Which Estimate file would you like to open?

€ Option A
€ Option B
 Option C
¢ Option D
OK | Cancel |
Please select a date:
Year Month Day
Jour =] [october 52 R E] -
i -
7
|

‘Yes, select this date I

Last name:

—

First name:

o

Street address:

e

Country:

e

Postal code:

=

Please enter your mailing address:

Cancel

x|

FIGURE 25-2

www.it-ebooks.info

http://www.it-ebooks.info/

318 | LESSON 25 NOT GONE,NOT FORGOTTEN

Option to Show Message Only Once

To see a dialog sheet in action, suppose you maintain an inventory of A [B [¢
clothing items and their retail prices, such as shown in Figure 25-3. j!}:;:;or salesal;ﬁ!
The prices are important and not meant to be changed without some ! ‘S'r‘égsses 25?
thought. 5 |Panis $32

6 | Shoes $75
If you want to be made aware that a price was changed, you can eas- ! g;‘ﬁs :ig
ily implement a Worksheet_Change procedure that informs you of a 3 Blouses $19
change having been made in range B2:B10. You might eventually get 10{Boots §95
tired of being constantly reminded if you make changes often, so a 2
built-in utility for turning off the advisement would be nice. FIGURE 25-3
In Figure 25-4, you see that the price of Jackets A B_ g D E F G
was just changed from $65 to $57, and there is jh‘:ﬂ:&or sale%
your dialog box, dutifully telling you what you 3 | Shirls 528 x|

Dresses 341
already know. If you check the box next to Do Pants $32

4
5
Not Show This Message Again, you won’t see i ohoos gg
that dialog box again after making changes to & |Skitts $43

. . 9 |Blouses $19
range .B2.B10, for the rest of the time the work- |02 =™ 505
book is open. n

‘You changed a cell in range B2:510.

I~ Do not show this message again.

The following examples of VBA code are what ~ FIGURE 25-4
make this possible without a UserForm. First,

because this is a Worksheet_Change event, place

this procedure in the worksheet’s module:

Private Sub Worksheet_Change (ByVal Target As Range)
If Intersect(Target, Range("B2:B10")) Is Nothing _
Or Target.Cells.Count > 1 Then Exit Sub

Run "MsgBoxShowOnceOption"

End Sub

In a standard module, the following three macros comprise the VBA instructions. The

primary

macro is named MsgBoxShowOnceOption, with two supporting macros for the Check Box evaluation

and the dialog sheet deletion.

'Declare Public variables because several modules are involved.
Public dlgShowMessageOnce As DialogSheet
Public blnMessage As Boolean

Private Sub MsgBoxShowOnceOption ()
'This macro creates a fresh dialog sheet named "ShowOnce",
'to produce a dialog box that the user can set to stop being shown.

'If the checkbox was checked to not show the message,
'the Boolean variable blnMessage is False, so exit sub.
If blnMessage = False Then Exit Sub

'Declare and define a variable name for the dialog.

Dim strDialogName As String
strDialogName = "ShowOnce"

www.it-ebooks.info

http://www.it-ebooks.info/

Using Dialog Sheets | 319

'Set ScreenUpdating to False.
Application.ScreenUpdating = False

'Delete the dialog sheet if by chance it exists.
"It will be added in the next step.

On Error Resume Next

Application.DisplayAlerts = False
ActiveWorkbook.DialogSheets (strDialogName) .Delete
Application.DisplayAlerts = True

Err.Clear

'Create and name the new dialog sheet, then hide it.

Set dlgShowMessageOnce = ActiveWorkbook.DialogSheets.Add
With dlgShowMessageOnce

.Name = strDialogName

.Visible = xlSheetHidden

'Size the dialog sheet frame (the dialog box you will actually see),
'and give its title bar a meaningful caption.

With .DialogFrame

.Height = 130

.Width = 210

.Caption = "Just so you know..."

End With

'Hide the Cancel default button that comes with dialog sheets,
'as the checkbox is the key to halting the showing of the dialog.
.Buttons ("Button 3").Visible = False

'Add a Label at the top of the dialog, distance from
'Left, Top, Width, Height.

.Labels.Add 100, 50, 180, 18

'Caption the Label.

.Labels (1) .Caption = "You changed a cell in range B2:B10."

'Position the dialog's default OK button.
With .Buttons("Button 2")
.Visible = True

.Left = 150
.Top = 80
End With

'Add the checkbox with caption, distance from
'Left, Top, Width, Height.

.CheckBoxes.Add 100, 120, 140, 18

With .CheckBoxes (1)

.Caption = "Do not show this message again."
.OnAction = "myCheckBox"
End With

'Set ScreenUpdating to True.
Application.ScreenUpdating = True

If .Show = False Then

'The X Cancel button was clicked on the title bar so delete the dialog sheet.
Application.DisplayAlerts = False

www.it-ebooks.info

http://www.it-ebooks.info/

320 | LESSON 25 NOT GONE, NOT FORGOTTEN

.Delete
Application.DisplayAlerts = True
End If

End With 'for the dialog frame.
End Sub

Private Sub myCheckBox ()

'If the checkbox is checked (Value = 1) set the Boolean variable to False,
'otherwise set it to True.

If dlgShowMessageOnce.CheckBoxes (Application.Caller) .Value = 1 Then
blnMessage = False

Else

blnMessage = True

End If

End Sub

'Delete the dialog sheet if it exists.
Private Sub DeleteDialog()

With Application

.ScreenUpdating = False

.DisplayAlerts = False

On Error Resume Next

DialogSheets ("ShowOnce") .Delete
Err.Clear

.DisplayAlerts = True

.ScreenUpdating = True

End With

End Sub

A final piece of precautionary code I install in the ThisWorkbook module is to make sure that if the
workbook is opened, closed, activated, or deactivated, the custom dialog sheet is deleted if it exists.
Sometimes, at a critical moment such as a power failure or some odd circumstance, the dialog sheet
might exist in the workbook, and you just want to make sure you cover your bases with no extra
dialog sheets having accumulated when you open the workbook again. These workbook-level proce-
dures handle the task of monitoring the proper absence of an unwanted dialog sheet.

'As a precaution, delete the dialog sheet if by chance it exists
'when the workbook is opened, closed, activated, or deactivated.
'The default Boolean value is True.

Private Sub Workbook_Open ()
Run "DeleteDialog"
blnMessage = True

End Sub

Private Sub Workbook_ Activate()
Run "DeleteDialog"
End Sub

Private Sub Workbook_Deactivate()

Run "DeleteDialog"
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Using XLM Get.Cell Functions | 321

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Run "DeleteDialog"

blnMessage = True

ThisWorkbook.Save

End Sub

USING XLM GET.CELL FUNCTIONS

Get.Cell is a function from the Excel 4.0 Macro Language (XLM) that returns information about
the formatting, location, or contents of a cell. The syntax of the Get.cel1 function is Get.Cell(num,
cell reference), where the num argument may be one of 66 numbers that correspond to the piece of
information being sought.

As an example of how you can benefit from a Get.cel1 function, suppose you have a worksheet
that contains formulas, text, and empty cells. You can apply Conditional Formatting to the range
with the Get.cel1 function and its number 48 number argument, which evaluates a cell for the
existence of a formula. The following steps lead you through the process, and when completed, your
cells will be conditionally formatted in real time to reflect the existence of a formula, or a constant
value, or nothing.

1.
2.

10.

Press the Ctrl+F3 keys to insert a new name.

Depending on the version of Excel you are using, in the Names in Workbook field or the
Name field, enter the word Formulas. (You can enter most any name you want, but to keep it
simple just call it Formulas.)

In the Refers To field near the bottom of the dialog box, enter
=GET.CELL(48,INDIRECT(“rc”,0)).

Click Add, then click OK.

Select the range of cells on your worksheet that you want to conditionally format. For this
example, select cell A1 to the last row and column of your choice.

Open the Conditional Formatting dialog box. If you are using a version prior to Excel 2007,
from the menu bar click Format = Conditional Formatting, and select Formula Is from the
drop-down menu. If you are using a later version, click the Home tab on the Ribbon, click
the Conditional Formatting icon, and click New Rule = Use a Formula to Determine Which
Cells to Format.

The first Conditional Formatting formula to be entered is =Formulas. After that, select your
fill color for formula-containing cells and click OK.

While still in the Conditional Formatting dialog box, click the Add button.
Enter a second formula for text-containing cells, which is =AND(LEN(A1)>0,ISTEXT(“rc”)).

Click the Format button, select the kind of formatting you want for cells containing con-
stants, and then click OK. Click OK again to exit the Conditional Formatting dialog box.

www.it-ebooks.info

http://www.it-ebooks.info/

322

| LESSON 25 NOT GONE, NOT FORGOTTEN

Now, formula-containing cells will be shaded the color you specified in step 7, constant-containing
cells will be formatted as you specified in step 10, and empty cells will have no Conditional Formatting.
Microsoft has a downloadable help file for Excel 4.0 macros at this address:

http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q128185&ID=KB;
EN-US;Q128185&FR=1.

USING THE SENDKEYS METHOD

The application.Sendkeys method sends keystrokes through VBA to the active application. The
term “active application” plays a key role in understanding when and when not to use Sendkeys.
You’ll encounter some situations where Sendkeys is the only viable alternative, and other situations
where Sendkeys should not be used.

Executing a Sendkeys command is a way of programmatically pressing the keys on your keyboard.
If, as a service of convenience to the users of your workbook, they need to perform an edit by append-
ing some text to the existing value, you can get them started with this set of Sendkeys, which has the
effect of double-clicking the cell and having the cursor blinking at the end of the current value:

SendKeys "{F2}"
SendKeys "{End}"

This use of sendkeys should normally pose no problem. sendkeys gets more of a bad rap than it
should because when executed in rapid-fire succession in loops or upon inactive applications, which
is an ill-advised programming practice, the code compilation process cannot catch up with the exe-
cution process after a time, and errors result when the intended window or object of interest is not
the proper focus. In the preceding example, the use of sendkeys is fine because it’s just one com-
mand in a small macro for a cell that is already selected.

SendKeys is a better approach in the case of showing DataForms because the ShowbataForm com-
mand will error if the source data’s header row starts on a row below row 2 (that is, row 3 or
below), where rows 1 and 2 are empty. The application.SendKeys "%D0O" command will call the
DataForm regardless of what row the source data starts on. Error traps and conditional statements
for data starting on row 1 or row 3 are superfluous when a simple Sendkeys command can handle
the situation right then and there, whatever the first row of source data.

You may be curious about the syntax for sendkeys. The keys for Alt, Ctrl, and
Shift are represented by the characters %, ", and +, respectively. For example,
the expression “%c” means Alt+C; “NC” means Ctrl+C (which means copy);
and “+C” means Shift+C. The Enter key is represented by the tilde (~) char-
acter, and keys such as Home, End, and Tab are represented by Sendkeys as
{Home},{End}, and {Tab}.

www.it-ebooks.info

http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q128185&ID=KB
http://www.it-ebooks.info/

Trylt | 323

As a further example, this will take you to the last row of the DataForm, assuming column B is a
part of its source table:

Cells(Rows.Count, 2).End(xlUp).Select

SendKeys "%DO"

Finally, the following pair of code lines will open the DataForm and get you ready for entering the
next record. This example also shows how the select statement has its place as well; sometimes it’s
okay to select a cell when working with it.

Cells(Rows.Count, 2).End(xlUp).Select

SendKeys "%DO%W"

SendKeys is as safe as any other method when used with common sense for awareness in your cod-
ing as to what application and window are active at the point of execution. You see another example
of sendkeys in the Try It section.

TRY IT

In this lesson, you compose a short Worksheet_Selection procedure that uses the sendkeys
method to automatically expand the drop-down list of a cell containing Data Validation.

Lesson Requirements

Using the sendkeys method with the Wworksheet_Selection event, if a worksheet cell has Data
Validation, make the Data Validation drop-down list appear automatically when the cell is selected.
If the cell is not validated, the sendkeys instruction is bypassed. To get the sample database files
you can download Lesson 25 from the book’s website at www.wrox . com.

Step-by-Step

1. On a new worksheet, select cell C3 and establish Data Validation to allow a list, such as the
seven days of the week. Be sure that the In-Cell Dropdown option is selected on the Settings
tab of the Data Validation dialog.

2. Select any cell other than C3 on that worksheet.
3. Right-click the worksheet tab and select View Code.

4. In the Object drop-down list, select Worksheet. By default, the worksheet_Selection event
line and its accompanying End Sub line will appear in the worksheet module, which will

look like this:

Private Sub Worksheet_SelectionChange (ByVal Target As Range)

End Sub

5. For the first line of code, instruct VBA to do nothing if more than one cell is selected. The
code will be of value only when one cell at a time is selected.

If Target.Cells.Count> 1 Then Exit Sub

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

324 | LESSON 25 NOT GONE, NOT FORGOTTEN

10.

1".

12.

Declare a variant type variable that will verify the Data Validation Type in the selected cell:

Dim dvCell As Variant

Insert an error bypass with the on Error Resume Next statement to avoid a runtime error
when a selected cell does not contain Data Validation:

On Error Resume Next

Assign the Data Validation Type to the variable:

dvCell = Target.Validation.Type

If there is no VBA runtime error, that is, if the selected cell contains Data Validation, execute
the sendkeys method that simulates the keyboard action of pressing the Alt and Down
Arrow keys. The optional True keyword refers to the Wait argument of SendKeys, for VBA
to wait until the SendKeys action is completed before executing the next line of code.

If Err = 0 Then SendKeys "%${down}", True

Clear the Error object in case a runtime error did occur:

Err.Clear

The entire Worksheet_Selection procedure will look as follows:

Private Sub Worksheet_SelectionChange (ByVal Target As Range)
If Target.Cells.Count> 1 Then Exit Sub

Dim dvCell As Variant

On Error Resume Next

dvCell = Target.Validation.Type

If Err = 0 Then SendKeys "%${down}", True

Err.Clear

End Sub

Press Alt+Q to return to your worksheet. Select a few cells, then select cell C3. When you do
so, its Data Validation drop-down list will appear, as shown in Figure 25-5.

B | 0 i © [E]

_Enter a weekday:

ES
E
=N
4 Sunday
— Monday
3 Tuesday
5 Wednesday
— Thursday
7 Friday
2 Saturday
2
0

To view the video that accompanies this lesson, please select Lesson 25, available
at the following website: www .wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

SECTION V

Interacting with Other
Office Applications

» LESSON 26: Overview of Office Automation from Excel
» LESSON 27: Working with Word from Excel

» LESSON 28: Working with Outlook from Excel

» LESSON 29: Working with Access from Excel

» LESSON 30: Working with PowerPoint from Excel

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

26

Overview of Office Automation
from Excel

As you may recall from Lesson 1, Visual Basic for Applications is a programming language
created by Microsoft to automate operations in applications that support it, such as Excel.
VBA is also the language that manipulates Microsoft Office applications in Access, Word,
PowerPoint, and Outlook. So far, the focus of this book has been on running VBA from
Excel, for the purpose of acting directly upon Excel in some way.

This section shows how to control other Office applications from Excel, using the same VBA
programming language with which you are now familiar, but using a different set of meth-
ods and statements with which those other Office applications are familiar. The reasons for
interacting with other Office applications might not be for the purpose of changing your Excel
workbook application, but they will always be for the purpose of making your workbook proj-
ects more robust, versatile, and easier to use when the situation calls for it.

WHY AUTOMATE ANOTHER APPLICATION?

In the dawn of this modern era of personal computers, it was rare that two or more separate
applications were able to communicate with each other. For two applications to share the
same information, you usually had to retype the information manually into the other applica-
tion that needed it. Today, thanks to the advances of drag and drop, and copy and paste, it has
become a simple matter to share data across many applications.

The business of Excel is to perform calculations and analyze data. You can enter and edit text in
Excel, but it is not a word processor. You can build data tables and compare their information,
but Excel is not a relational database application. You can create charts and graphics in Excel but
they cannot be presented in a sophisticated slide show format. You can send a workbook through
e-mail but Excel cannot manage your calendar or incoming e-mails the way an e-mail client can.

www.it-ebooks.info

http://www.it-ebooks.info/

328

| LESSON 26 OVERVIEW OF OFFICE AUTOMATION FROM EXCEL

You get the idea — sooner or later you’ll need to perform some kind of operation that another applica-
tion was especially made to handle. This lesson lays the groundwork for you to understand Office auto-
mation from Excel, and the theory behind some best practices in doing so.

UNDERSTANDING OFFICE AUTOMATION

Where VBA is concerned, the only difference between Excel, Word, Access, PowerPoint, and
Outlook lies in their object models. Each of these applications can access another’s object model,
so long as the target application has been properly installed on the host computer. Controlling one
Office application from another becomes a simple matter of knowing how to link to the object
model of the Office application you want to control.

The term “automation” is an Office programmer’s way of referring to the VBA technology that pro-
vides the ability to manipulate another application’s objects. Though VBA is the common language

among Office applications, the respective object models differ in their objects’ names, methods,

and properties. Both Excel and Word have a Range object but with different properties. Excel has a

Workbooks object, which is the counterpart to PowerPoint’s Presentations object.

For Excel to access another Office application’s object model, a connection needs to be established
to that target application. Two options for doing this exist: one option is called early binding, and
the other option is called late binding. The term “binding” refers to the verification that an object
exists, and that the command to manipulate that object’s methods and properties is valid.

. .
Ea rly Blndlng References - VBAProject x|
Available References:
With early binding, a reference is established with the T et rdow Defenir COWUEy 10 e 2] ==
. Microsoft Windows Image Acquisition Library v2.0
target application’s object library before you write e s N T
. . 5 . [Microsoft WinHTTP Services, version 5.1
your macro, so that the application’s objects, meth- ul s by |
. . [ftiWord 13,0 ¢ 2 TR -
ods, and properties can be accessed in your code. For maccoters Caentar 50 Typeary ™ Py |
3 3 I Mi ft Works Print Service 5.0 Type Libr
example, if you are using Office 2010 and you want Dot wore ol oy & e ey 4
. .] Microsoft Works WksDb 5.0 Type Library
to write a macro to open Word and edit a document, [trosoft WshAN Automatien V1 Lbrary -
st |
you would first need to establish a reference to the . :
. . . M ft Word 14.0 Object Librar
Microsoft Word 14.0 Object Library. To do that, you R
. . . Location: C:\Program Files (x86) Microsoft Office\Office 14\MSWORD.OL
can go to the Visual Basic Editor, and from the menu Lenguage: Standard
bar click Tools = References and scroll to select the
reference, as shown in Figure 26-1. FIGURE 26-1

VBA sees versions of Microsoft Office as numbers, not names. For example, VBA
knows Office 2003 as version 11, Office 2007 as version 12, and Office 2010 as
version 14 (Microsoft knowingly skipped number 13). Therefore, if you are work-
ing with Office 2007 at home, you'd have Word 12 listed in your VBA References,
but if you are using Office 2010 at work, you'd see Word 14 listed.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Office Automation | 329

Once you have established the proper reference, you can write a macro using early binding that will,
for example, open a Word document in Office 2010. Suppose you already have a Word document
named myWordDoc . docx that you keep in the path C:\Your\File\Path\. This macro will open that
document, using early binding:

Sub EarlyBindingTest ()

Dim wdapp As Word.Application, wddoc As Word.Document

Set wdapp = New Word.Application

wdapp.Visible = True

Set wddoc = wdapp.Documents.Open (Filename:="C:\Your\File\Path\myWordDoc.docx")
End Sub

When you attempt to run this macro, you would immediately know if you [
did not properly establish the Word 14.0 library reference, because you

Compile error:

would be prompted by a compile error message, as shown in Figure 26-2. E5 er defined type not defined
As you compose a macro using early binding, you will have the benefit Help

of VBA’s IntelliSense feature, where objects and properties pop up as you
type your code’s object references. And, macros with early binding run
faster than macros performing the same task with late binding, because a
reference has already been established to the target application’s objects,
methods, and properties.

FIGURE 26-2

@ If your macro runs without errors but you don’t see a Word document, or

you don’t even see Word on your task bar, it could be that you really did cre-
ate a new instance of Word, but it is not visible. In the Immediate window,
type Word.Application.Visible = True and press Enter.

So then, why would you ever not want to use early binding? Actually, there is a very good reason
why not: the referenced object (Word 14.0 in this example) must exist on the computer. If it does not
exist, an error will occur such as shown in Figure 26-2.

The concern is, unless you are composing your Office automation macros to be run on a system
that you know for a fact will (a) be installed with the target application, and (b) will have the
proper object library reference established in advance, chances are pretty good the macro will
fail using early binding. And with new Office versions being released every few years, when you
upgrade your Office version you will need to edit all the macros in which you utilized early bind-
ing that will then be referring to an outdated earlier version.

Late Binding

With late binding, you declare an object variable that refers to the target application, just as you
would with early binding. However, instead of setting the variable to a specific (in this case) Word
object, you create an object called a Word application.

www.it-ebooks.info

http://www.it-ebooks.info/

330 | LESSON 26 OVERVIEW OF OFFICE AUTOMATION FROM EXCEL

If you use late binding, you do not use Tools = References to set a reference because you do not
know which Word object library version will be on a user’s machine. Instead, you use code to cre-
ate the object. The following macro named LateBindingTest accomplishes the same task as the
EarlyBindingTest, by opening a specific Word document:

Sub LateBindingTest ()

Dim WdApp As Object, wddoc As Object

Set WdApp = CreateObject ("Word.Application")

WdApp.Visible = True

Set wddoc = WdApp.Documents.Open (Filename:="C:\Your\File\Path\myWordDoc.docx")
End Sub

In a nutshell, when you declare a variable As Object and set it as CreateObject, VBA doesn’t
know whether the object is a cell, a worksheet, a Word application, or any other object. The code
goes through a series of tests behind the scenes until it finds the correct application for the use
intended by your code. That’s the essential reason why late binding takes longer to execute.

Which One Is Better?

For my money, even with moderately sized macros, the extra seconds of run time due to late binding
make up for the headaches of trying to accommodate every version of your target Office application,
from 2000 through 2010. You will find that the VBA skills you are acquiring will lead to compos-
ing macros that others will use, and you’ll never know what Office versions are installed on users’
systems. People have varying opinions on the merits of early versus late binding, so consider the pros
and cons of both methods to decide which approach is best for you.

TRY IT

In this lesson, you compose a macro using late binding that opens a Presentation file in PowerPoint.

Lesson Requirements

For this lesson, you first create a PowerPoint presentation, name that file PowerPointExamplel,
and save it into the folder path C:\Your\File\Path\. You’ll compose a macro that will open the
PowerPoint file, taking into consideration that the Office version is unknown, so the late binding
method will be utilized.

Step-by-Step
1. Open a new workbook and press Alt+F11 to go to the Visual Basic Editor.
2. From the menu at the top of the VBE, click Insert ©> Module.

3. In the module you just created, type Sub OpenPowerPoint and press Enter. VBA will auto-
matically place a pair of empty parentheses at the end of the sub line, followed by an empty
line, and the End sub line below that. Your macro will look like this so far:

Sub OpenPowerPoint ()

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 331

10.

Declare variables for the file path, the PowerPoint file name, and the file extension. The rea-
son for the variable extension is that starting with Office version 2007, PowerPoint file exten-
sions are commonly .pptx or .pptm. Prior to 2007, the extension for PowerPoint files was
simply .ppt.

Dim myPath As String, myFileName As String, myExtension As String

Define the variables for myPath and myFileName:

myPath = "C:\Your\File\Path\"
myFileName = "PowerPointExamplel"

Use an 1If structure to define the extension String variable. Note the val statement, which
ensures the Office application version is regarded as a number for the logical evaluation of
being less than or equal to version 11, which is Office 2003.

If Val (Application.Version) <= 11 Then

myExtension = ".ppt"
Else

myExtension = ".pptx"
End If

Declare the PowerPoint application object and set it using the Createobject method for late
binding:

Dim appPPT As Object
Set appPPT = CreateObject ("PowerPoint.Application")

When opening other applications, don’t forget to make them visible:

appPPT.Visible = True

Compose the open statement for PowerPoint that combines the myPath, myFileName, and
myExtension variables:

appPPT.Presentations.Open Filename:=myPath & myFileName & myExtension

When completed, the macro will look like this, with comments that have been added to
explain each step:

Sub OpenPowerPoint ()

'Declare variables for path, file name and file extension.

Dim myPath As String, myFileName As String, myExtension As String

'Define the myPath and myFileName variables.

myPath = "C:\Your\File\Path\"

myFileName = "PowerPointExamplel"

'Using an If structure and depending on the host computer's Office version,
'define the extension of the PowerPoint file.

If Val (Application.Version) = 11 Then
myExtension = ".ppt"

Else

myExtension = ".pptx"

End If

www.it-ebooks.info

http://www.it-ebooks.info/

332 | LESSON26 OVERVIEW OF OFFICE AUTOMATION FROM EXCEL

'Declare a variable for what will be the PowerPoint object.
'Set the object to late binding by using the CreateObject method.

Dim appPPT As Object
Set appPPT = CreateObject ("PowerPoint.Application")
'Make sure you include the command to make the application visible.

appPPT.Visible = True
'Open the PowerPoint file.
appPPT.Presentations.Open Filename:=myPath & myFileName & myExtension

End Sub

11. Press Alt+Q to return to the worksheet. Press Alt+F8 to show the macro dialog box, and
test the macro by selecting the macro name and clicking the Run button.

To get the sample database files, you can download Lesson 26 from the book’s website at

WwWw . Wrox.com.

To view the video that accompanies this lesson, please select Lesson 26, available
at the following website: www.wrox.com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

=7

Working with Word from Excel

With the ubiquitous presence of Microsoft Office, a common task is to create and maintain
documents in Microsoft Word that either accompany, or include as part of their narrative con-
tent, data and information from Excel workbooks. From your own experience, you have prob-
ably seen situations that call for information from Word documents to be appended, printed,
or exported from Word into your Excel workbook.

Word and Excel work very well together in sharing data across their respective applications.
These tasks can be automated with VBA macros right from Excel, to provide your workbook
projects with robust and user-friendly methods of integrating data with Word.

ACTIVATING A WORD DOCUMENT

In Lesson 26, you saw a macro named LateBindingTest that opens a Word document named
myWordDoc . docx. However, with the everyday world being what it is, a seemingly simple task
like activating a Word document involves a few considerations:

Word might not be open.
Word is open but the document itself is not open.

The Word document is already open.

Y VYV VY

The Word document you want to open does not exist.

For such tasks that have multiple considerations, the “divide and conquer” approach is a good
way to cover your bases. If you take each consideration in turn, you can craft a single macro
to handle the entire process seamlessly.

www.it-ebooks.info

http://www.it-ebooks.info/

334 | LESSON 27 WORKING WITH WORD FROM EXCEL

Activating the Word Application

The basic premise of activating Word is that you must tell Excel you are leaving it altogether, for
a totally different application destination. The Getobject function is a reliable way to do this, as
shown in the following macro:

Sub ActivateWord ()

Dim wdApp As Object

Set wdApp = GetObject(, "Word.Application")
wdApp.Activate

End Sub

The Getobjectfunction has two arguments, the first of which is an optional pathname argument
that tells VBA where to look for a specified object. Because the pathname is not specified (which it
need not be because it is optional), Getobject activates Word, because Wword.application is the
object being specified in the second argument.

But what if Word is not open? If you try running the ActivateWord macro without Word being
open, a runtime error will occur because VBA is being told to activate an object that is not able to
be activated. You need to insert an error bypass in your macro to tell VBA to activate Word only if
Word is open, and to open and then activate Word only if Word is closed.

You can accomplish this with the on Error Resume Next statement that monitors runtime error
number 429, which is the VBA error number that occurs with the Getobject function if Word is
not open. In that case, VBA will open a new instance of Word, as shown in the following modified
ActivateWord macro:

Sub ActivateWord ()

Dim wdApp As Object

On Error Resume Next

Set wdApp = GetObject(, "Word.Application")
If Err.Number = 429 Then

Err.Clear

Set wdApp = CreateObject ("Word.Application")
wdApp.Visible = True

End If

wdApp.Activate

End Sub

Opening and Activating a Word Document

Now that you have Word open, it’s reasonable to assume that the next item on your agenda is to
open an existing Word document, or to create a new Word document. If the plan is to open an exist-
ing document, a wise programming practice is to account for the possibility that the document does
not exist in the specified folder path.

You never know — files get deleted, or have their names changed, or get moved
from one folder to another. A VBA runtime error will eventually come back to
bite you when a command is given to open a file having an unrecognized name
or location.

www.it-ebooks.info

http://www.it-ebooks.info/

Activating a Word Document | 335

For demonstration purposes, say you maintain a Word document named myWordboc . docx in the
folder path C:\Your\File\Path\. Before you attempt to open the document, check the directory to
make sure it resides in the expected folder path. If the Word document is not where your macro
thinks it should be, you’ll want to exit the macro with a Message Box informing the user why the
process could not be completed.

Finally, your macro will need to keep its eyes on the prize: the Word document that might already
be open if Word was already open. A lot to remember but that’s what macros are for...tell them once
and they do what they’re told. Here is the complete modification of the ActivateWord macro that
wraps it all up into a single package:

Sub ActivateWord()

'Declare Object variables for the Word application and document.
Dim WdApp As Object, wddoc As Object

'Declare a String variable for the example document's

'name and folder path.

Dim strDocName As String

'On Error statement if Word is not already open.
On Error Resume Next

'Activate Word if it is already open.

Set WdApp = GetObject(, "Word.Application")

If Err.Number = 429 Then

Err.Clear

'Create a Word application if Word is not already open.
Set WdApp = CreateObject ("Word.Application")

End If

'Make sure the Word application is visible.
WdApp.Visible = True

'Define the strDocName String variable.
strDocName = "C:\Your\File\Path\myWordDoc.docx"

'Check the directory for the presence of the document
'name in the folder path.

'If it is not recognized, inform the user of that
'fact and exit the macro.

If Dir(strDocName) = "" Then

MsgBox "The file myWordDoc.docx" & vbCrLf & _
"was not found in the folder path" & vbCrLf & _
"C:\Your\File\Path\.",

vbExclamation,

"Sorry, that document name does not exist."

Exit Sub

End If

'Activate the Word application.

WdApp.Activate

'Set the Object variable for the Word document's full

'name and folder path.

Set wddoc = WdApp.Documents (strDocName)

'If the Word document is not already open, then open it.

If wddoc Is Nothing Then Set wddoc = WdApp.Documents.Open (strDocName)

www.it-ebooks.info

http://www.it-ebooks.info/

336 | LESSON 27 WORKING WITH WORD FROM EXCEL

'The document is open, so activate it.
wddoc.Activate

'Release the system memory that was reserved for the two
'Object variables.

Set wddoc = Nothing

Set WdApp = Nothing

End Sub

CREATING A NEW WORD DOCUMENT

You can easily create a new Word document from scratch with the statement

WdApp . Documents .Add

You’ll typically create a new Word document for the purpose of holding some kind of narrative or
data, which means you’ll want to save your new document. Tapping into many of the same pro-
cesses that were covered in the ActivateWord macro, here is an example of a macro that creates and
saves a new Word document:

Sub CreateWordDoc ()

'Declare Object variables for the Word application
'and new document.
Dim objWordApp As Object, objWordDoc As Object

'On Error statement if Word is not already open.

On Error Resume Next

'Activate Word if it is already open.

Set objWordApp = GetObject(, "Word.Application")

If Err.Number = 429 Then

Err.Clear

'Create a Word application if Word is not already open.
Set objWordApp = CreateObject ("Word.Application")

End If

'Make sure the Word application is visible.
objWordApp.Visible = True

'Activate the Word application.
objWordApp.Activate

'Create your new Word document.

Set objWordDoc = objWordApp.Documents.Add

'Save your new Word document in a folder path.
objWordDoc.SaveAs "C:\Your\File\Path\myNewWordDoc.docx"

'Release the system memory that was reserved for the
'two Object variables.

Set objWordApp = Nothing

Set objWordDoc = Nothing

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Printing a Word Document from Excel | 337

COPYING AN EXCEL RANGE TO A WORD DOCUMENT

Suppose you have a table of data in your Excel workbook on Sheetl in range A1:H25. You want to
export the table into an existing Word document named myWordboc . docx, which you know exists
and you know is closed. To make it interesting, say the task calls for the following set of actions:

1.
2.
3.
4.
5.

Open Word.

Open myWordDoc . docx.

Export the data table from Excel into the myWordpoc . docx document.
Save myWordDoc . docx.

CﬂosemyWordDoc.docx.

The following macro accomplishes this task very quickly. Note that you can copy a worksheet’s

used

range or current region of a cell; you do not need to refer to a specific range address as this

example does.

Sub ExportFromExcelToWord ()

'Turn off ScreenUpdating

Application.ScreenUpdating = False

'Copy the Excel range to be exported.

Worksheets ("Sheetl") .Range ("Al:H25") .Copy

'Declare object variables.

Dim WdApp As Object, wddoc As Object

'Open Word

Set WdApp = CreateObject ("Word.Application")

'Open the Word document that will accept the exported data.
Set wddoc = WdApp.Documents.Open (Filename:="C:\Your\File\Path\myWordDoc.docx")
'Paste the copied date from Excel to the Word document.
wddoc.Range. Paste

'Close the Word document and save changes

wddoc.Close savechanges:=True

'Quit the Word application.

WdApp.Quit

'Set the Object variables to Nothing to release system memory.
Set wddoc = Nothing

Set WdApp = Nothing

'"Exit Copy mode

Application.CutCopyMode = False

'Turn ScreenUpdating back on.

Application.ScreenUpdating = True

End Sub

PRINTING A WORD DOCUMENT FROM EXCEL

To print a Word document, you can use the Printout method to print the entire document, or only
a portion of the document if you so choose. The following macro shows an example of opening and
printing a Word document:

Sub PrintWordDoc ()
'Declare object variables.

www.it-ebooks.info

http://www.it-ebooks.info/

338 | LESSON 27 WORKING WITH WORD FROM EXCEL

Dim WdApp As Object, wddoc As Object

'Open Word

Set WdApp = CreateObject ("Word.Application")

'Open the Word document to be printed.

Set wddoc = WdApp.Documents.Open (Filename:="C:\Your\File\Path\myWordDoc.docx")
'Print the entire Word document.

WdApp . ActiveDocument .PrintOut

'Give the print job 5 seconds to complete before closing Word.
Application.Wait Now + TimeSerial (0, 0, 5)

'Close the Word document, no need to save changes.

wddoc.Close savechanges:=False

'Quit the Word application.

WdApp.Quit

'Set the Object variables to Nothing to release system memory.
Set wddoc = Nothing

Set WdApp = Nothing

End Sub

y You might have noticed that this macro, and a couple of others in this lesson, do
not include the statement to make the Word application visible. It’s easy to for-
get that you have an open application if you cannot see it. The point to be made
is, do remember to include the Close and Quit statements in your macros when
opening applications. Otherwise, you'll get read-only messages, and then error
messages when rerunning the macro, which to VBA will be interpreted as an
attempt to re-open a file that is already open.

If you want to print only a portion of the Word document, for example only page 2, then in the pre-
ceding PrintwordDoc macro, substitute the statement

WdApp . ActiveDocument . PrintOut

with

WdApp .ActiveDocument.PrintOut pages:="2"

IMPORTING A WORD DOCUMENT TO EXCEL

There may be times when you want to import some text from Word into Excel. Admittedly this is
not a common task, because Excel cells are not meant to serve as word processing instruments for
extensive amounts of text. But because it’s possible, here’s a macro that opens a Word document,
copies the second paragraph, and pastes that text into cell A1 of Sheetl:

Sub ImportToExcelFromWord ()

'Declare object variables.

Dim WdApp As Object, wddoc As Object

'Open Word

Set WdApp = CreateObject ("Word.Application")

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 339

'Open the Word document

Set wddoc = WdApp.Documents.Open (Filename:="C:\Your\File\Path\myWordDoc.docx")

'Copy paragraph 2

wddoc . Paragraphs (2) .Range.Copy

'Activate your workbook and go to the paste destination of Sheetl cell Al.

Application.GotoThisWorkbook.Worksheets ("Sheetl") .Range ("Al")

'Paste paragraph 2 from the Word document.

ActiveSheet.Paste

'Close the Word document, no need to save changes.

wddoc.Close Savechanges:=False

'Quit the Word application.

WdApp.Quit

TRY IT

'Set the Object variables to Nothing to release system memory.
Set wddoc = Nothing

Set WdApp = Nothing

End Sub

In this lesson, you write a macro that asks for the name of a Word document and opens that Word
document if it exists in a particular folder.

Lesson Requirements

For this lesson, you write a macro that uses an InputBox to ask for the name of a Word document
to be opened from a predetermined folder path. If the Word document exists, it is opened, but if it
does not exist, the user is advised of that. To get the sample database files you can download Lesson
27 from the book’s website at www.wrox.com.

Step-by-Step

1.
2.
3.

From any worksheet in your Excel workbook, press Alt+F11 to go to the Visual Basic Editor.
From the VBE menu, click Insert &> Module.

In the module you just created, type Sub OpenRequestedwordboc and press Enter. VBA will
automatically place a pair of empty parentheses at the end of the sub line, followed by an
empty line, and the End sub line below that. Your macro will look like this so far:

Sub OpenRequestedWordDoc ()

End Sub

Declare a string type variable for the predetermined folder path:

Dim myPath As String

Define the string type variable for the example folder path:

myPath = "C:\Your\File\Path\"

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

340 | LESSON 27 WORKING WITH WORD FROM EXCEL

6. Declare a String type variable for the anticipated InputBox entry:

Dim myFileName As String

7. Show the InputBox to ask the user for the name of the Word document to be opened from
the predetermined folder path:

myFileName = InputBox _

("Enter the full Word document name to be opened" & Chr(10) & _
"from the folder path " & myPath & ":", _

"What file name with extension do you wish to open?", _
"YourDocumentName.docx")

8. Exit the macro if nothing is entered or if the Cancel button is clicked:

If myFileName = "" Then Exit Sub

9. Declare a string type variable for the combined folder path and document name:

Dim myDocName As String

10. Define the string type variable for the combined folder path and document name:

myDocName = myPath & myFileName

11. Check to see if the Word document name exists in the folder path. If it does not, advise the
user and exit the macro.

If Dir (myDocName) = "" Then

MsgBox "The file " & myFileName & vbCrLf & _
"was not found in the folder path" & vbCrLf & _
myPath & ".",

vbExclamation, _

"No such animal."

Exit Sub

End If

12. At this point, the Word document is determined to exist in the folder. Declare object vari-
ables for the Word application and the Word document:

Dim appWord As Object, wdDoc As Object

13. Using late binding in this example, create a Word application:

Set appWord = CreateObject ("Word.Application")

14. Make the created Word application visible:

appWord.Visible = True

15. Open the requested Word document name:

Set wdDoc = appWord.Documents.Open (myDocName)

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 341

16.

17.

Release the reserved memory in VBA for the declared object type variables now that they
have served their purpose and are no longer needed:

Set wdDoc = Nothing
Set appWord = Nothing

Go ahead and test your macro, which will look like this in its entirety:

Sub OpenRequestedWordDoc ()

'Declare a String variable for the predetermined folder path.
Dim myPath As String

'Define the String variable with the example folder path.
myPath = "C:\Your\File\Path\"

'Declare a String variable for the anticipated InputBox entry.
Dim myFileName As String

'Show the InputBox to ask the user for the name of the Word
'document they want to open from the predetermined folder path.
myFileName = InputBox _

("Enter the full Word document name to be opened" & Chr(10) & _
"from the folder path " & myPath & ":",

"What file name with extension do you wish to open?",
"YourDocumentName.docx")

'Exit the macro if nothing is entered or the Cancel button is clicked.
If myFileName = "" Then Exit Sub

'Declare a String variable for the combined folder path
'and document name.

Dim myDocName As String

'Define the String variable for the combined folder path
'and document name.

myDocName = myPath & myFileName

'Check to see if the Word document name actually exists
'in the folder path.

'If it does not, then advise the user and exit the macro.
If Dir (myDocName) = "" Then

MsgBox "The file " & myFileName & vbCrLf & _

"was not found in the folder path" & vbCrLf & _

myPath & ".",
vbExclamation,
"No such animal."
Exit Sub

End If

'At this point, the Word document is determined to exist
'in the folder.

'Declare Object variables for the Word application and
'the Word document.

Dim appWord As Object, wdDoc As Object

www.it-ebooks.info

http://www.it-ebooks.info/

342 | LESSON 27 WORKING WITH WORD FROM EXCEL

'Using late binding in this example, create a Word application.

Set appWord = CreateObject ("Word.Application")

'Make the created Word application visible.

appWord.Visible = True

'Open the requested Word document name.

Set wdDoc = appWord.Documents.Open (myDocName)

'Release the reserved memory in VBA for the declared Object variables
'now that they have served their purpose and are no longer needed.
Set wdDoc = Nothing

Set appWord = Nothing

End Sub

To view the video that accompanies this lesson, please select Lesson 27, available
at the following website: www .wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

28

Working with Outlook from Excel

Microsoft Outlook is the e-mail client application that is included in Microsoft’s Office suite.
In addition to e-mail management, Outlook also provides personal information management
capabilities with its Calendar, Contacts, and Task Manager features. Each of these compo-
nents in Outlook can be controlled from Excel with VBA.

With all the competing e-mail clients to choose from, Outlook continues to be
far and away the world’s most popularly used e-mail application. Chances are
pretty good that Outlook is your e-mail client at work or at home, or it is being
used by the recipients of e-mails you send.

OPENING OUTLOOK

Before diving into the programming of Outlook from Excel, it’s important to be aware

of a particular design distinction of Outlook that is different than Excel, Word, Access,
or PowerPoint. Unlike those other Office applications for which you can create multiple
instances, Microsoft designed Outlook, when serving as a default e-mail client, to provide
for only one instance to be open at a time.

As with any application, ways exist to circumvent Outlook’s resistance to mul-
tiple open instances, but why anyone would want to force that is beyond me.
When it comes to handling e-mails, tasks, and calendars, it’s just common sense
to have only a single instance of Outlook open at any one time.

www.it-ebooks.info

http://www.it-ebooks.info/

344 | LESSON 28 WORKING WITH OUTLOOK FROM EXCEL

The following macro first checks to see if Outlook is already open, and if so, Outlook is activated. If
Outlook happens to be closed, an Outlook application is created using the late binding method.

Sub OpenOutlook()

'Declare and establish the Object variables for Outlook.
Dim objoOutlook As Object

Dim objNameSpace As Object

Dim objInbox As Object

Set objoOutlook = CreateObject ("Outlook.Application")

Set objNameSpace = objOutlook.GetNamespace ("MAPI")

Set objInbox = objNameSpace.Folders (1)

'Activate Outlook if it is already open, or display Outlook's
'application object interface if it is closed.

On Error Resume Next

AppActivate ("Outlook™")

If Err.Number <> 0 Then objInbox.Display

Err.Clear

End Sub

The createobject method provides an optional second argument for applications
residing on a server, for example: Set objoutlook = CreateObject ("Outlook
.Application", "").

COMPOSING AN E-MAIL IN OUTLOOK FROM EXCEL

Most of the time, when you open Excel, whether manually or with VBA, it’s for the purpose of
doing something, such as to receive or send e-mails, but also to update your calendar or manage
your task list. Building upon the previous code that opens or activates Outlook, this section explains
how to compose and send a complete e-mail message.

Creating a Mailltem Object

Where VBA is concerned, MailItem is an Outlook object that you know (no doubt all too well) as

a typical e-mail message that arrives in your Inbox. The MailTtem object is made up of the familiar
fields “To,” “CC,” and “Subject.” The other components of the MailItem object are the “Body”
where you type the text of your message; an optional level of Importance; and maybe an attachment.

When you want to compose an e-mail with VBA, you declare a variable for the MailTtem object and
set it as a created item of the Outlook application object. For example, the following macro would
create an e-mail message:

Sub SendEmail ()

'Declare and establish the Object variables for Outlook.

Dim objoOutlook As Object
Dim objNameSpace As Object

www.it-ebooks.info

http://www.it-ebooks.info/

Composing an E-mail in Outlook from Excel | 345

Dim objInbox As Object

Set objoOutlook = CreateObject ("Outlook.Application")
Set objNameSpace = objoOutlook.GetNamespace ("MAPI")
Set objInbox = objNameSpace.Folders(1)

'Activate Outlook if it is already open, or display Outlook's
'application object interface if it is closed.

On Error Resume Next

AppActivate ("Outlook")

If Err.Number <> 0 Then objInbox.Display

Err.Clear

Dim objMailItem As Object

Set objMaillItem = objOutlook.CreateItem(1)

With objMailItem

.To = "someone@somewhere.com"

.CC = "anyonelanywhere.com"

.Subject = "Testing my email code"

.Importance = 1 'Sets it as Normal importance (Low = 0 and High = 2)
.Body = "Hello, this is a test. Have a nice day."

.Attachments.Add "C:\Your\File\Path\YourFileName.xlsx"

.Display 'Change to Send if you don't want to review the email before sending.
End With

End Sub

@ A couple of FYIs: The Tmportance property is optional; you don’t need to
include it. If you do include it as 1 did with this example, the “1” is a reference
to Normal Importance. Low Importance would be “0” and High Importance
would be “2.” Also, in all the e-mail examples in this lesson, “Display” is uti-
lized rather than “Send,” so that when you test these examples, you can actually
see the resulting MailItem object.

Transferring an Excel Range to the Body of Your E-mail

In the preceding example of composing a MailTtem object, the body A B c
of the e-mail message was hard-entered into the macro, with this e
statement: 3 2ane
4 |Jack
.Body = "Hello, this is a test. Have a nice day." 2 gﬁ
7 Dana
You might be interested to know that you can represent a range of 3 adam

worksheet data in the body of an e-mail message. One way to accom- 10 |steven
plish that is to loop through the cells and create a text string, with a
line break character to simulate each row item. Figure 28-1 shows a

simple list that will be referred to in this example. FIGURE 28-1

www.it-ebooks.info

mailto:someone@somewhere.com%E2%80%9D
mailto:anyone@anywhere.com%E2%80%9D
http://www.it-ebooks.info/

346 | LESSON 28 WORKING WITH OUTLOOK FROM EXCEL

To copy the list, declare a string variable for the text values as you loop through each cell in the
list, and declare Long variables for the count of rows and columns in the range you are copying. In
this example it is a single column being copied. However, the range you want to copy might have
an unknown number of rows and columns to be represented in your e-mail. The following example
takes into consideration a dynamic range based on the currentRegion property of cell Al:

Dim strtext As String

Dim xRow As Long, xColumn As Long

For xRow = 1 To Range("Al").CurrentRegion.Rows.Count

For xColumn = 1 To Range("Al").CurrentRegion.Columns.Count
strtext = strtext & " " & Range("Al").Cells(xRow, xColumn).Value
Next xColumn

strtext = strtext & Chr(10)

Next xRow

Putting It All Together

The following macro ties together all the previous code examples in this lesson. Figure 28-2 shows
what your e-mail would look like in Outlook 2010 after running the macro named ExampleEmail.

Sub ExampleEmail ()

'Declare and establish the Object variables for Outlook.
Dim objoOutlook As Object

Dim objNameSpace As Object

Dim objInbox As Object

Dim objMailIltem As Object

Set objoOutlook = CreateObject ("Outlook.Application")

Set objNameSpace = objOutlook.GetNamespace ("MAPI")

Set objInbox = objNameSpace.Folders(1l)

Set objMailItem = objOutlook.CreateItem(0)

'Declare a String variable for the worksheet data.

Dim strtext As String

'Declare Long variables for the range's Row and Columns.
Dim xRow As Long, xColumn As Long

'Build the string that is the text inside the range

'you want to represent in the Body of the email.

For xRow = 1 To Range("Al").CurrentRegion.Rows.Count

For xColumn = 1 To Range("Al").CurrentRegion.Columns.Count
strtext = strtext & " " & Range("Al").Cells(xRow, xColumn).Value
Next xColumn

strtext = strtext & Chr(10)

Next xRow

'Activate or open Outlook.

On Error Resume Next

AppActivate ("Outlook")

If Err.Number <> 0 Then objInbox.Display
Err.Clear

www.it-ebooks.info

http://www.it-ebooks.info/

Composing an E-mail in Outlook from Excel | 347

'Create your MailIltem email object.
With objMailItem

.To = "someone@somewhere.com"

.CC = "anyonelanywhere.com"
.Subject = "Testing my email code"
.Importance = 1

.Body =

"Hello, attached is a workbook, and below is a list of employee names." _

& Chr(10) & Chr(10) & strtext

.Attachments.Add "C:\Your\File\Path\YourFileName.xlsx"

.Display
End With

'Release object variables from system memory.

Set objoOutlook = Nothing
Set objNameSpace = Nothing
Set objInbox = Nothing

Set objMailItem = Nothing

End Sub

BH92U0 2 %=

VEE || Message | Inset Options Format Text Review

Testing my email code - Message [HTML)

Address Check

Paste 9‘ B 7 U|¥-A-

¥ Follow Up ~ Q

= Attacntem = | ¥ High Importance

'? Calibri vz A A= ﬂ D attach Fie
By o

Book Mames | 2% Signature - | B LowImportance

o B R

)

Zoam

Employee Names
Mary

Jane

Jack

Mike

Stan

Dana

Adam

Lisa

Steven

Clipboard = Basic Text I MNames Tags x| Zoom

ez |someone omewhere.com |

B . |an one@anywhere.com |
Send

Subject: |Testmg my email code |

Attached: |K3 yourFileName.xisx (9 KB) |

. - i

Hello, attached is a workbook, and below is a list of employee names. 8

someone@somewhere.com

*

FIGURE 28-2

Before testing the ExampleEmail macro, you'll probably need to modify the folder
path and filename of the attachment. If you want to test the macro without attach-
ing a file, you can simply delete or comment out the Attachments .Add statement.

www.it-ebooks.info

mailto:someone@somewhere.com%E2%80%9D
mailto:anyone@anywhere.com%E2%80%9D
http://www.it-ebooks.info/

348 | LESSON 28 WORKING WITH OUTLOOK FROM EXCEL

E-MAILING A SINGLE WORKSHEET

You can e-mail a single worksheet using SendMail with Microsoft Outlook. The following macro
copies the active worksheet and sends it as the lone worksheet in its own workbook:

Sub EmailSingleSheet ()

ActiveSheet.Copy

On Error Resume Next

ActiveWorkbook.SendMail "someone@anywhere.com", "Test of single sheet"
Err.Clear

ActiveWorkbook.Close False

End Sub

SendMail can send a single worksheet as an attachment by housing that work-
sheet in its own workbook and e-mailing it. SendMail does not require specify-
ing a Simple Mail Transport Protocol (SMTP) server; it sends the mail using your
installed mail system. This has the advantage of bypassing much of the Outlook-
related code you've seen, but it comes with disadvantages, such as limited ability
to attach files, and no available CC argument.

A worksheet in Excel cannot exist on its own; a worksheet must be housed in a
parent Excel workbook.

TRY IT

In this lesson, you write a macro in Excel that creates an e-mail in Microsoft Outlook for multiple
recipients and attaches the active Excel workbook to that e-mail.

Lesson Requirements

With recipient e-mail addresses already listed in column A, you write a macro in Excel that creates
an e-mail in Microsoft Outlook that attaches the active workbook, and populates the “To” field
with all the recipients’ names. To get the sample database files you can download Lesson 28 from
the book’s website at www.wrox . com.

Step-by-Step
1. In column A of your worksheet, list a few sample recipient names. For example:
> In cell Al enter no_one@nowhere.com
> In cell A2 enter anyone@anywhere.com

> In cell A3 enter someone@somewhere.com

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 349

Press Alt+F11 to go to the Visual Basic Editor.
From the menu at the top of the VBE, click Insert &= Module.

In the module you just created, type Sub EmailAttachmentRecipients and press Enter. VBA
will automatically place a pair of empty parentheses at the end of the sub line, followed by
an empty line, and the End sub line below that. Your macro will look like this so far:

Sub EmailAttachmentRecipients ()

End Sub

Declare and establish the object variables for Outlook:

Dim objOutlook As Object

Dim objNameSpace As Object

Dim objInbox As Object

Dim objMailItem As Object

Set objOutlook = CreateObject ("Outlook.Application")
Set objNameSpace = objOutlook.GetNamespace ("MAPI")
Set objInbox = objNameSpace.Folders(1)

Set objMaillItem = objOutlook.CreateItem(0)

Declare a string variable for the recipient list, and a Long variable for the count of cells in
column A that contain e-mail addresses:

Dim strTo As String
Dim i As Integer
strTo = ""

i=1

Loop through the recipient e-mail addresses you entered from Step 1, in order to build a con-
tinuous string where each recipient address is separated by a semicolon and a space, just as it
would appear in an Outlook “To” field:

Do

strTo = strTo & Cells(i, 1).vValue & "; "
i=1+1

Loop Until IsEmpty(Cells(i, 1))

'Remove the last two characters from the string,
'which are an unneeded semicolon and space.
strTo = Mid(strTo, 1, Len(strTo) - 2)

Display the e-mail message:

With objMailItem
.To = strTo

.Subject = "Test of multiple recipients"
.Body = "Hello everyone, this is a test of multiple recipients with a workbook
attachment."

.Attachments.Add ActiveWorkbook.FullName
.Display 'Change to Send
End With

www.it-ebooks.info

http://www.it-ebooks.info/

350 | LESSON 28 WORKING WITH OUTLOOK FROM EXCEL

The active workbook you are attaching must be an actual workbook that has
been named and saved, or the code line .Attachments.Add ActiveWorkbook
.FullName will fail.

9. Release object variables from system memory:

Set objoOutlook = Nothing
Set objNameSpace = Nothing
Set objInbox = Nothing

Set objMailItem = Nothing

10. When your macro is complete, it should look like this:

Sub EmailAttachmentRecipients ()

'Declare and establish the Object variables for Outlook.
Dim objOutlook As Object

Dim objNameSpace As Object

Dim objInbox As Object

Dim objMailItem As Object

Set objoOutlook = CreateObject ("Outlook.Application")

Set objNameSpace = objOutlook.GetNamespace ("MAPI")

Set objInbox = objNameSpace.Folders (1)

Set objMailItem = objOutlook.CreateItem(0)

'Declare a String variable for the recipient list,

'and a Long variable for the count of cells in column A
'that contain email addresses.

Dim strTo As String

Dim i As Integer

strTo = ""

i=1

'Loop through the recipient email addresses you entered from Step 1,
'in order to build a continuous string where each recipient address
'is separated by a semicolon and a space, just as it would appear
'in an Outlook "To" field.

Do
strTo = strTo & Cells(i, 1).value & "; "
i=1+1

Loop Until IsEmpty(Cells(i, 1))

'Remove the last two characters from the string,
'which are an unneeded semicolon and space.
strTo = Mid(strTo, 1, Len(strTo) - 2)

'Display the email message, including the attachment of the active workbook.
With objMailItem
.To = strTo

.Subject = "Test of multiple recipients"
.Body = "Hello everyone, this is a test of multiple recipients with a workbook
attachment."

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 351

1.

.Attachments.Add ActiveWorkbook.FullName
.Display 'Change to Send
End With

'Release object variables from system memory.
Set objoOutlook = Nothing

Set objNameSpace = Nothing

Set objInbox = Nothing

Set objMailItem = Nothing

End Sub

Press Alt+Q to return to the worksheet. Press Alt+F8 to show the macro dialog box, and test
the macro by selecting the macro name and clicking the Run button.

To view the video that accompanies this lesson, please select Lesson 28, available
at the following website: www.wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Access from Excel

As terrific a product as Excel is, there will likely come a point when the volume of data you
are working with will exceed Excel’s capacity for storing records. Even with more than one
million available rows starting with version 2007, some projects require a larger data man-
agement platform with Microsoft Access. If you plan to develop projects for business clients,
sooner or later you’ll encounter a client that uses Access for its relational database capabilities.

Using Excel VBA with the storage capabilities of an Access relational database is a powerful
combination for front-end data management. This lesson offers examples for adding, retriev-
ing, and updating records in Access data tables from the familiar comfort of your Excel
workbook.

ADDING A RECORD TO AN ACCESS TABLE

Among the more common actions you’ll do when interacting with Access from Excel is to
transfer records from an Excel worksheet to an Access database table, and vice versa. Suppose
there is an Access database named Databasel.accdb that contains a table named Tablel that
has eight fields. In Sheet4 of your Excel workbook, you amass records during the day that are
added to Tablel at the end of the workday.

A reference to the Microsoft ActiveX Data Objects 2.8 Library is required for
the code in this lesson to run. Before attempting to run the macros, get into the
VBE and from the menu, click Tools &> References. Navigate to the reference
for Microsoft ActiveX Data Objects 2.8 Library (or the highest Objects Library
number you see), select it as indicated in Figure 29-1, and click OK.

www.it-ebooks.info

http://www.it-ebooks.info/

354 | LESSON 29 WORKING WITH ACCESS FROM EXCEL

To automate the daily task of transferring the day’s
records from Excel to Access, you would maintain the
Excel table with the fields in the same order as they are
found in Tablel of the Access database. The following
Excel macro would accomplish this task.

Sub ExcelToAccess ()

'Declare variables

Dim dbConnection As ADODB.Connection
Dim dbFileName As String

Dim dbRecordset As ADODB.Recordset

References - VBAProject x|

Available References:

=
\(lsua\ Basic For Applications 3 Cancel

=

[]

VI Microsoft Excel 14.0 Object Library
[OLE Automation

Microsoft Office 14.0 Object Library Browse...
Microsoft Access 14.0 Object Librar

chvex Dato Ol 5 brary
] AccessiiityCpladmin 1.0 Type Library
[Acrobat

[Acrobat Access 3.0 Type Library

[] Acrobat Distiller ﬂ
[Acrobat 5can 1.0 Type Library

[| Acrobat WebCapture 1.0 Type Library

[Acrobat WebCapture IE Toolbar Favorites 1.0 Type |

—IfnoBrokﬁrle _IJ
4 »

~Microsoft ActiveX Data Objects 2.8 Library

Location: C:\Program Files (x36)\Common Files\System\ado\msado28. it
Language: Standard

Dim xRow As Long, xColumn As Long
Dim LastRow As Long

FIGURE 29-1

'Go to the worksheet containing the records you want to transfer.

Worksheets ("Sheet4d") .Activate
'Determine the last row of data based on column A.
LastRow = Cells(Rows.Count, 1).End(xl1lUp) .Row

'Create the connection to the database.

Set dbConnection = New ADODB.Connection
'Define the database file name

dbFileName = "C:\YourFilePath\Databasel.accdb"

'Define the Provider and open the connection.
With dbConnection

.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" & dbFileName & _

";Persist Security Info=False;"
.Open dbFileName
End With

'Create the recordset

Set dbRecordset = New ADODB.Recordset
dbRecordset.CursorLocation = adUseServer
dbRecordset.Open Source:="Tablel",
ActiveConnection:=dbConnection,
CursorType:=adOpenDynamic,
LockType:=adLockOptimistic,
Options:=adCmdTable

'Load the records from Excel to Access, by looping through the rows and columns.

'Assume row 1 is the header row, so start at row 2
For xRow = 2 To LastRow
dbRecordset . AddNew

'Assume this is an 8-column (field) table starting with column A.

For xColumn = 1 To 8
dbRecordset (Cells (1, xColumn).Value) = Cells(xRow,

www.it-ebooks.info

xColumn) .Value

http://www.it-ebooks.info/

Adding a Record to an Access Table | 355

The preceding line of code will fail, and result in a run time error, if any field in
your Excel table contains data that is in conflict with the specified data type of

its corresponding field in the Access table. For example, if the second field in your
Access table is specified to be a Number data type, and in your Excel worksheet,
column B has a text value in it, the macro will fail at this point because a text value
is attempting to be placed into an Access field meant to accept only numbers.

Next xColumn
dbRecordset .Update
Next xRow

'Close the connections.
dbRecordset.Close
dbConnection.Close

'Release Object variable memory.
Set dbRecordset = Nothing
Set dbConnection = Nothing

'Optional
'Clear the range of data (the records) you just transferred.

'Range ("A2:H" & LastRow) .ClearContents

End Sub

@ You are probably aware that beginning with the release of Office 97, exten-
sions changed for Microsoft’s applications. For example, Excel workbooks that
had the extension .x1s now are either .x1sx or .x1sm. Access extensions also
changed, from .mdb to .accdb, as shown in the preceding macro.

Take note of the version(s) of Excel and Access when the time comes to imple-
ment this code. Especially, the provider line in the code is

.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" & dbFileName &

";Persist Security Info=False;".

Had this been a version of Office prior to 2007, that same line might have been

.Provider = "Microsoft.Jet.OLEDB.4.0"

or

.Provider = "Microsoft.Jet.OLEDB.4.0;" & "Data Source=" _
& dbFileName & ";" & "Extended Properties=Excel 8.0;".

www.it-ebooks.info

http://www.it-ebooks.info/

356 | LESSON 29 WORKING WITH ACCESS FROM EXCEL

WHAT IF YOU WANT TO OPEN AN ACCESS DATABASE FILE ONLY
FROM EXCEL?

A common theme you’ll notice with the examples in this lesson is that Excel is act-
ing upon the Access files by connecting to them, rather than by opening and clos-
ing them as you saw in the lessons for working with Word and Outlook. You will
rarely need Excel to open an Access database just for the sake of opening it.

If the situation should arise where you do need to open an Access database from
Excel, the following example is what I use. It works by incorporating a ShellExecute
command in conjunction with the declaration of the shellExecute function in the
Microsoft Windows programming language Applications Programming Interface,
or API. The subject of API can easily fill a large book, but in brief, ShellExecute
in API performs an operation on a specified file. In this case, the specified file is
the one you want to open (named “Databasel.accdb” in the hypothetical directory
path “C:\YourFilePath”), and the operation is to open that database file, using the
parameters in the declaration statement. This code is placed in a standard Excel
VBA module just as any macro would be, and works with Windows versions from
XP through Windows 7.

Private Declare Function ShellExecute _

Lib "shell32.dll" Alias "ShellExecuteA" _

(ByVal hwnd As Long, ByVal lpOperation As String,

ByVal 1lpFile As String, ByVal lpParameters As String,

ByVal lpDirectory As String, ByVal nShowCmd As Long)

As Long

Sub OpenAccessDB()

Call ShellkExecute(0, "Open", "Databasel.accdb", "",
"C:\YourFilePath\", 1)

End Sub

EXPORTING AN ACCESS TABLE TO AN EXCEL SPREADSHEET

As mentioned earlier, you will commonly need to import a table from an Access database into an
Excel worksheet, to take advantage of Excel’s versatile formatting and data manipulation capabili-
ties. To export the database’s Tablel data, you define the recordset while passing an SQL string to
the connection. In this example, the entire count of records in Tablel will be copied to Sheet2 in
your Excel workbook:

Sub

AccessToExcel ()

'Declare variables.

Dim
Dim
Dim
Dim
Dim

dbConnection As ADODB.Connection
dbRecordset As ADODB.Recordset
dbFileName As String

strSQL As String
DestinationSheet As Worksheet

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting an Access Table to an Excel Spreadsheet | 357

'Set the assignments to the Object variables.
Set dbConnection = New ADODB.Connection

Set dbRecordset = New ADODB.Recordset

Set DestinationSheet = Worksheets("Sheet2")

'Define the Access database path and name.

dbFileName = "C:\YourFilePath\Databasel.accdb"
'Define the Provider for post-2007 database files.
dbConnection.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" _

& dbFileName & ";Persist Security Info=False;"

'Use SQL's SELECT and FROM statements for importing Tablel.
strSQL = "SELECT Tablel.* FROM Tablel;"

'Clear the destination worksheet.
DestinationSheet.Cells.Clear

With dbConnection
'Open the connection.
.Open

'The purpose of this line is to disconnect the recordset.

.CursorLocation = adUseClient
End With

With dbRecordset

'Create the recordset.

.Open strSQL, dbConnection
'Disconnect the recordset.

Set .ActiveConnection = Nothing
End With

'Copy the Tablel recordset to Sheet2 starting in cell A2.
'Row 1 contains headers that will be populated at the next step.
DestinationSheet.Range ("A2") .CopyFromRecordset dbRecordset

'Reinstate field headers (assumes a 4-column table).
'Note that the ID field will also transfer into column A,
'so you can optionally delete column A.
DestinationSheet.Range("Al:E1") .Value = _

Array("ID", "Headerl", "Header2",

'Close the recordset.
dbRecordset.Close
'Close the connection.
dbConnection.Close

'Release Object variable memory.
Set dbRecordset = Nothing

Set dbConnection = Nothing

Set DestinationSheet = Nothing

End Sub

"Header3", "Header4")

www.it-ebooks.info

http://www.it-ebooks.info/

358 | LESSON 29 WORKING WITH ACCESS FROM EXCEL

CREATING A NEW TABLE IN ACCESS

Suppose you are managing a project that involves both Excel and Access, and you need to add a new
table to the Access database. You can do that with the following macro, and from there if need be,
using the first macro in this lesson named ExcelToAccess, you can transfer any records you may
have accumulated for that new table.

In this example, you create a simple three-field table that will maintain a company’s Employee
Identification Number, which will be a Primary Field, and the employees’ last names and first
names. The new table is named tblEmployees, and it is added to the pDatabasel .accdb file that’s
been the subject of this lesson. Figure 29-2 shows Databasel.accdb with the new table added after
running the following macro named CreateAccessTable.

@| H9-®- s [Table Tools Databasel : Database [Access 2007) - Microsoft Access [=NC1

W Create External Data Database Tools Fields Table
% 3 ¥ cut Y 41 Ascending 2+ @ = New = l;a 2. Calibri

B3 Copy %] Descending Y3~ =Hsave T =- B I U
View Paste Filter Refresh Find
> # Format Painter 4o Remove Sot W | - X Delete - B G| A% 5~

Views | Clipboard E Sort & Filter Records Find Text Formatting
All Access Objects) « || Z3 tbiEmployees

[}

p EmployeelD - | LastName - Cﬁck toAdd ~
Tables 2 ||*
E Tablet

EH tbiEmployees

Record: 4 {[1of1 | » M+ | W NoFilter | Search
Datasheet View | Num Lock |[[E]8 & &

FIGURE 29-2

Sub CreateAccessTable()

'Create a three-column table in an existing Access database:
'EmployeeID

'LastName

'FirstName

'Declare variables

Dim dbConnection As ADODB.Connection
Dim dbCommand As ADODB.Command

Dim dbFileName As String

'Define the Access database path and name.
dbFileName = "C:\YourFilePath\Databasel.accdb"

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 359

'Set the assignment to open the connection.
Set dbConnection = New ADODB.Connection

'Define the Provider and open the connection.

With dbConnection

.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" & dbFileName & _
";Persist Security Info=False;"

.Open dbFileName

End With

'Set the Command variables.
Set dbCommand = New ADODB.Command
Set dbCommand.ActiveConnection = dbConnection

'Create the table, which will be named tblEmployees.
dbCommand .CommandText = _

"CREATE TABLE tblEmployees (EmployeeID Char(10) " & _
"Primary Key, LastName text, FirstName text)"

'Execute the command to create the table.
dbCommand. Execute , , adCmdText

'Release Object variable memory.
Set dbCommand = Nothing
Set dbConnection = Nothing

End Sub

@ The text reference following the field names in the CommandText is to advise
Access that the field’s data type will be text. As you may know with Access

tables, other field types are Memo, Number, Date/ Time, Currency, Yes/No,
OLE Object, Hyperlink, and Attachment.

TRY IT

In this lesson, you write a macro that adds a new field to an existing table in an Access database.

Lesson Requirements

For this lesson, you maintain an Access database named Databasel.accdb. In that database is a
table named tblEmployees. You discover that a new field is required to be added to that table, which
will record the middle names of employees. The data type of the new field will be Text. To get the
sample database files, you can download Lesson 29 from the book’s website at www.wrox.com/.

www.it-ebooks.info

http://www.wrox.com/
http://www.it-ebooks.info/

360 | LESSON29 WORKING WITH ACCESS FROM EXCEL

Step-by-Step

1.
2.
3.

10.

1".

In your Excel workbook, press Alt+F11 to go to the Visual Basic Editor.
From the VBE menu, click Insert & Module.

In the new module, type the name of your macro, which will be AddNewField. VBA will
automatically place a pair of parentheses after the macro name, followed by an empty line,
followed by the End sub statement. Your code will look as follows:

Sub AddNewField()

End Sub

Similar to what you have seen in this lesson’s macros, declare three variables: one for the
ADO connection, one for the ADO command, and one for the full path and name of the
Access database you are working with:

Dim dbConnection As ADODB.Connection
Dim dbCommand As ADODB.Command
Dim dbFileName As String

Define the Access database path and name:

dbFileName = "C:\YourFilePath\Databasel.accdb"

Set the assignment to open the connection:

Set dbConnection = New ADODB.Connection

Define the Provider and open the connection:

With dbConnection

.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" & dbFileName & _
";Persist Security Info=False;"

.Open dbFileName

End With

Set the Command variables:

Set dbCommand = New ADODB.Command

Set dbCommand.ActiveConnection = dbConnection
Establish the command that adds a field for a middle name:
dbCommand . CommandText = _

"ALTER TABLE tblEmployees Add Column MiddleName text)"

Execute the command to create the new field:

dbCommand.Execute , , adCmdText

Release object variable memory:

Set dbCommand = Nothing
Set dbConnection = Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

Try It | 361

12.

Examine the Databasel.accdb file to confirm the existence of your new field for a middle
name. Figure 29-3 shows what you should see, and the following code shows the complete

macro.

N AN R TableTools Databasel : Database (Access 2007) - Microsoft Access o =) 82
W Create External Data Database Tools Fields Table [~ e
g E ¥ cut Y 41 ascending Gz~ =iNew E Eﬁ 2. Calibri NE=R =]

i 53 copy % | Descending Y3+ =8 save 4 = | 8-
View Paste Filter Refresh Find —

g Format Painter %5 Remove Sort A= X Delete - BB~ k-|A-®-5- | === |H
Views Clipboard {F] Sort & Filter Records Find Text Formatting 7]
All Access Objects () «

p EmployeelD - | LastName - FirstName - | MiddleName - | Click to Add -
Tables a |
@ Tabler
FA tblEmployees
Record: M < 1of1 + M+ | i NoFilter | Search
Datasheet View ‘ Mum Lock ‘ A
FIGURE 29-3

Sub AddNewField()

'Declare variables

Dim dbConnection As ADODB.Connection
Dim dbCommand As ADODB.Command

Dim dbFileName As String

'Define the Access database path and name.
dbFileName = "C:\YourFilePath\Databasel.accdb"

'Set the assignment to open the connection.
Set dbConnection = New ADODB.Connection

'Define the Provider and open the connection.

With dbConnection

.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source="
";Persist Security Info=False;"

.Open dbFileName

End With

'Set the Command variables.

Set dbCommand = New ADODB.Command
Set dbCommand.ActiveConnection = dbConnection

www.it-ebooks.info

& dbFileName & _

http://www.it-ebooks.info/

362 | LESSON 29 WORKING WITH ACCESS FROM EXCEL

'Establish the command that adds a field for a middle name.
dbCommand .CommandText = _
"ALTER TABLE tblEmployees Add Column MiddleName text)"

'Execute the command to create the new field.
dbCommand.Execute , , adCmdText

'Release Object variable memory.
Set dbCommand = Nothing
Set dbConnection = Nothing

End Sub

To view the video that accompanies this lesson, please select Lesson 29, available
at the following website: www .wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

30

Working with PowerPoint
from Excel

With each new release of its Office suite, Microsoft has made it increasingly easier to share
information between applications. Copying data from Excel, such as a worksheet range or
chart, and pasting it into a PowerPoint slide is as simple as copying and pasting from Excel
into a Word document.

Still, PowerPoint is a unique animal in that its primary purpose is not to manipulate data
but to display images of data for presentation purposes. When you need to transfer data
from Excel to PowerPoint, such as a chart or a range of cells, I recommend you use VBA’s
CopyPicture method, which will paste an image of the data — not the data itself — into
PowerPoint.

CREATING A NEW POWERPOINT PRESENTATION

Creating a new PowerPoint presentation file is an uncomplicated process; all you do is follow
the usual steps for creating the PowerPoint application and then add a presentation with the
expression Presentations.Add. Here’s an example from start to finish, ending up with a new
presentation file and an initial slide:

Sub CreateNewPresentation()

'Declare Object variables for the PowerPoint application
'and for the PowerPoint presentation file.

Dim ppApp As Object, ppPres As Object

'Declare Object variable for a PowerPoint slide.

Dim ppSlide As Object

'Open PowerPoint

Set ppApp = CreateObject ("PowerPoint.Application")
'Make the PowerPoint application visible.
ppApp.Visible = msoTrue

www.it-ebooks.info

http://www.it-ebooks.info/

364 | LESSON 30 WORKING WITH POWERPOINT FROM EXCEL

'Create a new Presentation and add a slide.
Set ppPres = ppApp.Presentations.Add
With ppPres.Slides

'11 is the numeric Constant for ppLayoutTitleOnly.
'The Constant is used with late binding.

Set ppSlide = .Add(.Count + 1, 11)

End With

'Save your new file.
ppPres.SaveAs Filename:=ThisWorkbook.Path & "\CreateTest.pptx"

'Release system memory reserved for the Object variables.
Set ppApp = Nothing

Set ppPres = Nothing

Set ppSlide = Nothing

End Sub

COPYING A WORKSHEET RANGE TO A POWERPOINT SLIDE

Now that you have just created a PowerPoint presentation file, while it’s still open, suppose you
want to copy a worksheet range into that presentation’s first slide. The following macro uses an
TnputBox for the user to select a range to be copied.

Please note that this macro relies on the PowerPoint presentation file to be
open. The code will not copy an Excel worksheet range to a closed PowerPoint

presentation.

One consideration to monitor is the selected size of a range, as you can see in the code. My col-
umn and row limitations are just for example purposes. Whatever limit, if any, that you decide,
the objective should be to place a clear, concise image on the slide.

Sub CopyRange ()

'Declare a Range type variable
Dim rng As Range
'Use an Application InputBox to have the user select the desired range.

'"Exit the macro if the user cancels.

On Error Resume Next
Set rng = Application.InputBox("Select a range to be copied:", Type:=8)

If Err.Number<> 0 Then

Err.Clear
MsgBox "You did not enter a range.", vbInformation, "Cancelled"

Exit Sub
End If

'Monitor the size of the range so an unreasonably large range is not attempted.
If rng.Columns.Count> 6 Or rng.Rows.Count> 20 Then
MsgBox "You selected a range that is too large." & vbCrLf & _

www.it-ebooks.info

http://www.it-ebooks.info/

Copying Chart Sheets to PowerPoint Slides | 365

"Please select a range that has no more than" & vbCrLf & _
"6 columns and/or 20 rows.", vbCritical, "Range too large"
Exit Sub

End If

'Declare variables.

Dim ppApp As Object, ppPres As Object, ppSlide As Object

'Assign the PowerPoint application you are working in to the ppApp variable.
Set ppApp = GetObject(, "Powerpoint.Application")

'Assign the presentation file you are working in.

Set ppPres = ppApp.ActivePresentation

Set ppSlide = ppPres.Slides (ppApp.ActiveWindow.Selection.SlideRange.SlideIndex)
'Copy the range as a picture

rng.CopyPicture Appearance:=x1lScreen, Format:=xl1Picture

'Paste the picture of the range onto the slide.

ppSlide.Shapes.Paste.Select

'Align the range picture to be centered in the slide.
With ppApp.ActiveWindow.Selection.ShapeRange

.Align msoAlignCenters, msoTrue

.Align msoAlignMiddles, msoTrue

End With

'Release system memory reserved for the Object variables.
Set rng = Nothing

Set ppApp = Nothing

Set ppPres = Nothing

Set ppSlide = Nothing

End Sub

COPYING CHART SHEETS TO POWERPOINT SLIDES

The Try It section of this lesson discusses how to copy an embedded chart into PowerPoint. If you
have a choice between copying embedded charts or chart sheets, choose embedded charts — they
provide you with greater control over how well they can be sized to fit a PowerPoint slide. This is
because the chartobject object is the container for an embedded chart, and it has properties that
you can control for height, width, and location (where you can place it on the worksheet). Charts on
chart sheets do not allow you to control their size.

Sometimes you won’t have a choice, such as when a project calls for chart sheets to be copied
into PowerPoint, and that is what the following macro accomplishes. To take things a step
further, this macro:

1.
2.
3.
4

Creates a new PowerPoint presentation.
Adds an initial title slide.
Loops through all chart sheets, and with each one, copies its image and pastes it into a new slide.

Places a header title on each slide, then populates it with the chart name and formats the text.

www.it-ebooks.info

http://www.it-ebooks.info/

366 | LESSON 30 WORKING WITH POWERPOINT FROM EXCEL

Saves the file.
Sub CopyChartSheets()

'Declare Object variables for the PowerPoint application

'and for the PowerPoint presentation file.

Dim ppApp As Object, pptPres As Object

'Declare Object variable for a PowerPoint slide.

Dim pptSlide As Object

'Declare variables for the Charts you will copy.

Dim ch As Chart

'Declare an Integer type variable for a running count of slides
'as each chart sheet is added to the new presentation file.

Dim SlideCount As Integer

'Open PowerPoint

Set ppApp = CreateObject ("PowerPoint.Application")
'Make the PowerPoint application visible.
ppApp.Visible = msoTrue

'Create a new Presentation and add a title slide.

Set pptPres = ppApp.Presentations.Add

With pptPres.Slides

Set pptSlide = .Add(.Count + 1, 11)

End With

pptSlide.Shapes.Title.TextFrame.TextRange.Text = "Chart sheet copy test"

'Open a for Next loop to place each chart sheet in a slide.
For Each ch In ThisWorkbook.Charts
ch.CopyPicture Appearance:=xlScreen, Format:=xl1Picture, Size:=xlScreen

'Add a new slide.
SlideCount = pptPres.Slides.Count

Set pptSlide = pptPres.Slides.Add(SlideCount + 1, 11)

PpApp.ActiveWindow.View.GotoSlide pptSlide.SlideIndex

'Paste and select the chart picture.
pptSlide.Shapes.Paste.Select

'Align the chart to be centered in the slide.
With ppApp.ActiveWindow.Selection.ShapeRange
.Align msoAlignCenters, msoTrue

.Align msoAlignMiddles, msoTrue

End With

'Set the position of the slide's header label.

With ppApp.ActiveWindow.Selection

.SlideRange. Shapes.AddLabel _
(msoTextOrientationHorizontal, 300, 20, 500, 50).Select
.ShapeRange.TextFrame.WordWrap = msoFalse

'Format the header label.
With .ShapeRange.TextFrame.TextRange

www.it-ebooks.info

http://www.it-ebooks.info/

Running a PowerPoint Presentation from Excel | 367

.Characters(Start:=1, Length:=0).Select
.Text = "This is " & ch.Name

With .Font

.Name = "Arial"

.Size = 12

.Bold = msoTrue

End With

End With

End With

'Continue the loop until all chart sheets have been copied.
Next ch

'End the macro by activating the first slide.
PpApp.ActiveWindow.View.GotoSlide 1

'Save your new file.
pptPres.SaveAs Filename:=ThisWorkbook.Path & "\ChartSheetTest.pptx"

'Relase system memory reserved for the Object variables.
Set ppApp = Nothing

Set pptSlide = Nothing

Set pptPres = Nothing

Set ppApp = Nothing

End Sub

RUNNING A POWERPOINT PRESENTATION FROM EXCEL

Running a PowerPoint presentation from Excel provides a dynamic effect to your Excel project. Unlike
Word, Outlook, or Access, just opening a presentation file in PowerPoint is not enough if you want
to show what that file contains. You can cycle through the slides with the s1ideshowsettings.Run
statement. Notice the with structure that demonstrates a method of setting the amount of time (three
seconds of the advancetime property in this example) that each slide will be shown, without affecting
the user’s local PowerPoint slide transition settings.

Sub PowerPointSlideshow ()

'Declare Object variables for the PowerPoint application

'and for the PowerPoint presentation file.

Dim ppApp As Object, ppPres As Object

'Declare String variables for folder path and name of file.
Dim strFilePath As String, strFileName As String

'Define the String variables with the directory path and name.
strFilePath = "C:\Your\File\Path\"

strFileName = "PowerPointExamplel.pptx"

'Verify if the path and filename really exist.
'If not, exit the macro and advise the user.
If Dir(strFilePath & strFileName) = "" Then
MsgBox _

www.it-ebooks.info

http://www.it-ebooks.info/

368 | LESSON 30 WORKING WITH POWERPOINT FROM EXCEL

"The PowerPoint file " & strFileName & vbCrLf & _
"does not exist in the folder path" & vbCrLf & _
strFilePath & ".", _

vbInformation, "No such animal."

Exit Sub

End If

'Open PowerPoint

Set ppApp = CreateObject ("PowerPoint.Application")

'Make the PowerPoint application visible.

ppApp.Visible = msoTrue

'Open the PowerPoint presentation you want to run.

Set ppPres = ppApp.Presentations.Open(strFilePath & strFileName)

'"Establish the amount of time each slide should be shown,
'which in this example is 3 seconds.

With ppPres.slides.Range.slideshowtransition
.advanceontime = True

.advancetime = 3

End With

'Run the PowerPoint presentation.
ppPres.slideshowsettings.Run

'When the presentation is completed, have VBA regard it as saved

'so you are not prompted to save the presentation when you close it.
ppPres.Saved = True

'Quit Powerpoint (optional)

'PPAPP.Quit

'Release memory taken from the Object variables.

Set ppPres = Nothing

Set ppApp = Nothing

End Sub

TRY IT

In this lesson, you copy an embedded chart to an empty slide in an open PowerPoint presentation.

Lesson Requirements

With a PowerPoint presentation open, you copy an embedded chart from your Excel workbook
and paste its picture image into an empty slide. To get the sample database files you can download
Lesson 30 from the book’s website at www.wrox . com.

Step-by-Step
1. From your workbook, press Alt+F11 to go to the Visual Basic Editor.

2. From the menu at the top of the VBE, click Insert > Module.

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Trylt | 369

10.

1.

12.

13.

In the module you just created, type Sub CopyEmbeddedChart and press Enter. VBA will
automatically place a pair of empty parentheses at the end of the sub line, followed by an
empty line, and the End sub line below that. Your macro will look like this so far:

Sub CopyEmbeddedChart ()

End Sub

This example assumes you have PowerPoint open, with your destination presentation file
open. Declare variables for the PowerPoint application, presentation filename, and s1ide
object:

Dim ppApp As Object, ppPres As Object, ppSlide As Object

For this example, you want to copy the first chart on your worksheet. Programmatically
select the chart by its index number 1:

ActiveSheet.ChartObjects (1) .Select

Establish the identity of the open PowerPoint application:

Set ppApp = GetObject(, "Powerpoint.Application")

Establish the identity of the open PowerPoint presentation:

Set ppPres = ppApp.ActivePresentation

Establish a reference to the next available slide:

Set ppSlide = ppPres.Slides (ppApp.ActiveWindow.Selection.SlideRange.SlideIndex)

Copy the selected chart:

ActiveChart.CopyPicture Appearance:=xlScreen, Size:=xlScreen, Format:=x1Picture

Paste the chart into the PowerPoint slide:

ppSlide.Shapes.Paste.Select

Align the chart picture to be centered in the slide:

With ppApp.ActiveWindow.Selection.ShapeRange
.Align msoAlignCenters, msoTrue

.Align msoAlignMiddles, msoTrue

End With

Deselect the selected chart:

Range ("Al") .Select

Release system memory reserved for the object variables:

Set ppApp = Nothing
Set ppPres = Nothing
Set ppSlide = Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

370 | LESSON 30 WORKING WITH POWERPOINT FROM EXCEL

14. When completed, the macro will look like this, with comments that have been added to
explain each step:

Sub CopyEmbeddedChart ()

'This example assumes you have PowerPoint open,
'with your destination presentation file open.
'Declare variables for the PowerPoint application,
'presentation filename, and Slide object.

Dim ppApp As Object, ppPres As Object, ppSlide As Object

'For this example, you want to copy the first chart on your worksheet.
'Select the chart by its index number one.
ActiveSheet.ChartObjects (1) .Select

'Establish the identity of the open PowerPoint application.
Set ppApp = GetObject(, "Powerpoint.Application")

'Establish the identity of the open PowerPoint presentation.
Set ppPres = ppApp.ActivePresentation

'Establish a reference to the next available slide.
Set ppSlide = ppPres.Slides (ppApp.ActiveWindow.Selection.SlideRange.SlideIndex)

'Copy the selected chart.
ActiveChart.CopyPicture Appearance:=xl1Screen, Size:=xl1Screen, Format:=x1Picture

'Paste the chart into the PowerPoint slide.
ppSlide.Shapes.Paste.Select

'Align the range picture to be centered in the slide.
With ppApp.ActiveWindow.Selection.ShapeRange

.Align msoAlignCenters, msoTrue

.Align msoAlignMiddles, msoTrue

End With

'Deselect the selected chart.
Range ("Al") .Select

'Release system memory reserved for the Object variables.
Set ppApp = Nothing

Set ppPres = Nothing

Set ppSlide = Nothing

End Sub

15. Press Alt+Q to return to the worksheet. Press Alt+F8 to show the macro dialog box, and test
the macro by selecting the macro name and clicking the Run button.

To view the video that accompanies this lesson, please select Lesson 30, available
at the following website: www .wrox .com/go/excelvba.

www.it-ebooks.info

http://www.wrox.com/go/excelvba
http://www.it-ebooks.info/

APPENDIX

What’s on the DVD?

This appendix provides you with information on the contents of the DVD that accompanies
this book. For the latest and greatest information, please refer to the ReadMe file located at
the root of the DVD. Here is what you will find in this appendix:

>

>
>
>

System Requirements
Using the DVD
What’s on the DVD

Troubleshooting

SYSTEM REQUIREMENTS

Most reasonably up-to-date computers with a DVD drive should be able to play the screen-
casts that are included on the DVD. You may also find an Internet connection helpful for
downloading updates to this book.

If your computer doesn’t meet the following requirements, then you may have some problems
using the software:

>

Y VYV Y Y Y

PC running Windows XP, Windows Vista, Windows 7, or later
A processor running at 1.6GHz or faster

An Internet connection

At least 1GB of RAM

At least 3GB of available hard disk space

A DVD-ROM drive

The print version of this book was accompanied by a DV D with the instructional
videos. This appendix details the contents of that DVD. You can download
the videos for each lesson at http: //www.wrox.com/go/excelvba.

www.it-ebooks.info

http://www.it-ebooks.info/

372 | APPENDIX WHAT'S ON THE DVD?

You may be able to run Visual Studio using a slower processor or with less memory, but things may be
slow. I highly recommend more memory, 2GB or even more if possible. (I do fairly well with an Intel
Core 2 system running Windows 7 at 1.83GHz with 2GB of memory and a 500GB hard drive.)

USING THE DVD

To access the content from the DVD, follow these steps:

1. Insert the DVD into your computer’s DVD-ROM drive. The license agreement appears.

The interface won't launch if you have autorun disabled. In that case, click
Start > Run (for Windows 7, click Start &> All Programs => Accessories &
Run). In the dialog box that appears, type D:\Start.exe. (Replace D with the
proper letter if your DV D drive uses a different letter. If you don’t know the
letter, check how your DVD drive is listed under My Computer.) Click OK.

2. Read through the license agreement, and then click the Accept button if you want to
use the DVD.

The DVD interface appears. Simply select the lesson number for the video you want to view.

WHAT’S ON THE DVD?

Most of this book’s lessons contain a Try It section that enables you to practice the concepts covered
by that lesson. The Try It includes a high-level overview, requirements, and step-by-step instructions
explaining how to build the example program.

This DVD contains video screen casts showing how to work through key pieces of the Try Its from
each lesson. The audio explains what is happening step-by-step so you can see how the techniques
described in the lesson translate into actions.

I recommend using the following steps when reading a lesson:
1. Read the lesson’s text.
2. Read the Try It’s overview and requirements.
3. Read the step-by-step instructions.
4. Watch the video to see how I arrive at a solution to the Try It task. During the videos, I

explain each step I am taking, and my reasons for choosing the methods to solve that task.

Sometimes a screencast mentions useful techniques and shortcuts that didn’t fit in the book, so
you may want to watch the screencast even if you feel completely confident about the material in
that lesson.

www.it-ebooks.info

http://www.it-ebooks.info/

Customer Care | 373

You can also download all of the book’s examples and solutions to the Try Its at the book’s website.

Finally, if youre stuck and don’t know what to do next, you can visit the P2P forums (p2p.wrox. com),
locate the forum for the book, and leave a post. You can also e-mail me directly at tomeatlaspm.com,
and T’ll try to answer whatever questions you may have about the material in this book.

TROUBLESHOOTING

If you have difficulty installing or using any of the materials on the companion DVD, try the follow-
ing solutions:

> Reboot if necessary. As with many troubleshooting situations, it may make sense to reboot
your machine to reset any faults in your environment.

> Turn off any anti-virus software that you may have running. Installers sometimes mimic
virus activity and can make your computer incorrectly believe that it is being infected by a
virus. (Be sure to turn the anti-virus software back on later.)

> Close all running programs. The more programs you’re running, the less memory is available
to other programs. Installers also typically update files and programs; if you keep other pro-
grams running, installation may not work properly.

» Reference the ReadMe. Please refer to the ReadMe file located at the root of the DVD for the
latest product information at the time of publication.

CUSTOMER CARE

If you have trouble with the DVD, please call the Wiley Product Technical Support phone number
at (800) 762-2974. Outside the United States, call 1(317) 572-3994. You can also contact Wiley
Product Technical Support at http: //support .wiley.com. John Wiley & Sons will provide techni-
cal support only for installation and other general quality control items. For technical support on
the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please call (877)
762-2974.

www.it-ebooks.info

mailto:tom@atlaspm.com
http://support.wiley.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

: (colon), multiple statements, 76
' (apostrophe)

cell values, 205

comments, 29, 32
(number sign), variable values, 53
() (parentheses)

argument list, 185

arrays, 102
2 (question mark)

Object Browser, 24

queries, 205

AbortRetryIgnore, 77
Access, 44, 353-362
controlling, 6
export, 356-358
QueryTables, 299-300
records, 353-356
runtime error, 355
versions, 355
Activate, 30-31
workbooks, 46
worksheets, 46
ActivateWord, 334, 335, 336
ActiveCell, 64
ActiveConnection
Command, 310
Connection, 309
ActiveWindow, 71
ActiveWorkbook, 23
Worksheets, 67
ActiveX controls, 135-146
chart sheets, 135
CheckBox, 142

CommandButton, 141-143
Control Toolbox, 135, 140-143
dialog sheets, 315

embedding, OLEObject, 270-271
events, 136

formatting, 136

Insert icon, 136

procedures, 135

versions, 140

ActiveX Data Objects (ADO), 307-313, 353

Command, 310
Connection, 309
Recordset, 309-310

Add Watch dialog box, 206
add-ins, 279-293

automation, 280
closing, 290

code, 280, 290
converting files, 284-285
creating, 280-284
installation, 286-288
plan, 281

removing, 291

security, 280

user interface, 288-290
UserForms, 281-284
VBE, 290

workbooks, 279, 280

Add-Ins dialog box, 286-288

Ribbon Developer tab, 286

Add-Ins tab, 288
AddItem

ComboBox, 238
Initialize, 237

ADO. See ActiveX Data Objects
Advanced Properties, 284
advancetime, 367
Alignments, 249

alphanumeric strings, 186-187

www.it-ebooks.info

375

http://www.it-ebooks.info/

American Standard Code for Information Interchange — Cancel

American Standard Code for Information
Interchange (ASCII), 235
Analysis ToolPak, 126-127, 288
Analysis ToolPak VBA, 288
AND, 70
API. See Applications Programming Interface
AppActivate ("Microsoft Excel"), 250
Application, 23, 44
EnableEvents, 114-115
Name, 66—67
Workbook, 61
Application.Caller
Forms controls, 138-139
UDFs, 186
Applications Programming Interface (API),
298, 356
Application.SendKeys, 322-323
Application.Volatile, 189
argument list, 185
arrays, 99-109
boundaries, 104
declaration statements, 102
fixed elements, 104-105
Double, 101
elements, 99-100
lists, 101
one-dimensional, 101
Option Base, 103
Private, 102
Public, 102
purposes, 101
Static, 102
String, 101
tables, 101
two-dimensional, 101
variables, 99
Variant, 54
zero-based numbering, 103
As, 49
ASCII. See American Standard Code for
Information Interchange
Attachments.Add, 347
AutoCorrect list, 92
automation
add-ins, 280

376

Macro Recorder, 12

macros, 5

Office, 327-332

recurring tasks, 5

repetitive tasks, 5

UserForm unloading, 253

workbook events, 123-134

worksheet events, 111-122
AVERAGE, 183

BackColor, 270

BASIC. See Beginner’s All-purpose Symbolic
Instruction Code

BeforePrint, 132

Beginner’s All-purpose Symbolic Instruction Code

(BASIC), 4

binding, 328-330

Binoculars icon, 24

Boolean, 52

boundaries, arrays, 104

Break button, Debugging toolbar, 199

Break mode
Call Stack dialog box, 207
VBE, 199

breakpoints, 203-204
comments, 204

Bring To Front, 249

buttons. See also specific buttons
Forms controls, 137-138
macros, 137
message boxes, 77

Byte, 52

call, 202
Call Stack dialog box, 207
Cancel
printing, 130, 133
Workbook_BeforeSave, 131

www.it-ebooks.info

http://www.it-ebooks.info/

Cancel button - Click

Cancel button
CommandButton, 232
Unload Me, 226-227
UserForms, 224

Caption, 232

Caption property
Properties window, 221
UserForms, 219

Case, 75
To, 76

Cell, 44,45

cells. See also ranges
ActiveCell, 64
Change, 114
collections, 63-64
colored, 185-186
Do...Loop...While, 93
Format Cells dialog box, 169
Get.Cell, 315, 321
PivotTable, 164
Range, 63-64
range, With, 32
SpecialCells

collections, 64-65
Data Validation, 65
Go To Special dialog box, 190
ranges, 65
text files, 303
UDFs, 184
values, 205
variables, 51
worksheets, 43

Cells, 93
worksheets, 64

Centering, 249

Change
cells, 114
Delete button, 120
Exit, 120

Change Chart Type dialog box, 153

=CHAR (ROW ()), 235

Chart
default properties, 45
variable declaration statements, 151

charts, 43, 151-162
chart sheets, 152-153

data labels, 161
defaults, 153
deleting, 158-159
embedded
loops, 157-158
worksheets, 154-155
index, 156
legend, 161
moving, 155-157
ranges, 154-155
rename, 159
UserForms, 258
variables, 160
worksheets, 151
chart sheets
ActiveX controls, 135
charts, 152-153
Forms controls, 135
loops, 158
PowerPoint, 365-367
workbooks, 157
worksheets, 155-156
Worksheets, 63
Chart Wizard, 151
ChartObject, 151, 155, 365
Charts, 151
Charts.Add, 153
CheckBox
ActiveX controls, 142
Collection, 271
UserForms, 240-241
classes, 263-264
class modules, 22, 263-277
collections, 268-269
embedding, 269-272
TextBox, 266-268
UDFs, 184
VBE, 264
Classes pane, 23
ClearContents, 46
Click
Caption, 232
cmdNavigate, 261
CommandButton, 233, 2
Design Mode, 143
ListBox, 237

www.it-ebooks.info

69

377

http://www.it-ebooks.info/

Close — comments

OptGroup, 274

Close

Close button, UserForms, 250-251

Connection, 309
dbRecordset, 310
macros, 338
Recordset, 310
Workbook, 62

CloseOneWorkbook, 89

cmd,

232

cmdButtonGroup, 270
cmdExit

Exit button, 261
UserForm module, 274

cmdNavigate, 261
code. See also debugging

add-ins, 280, 290
breakpoints, 203-204
dialog sheets, 317

macros, 21, 29-32
modules, 33

mySort, 31

Step Into button, 201
UserForms, 225-226

VBE, 36-37

workbook events, 123-126

Code window

deleting macros, 33
editing, 30, 50
inserting modules, 33
modules
deleting, 33
inserting, 33
workbook, 124
worksheet, 113
Step Over button, 202
VBE, 21
workbook modules, 124
worksheet modules, 113

CodeWindow, mysort, 21
Collection, 46

CheckBox, 271
PivotTables, 177-178

collections

378

cells, 63-64

Charts, 151

class modules, 268-269

OOP, 46-47

ranges, 63-64

SpecialCells, 64-65

workbooks, 61-62

worksheets, 62-63
colored cells, 185-186

ComboBox
AddItem, 238
End Sub, 238,257
pre-sort, 253-255
ranges, 239
RowSource, 238
unique items, 255-257
UserForms, 238-239
worksheets, 238
Command
ActiveConnection, 310
ADO, 310
objConnection, 309
objRecordset, 309
commands
loops, 86
macros, 72
CommandButton
ActiveX controls, 141-143
Cancel button, 232
Cclick, 233,269
cmd, 232
Exit button, 232
Properties window, 141
Sort Down, 254-255
Sort Up, 254-255
Unload Me, 226-227
UserForms, 223, 232, 254-255
View Code, 142
CommandText, 310
CommandType, 310
comments
¢ (apostrophe), 29, 32
breakpoints, 204
Conditional Formatting, 190

www.it-ebooks.info

http://www.it-ebooks.info/

Comments — Debugging toolbar

If, 194
macros, 30-32
UDFs, 194
Comments, 47
CommentText, 293
Conditional Formatting
comments, 190
Get.Cell, 321
ranges, 190
UDFs, 190
conditional operators, 72-76
Connection
ActiveConnection, 309
ADO, 309
Close, 309
databases, 309
Open, 309
ConnectionString, 309
Const, 57
constants
lifetime, 58
macros, 57-58
modules, 58
scope, 58
values, 57
variable declaration statements, 57
variables, 57
Continue button, 251
Control Toolbox, ActiveX controls, 135, 140-143
controls. See also specific controls
embedded, 135-150
UserForms, 219-220, 231-248
ControlSource, TextBox, 234
copy and paste, 187
Create PivotTable dialog, Table Range field, 164
CreateObject, 331
.csv, 298
Ctl key, shortcut keys, 20
Currency, 52
CurrentRegion, 346
Customize Ribbon
Excel Options dialog box, 10
Main Tabs, 10

DAO. See Data Access Objects
Data Access Objects (DAO), 308
data labels, charts, 161
Data tab
Get External Data section, 299
Ribbon, 299
data types
conversion, 54
macros, 51-54
UDFs, 185
variable declaration statements, 53-54
variables, 49-50, 52
Data Validation, 65
databases, 308. See also Access; Structured Query
Language
Connection, 309
database management system (DBMS), 308
DataForms, 322
Date, 52,53
DateSerial, 96
DBMS. See database management system
dbRecordset, 310
Debug button, 197
debugging, 195-212
Immediate Window, 22
Debugging toolbar
Break button, 199
Call Stack dialog box, 207
Design Mode button, 199
Immediate Window, 205
Locals window, 205
Reset button, 199
Run button, 199
Step Into button, 201-202
Step Out button, 203
Step Over button, 202-203
Toggle Breakpoint button, 204
VBE, 198-207
Watch window, 205-206

379

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging window —

Debugging window, 206 Click, 143
Decimal, 52 Debugging toolbar, 199
decision making, 69-81 Developer tab, 143
conditional operators, 72-76 VBE, 143
InputBox, 77-78 Developer tab, 10
logical operators, 69-72 Design Mode, 143
message boxes, 76-77 Record Macro button, 13
declaration statements Ribbon, 12, 136
arrays, 102 dialog boxes. See also specific dialog boxes
dynamic, 105-106 Do Not Show This Message Again, 318-321
fixed elements, 104-105 dialog sheets, 315-321
dynamic arrays, 105-106 ActiveX controls, 315
variables, 50 code, 317
applications, 57 Immediate Window, 316
Chart, 151 UserForms, 315-316
constants, 57 versions, 316
data types, 53-54 workbooks, 315
dates, 53 Worksheet_Change, 318
forcing, 54-56 DialogFrame, 316
macros, 56 Dim, 49
modules, 56-57 Dir, 91
PowerPoint, 331 DisplayGridlines, 71
times, 53 DLL. See Dynamic Link Library
Default Chart button, 153 Do
defaults For...Each...Next, 95
charts, 153 While...Wend, 94
Macro Recorder, 14 Do Not Show This Message Again, 318-321
name, 34 Do. . .Loop, 91
properties, Chart, 45 Do...Loop...Until, loops, 86, 94
worksheets, 44 Do...Loop...While
deleting cells, 93
charts, 158-159 loops, 86, 93
hyperlinks, 205 worksheets, 93
macros, 33 Double, 52
modules, 36 arrays, 101
DELETE, 312-313 0ldaval, 121
Delete button Do...Until
Change, 120 AutoCorrect list, 92
Macro dialog box, 33 loops, 86, 91-93
DeleteData, 138 Do...While, 86,91
Description field drawing shapes, 43
Insert Function dialog, 191-193 dynamic arrays, 105-106
Macro Recorder, 15 Dynamic Link Library (DLL), 279
Design Mode
380

www.it-ebooks.info

http://www.it-ebooks.info/

early binding — export

early binding, 328-329

editing. See also Visual Basic Editor
Code window, 30, 50
macros, 30-32, 50

Editor tab
Options dialog box, 55, 66, 250

Require Variable Declaration, 55, 250

elements
arrays, 99-100
fixed, 104-105
loops, 100
variables, 100
Else, 73
e-mail
Outlook, 344-347
ranges, 345-346
worksheets, 348
embedding
ActiveX controls
OLE objects, 270
OLEObject, 270-271
charts
loops, 157-158
worksheets, 154-155
class modules, 269-272
controls, 135-150
Enabled, 245
EnableEvents, 114-115
End, 72
End Function, 184, 194
End If
errors, 197
Exit For, 89-90
End Sub, 33,114, 132,275
ComboBox, 238, 257
Step Out button, 203
workbook events, 126

End With, 32
errors, 197
Error

Error Resume Next, 208
If, 208

errors
bypass, 208-209
End If, 197

End With, 197
handler, 207-208
InputBox, 207
runtime errors, 207
logical, 197
Loop, 197
macros, 329
Next, 197
runtime, 197, 334
Access, 355
error handler, 207
Find, 208-212
ListBox, 237
Locals window, 205
Watch window, 205
syntax, 196-197
trapping, 207-209
UDFs, 188
Error Resume Next, 208
Euro Currency Tools, 288
events. See also workbook events; worksheet events
ActiveX controls, 136
Forms controls, 136
ListBox, 237
programming, 5
Excel 4.0 Macro Language (XLM), 321
Excel Options button, 10
Excel Options dialog box, 10
Exit, 120
Exit button
cmdExit, 261
CommandButton, 232
UserForms, 224
Exit Do, 95
Exit For
End If, 89-90
nesting, 95
export
Access, 356-358
images, 258
Internet, 258
modules, 36

381

www.it-ebooks.info

http://www.it-ebooks.info/

external data — Hide Field List

Word, 333
external data, 295-306
QueryTables, 295-300
text files, 301-303
ExtractNumbers, 192-193

fields, 313. See also specific fields
databases, 308
Field buttons, 173
Field List, 167
File tab
Options button, 10
Ribbon, 10
Save As dialog box, 284
Find, 208-212
fixed elements, 104-105
fixed-iteration loop, 86
floating-point numbers, 52
For, 94
For Next
intCounter, 206
loops, 276
strvalue, 206
For...Each
Comments, 47
loops, 47
For...Each...Next
Do, 95
exiting, 89-90
loops, 86, 88-90
nesting, 95
ForeColor, 270
Format Cells dialog box, 169
formatting
ActiveX controls, 136
Conditional Formatting
comments, 190
Get.Cell, 321
ranges, 190
UDFs, 190
Forms controls, 136
PivotTable Value area, 168-170
TextBox, 234

382

Forms controls, 135-146
Application.Caller, 138-139
buttons, 137-138
chart sheets, 135
events, 136
formatting, 136
Forms toolbar, 136-139
Insert icon, 136
macros, 135
versions, 140

Forms toolbar, 136-139

For...Next
exiting, 89-90
InputBox, 87
Integer, 87, 96
Long, 87
loops, 86, 87-88
nesting, 95

Frame control
Enabled, 245
UserForms, 222-223, 243-245

Function, 184

functions. See also User Defined Functions
volatile, 188-193

Get External Data section, 299
Get.Cell, 315, 321
GetObject, 334

Go To dialog, 64

Go To Special dialog box, 190
GoBack, 261

GoForward, 261

GoTo, 208

Group, 249

GroupName, 243

grpCBX, 272

Help file, 24
Hide, 227-228
Hide Field List, 167

www.it-ebooks.info

http://www.it-ebooks.info/

hierarchy — late binding

hierarchy, object model, 44
hyperlinks
deleting, 205
Immediate Window, 205
UDFs, 187

icons. See also specific icons
Project Explorer window, 21
toolbars, 27
VBE, 20
versions, 10
iCounter, 91
If
comments, 194
End, 72
Error, 208
InputBox, 80
multiple conditions, 73
String, 331
Workbooks, 88
If...Then, 72-73
If...Then...Else, 73
If...Then...Elself, 74
Select, 75
images, 258
Immediate Window
debugging, 22
Debugging toolbar, 205
deleting charts, 158-159
dialog sheets, 316
hyperlinks, 205
queries, 205
VBE, 22
Word, 329
import
Internet, 258
Word, 338-339
Importance, 345
indefinite loop, 86
index, charts, 156
Initialize
AddItem, 237
charts, 258
ListBox, 237, 246

ReDim Preserve, 268
TxtGroup, 267
UserForms, 233, 268, 275
WebBrowser, 261
InputBox, 340
decision making, 77-78
error handler, 207
For...Next, 87
If, 80
PowerPoint, 364-365
String, 77
While...Wend, 94
INSERT, 311-312
Insert Function dialog, 191-193
Insert icon
ActiveX controls, 136
Forms controls, 136
inserting modules, 33-34, 107
instantiating, 267
IntAdd, 56-57
intCounter, 206
Integer, 50, 52
For...Next, 87,96
OptionButton, 276
IntelliSense, 65-67
message boxes, 77
Internet
export, 258
import, 258
queries, QueryTables, 295-299
intSum, 56-57
iterations, 85-86

KeyPress, 267-268
keywords, 7

Label
OptionButton, 273
UserForms, 221, 232-234
late binding, 329-330
Word, 340

www.it-ebooks.info

383

http://www.it-ebooks.info/

LBound — macros

LBound, 104

legend, charts, 161

LEN, 239

libraries, 23

lifetime constants, 58

lists. See also specific lists
argument, 185
arrays, 101

ListBox
Click, 237
events, 237
Initialize, 237,246
loops, 248
MultiSelect, 236-237, 246
NextRow, 247
pre-sort, 253-255
RowSource, 237
runtime error, 237
unique items, 255-257
UserForms, 236-237, 246-248

LoadPicture, 252

Locals window
Debugging toolbar, 205
mySheet, 205
runtime errors, 205
values, 205
variables, 205

Location, 154

Locked, 45

locking, 36-37

LogFile.txt, 301

logical errors, 197

logical operators
decision making, 69-72
If...Then...Elself, 74

Long, 52
For...Next, 87

Loop, 197

loops, 85-97
chart sheets, 158
commands, 86
Do...Loop...Until, 86,94
Do...Loop...While, 86,93
Do...Until, 86, 91-93

384

Do...While, 86,91
elements, 100

embedded charts, 157-158
For...Each, 47
For...Each...Next, 86, 88-90
For...Next, 86, 87-88
iterations, 85-86

ListBox, 248

nested, 94-95

For Next, 276
PivotTable, 178
Refreshall, 178

Step, 90
While...Wend, 86, 94

Loop While, 93

macros, 3—4

automation, 5
breakpoints, 203-204
buttons, 137

Close, 338

code, 21, 29-32
commands, 72
comments, 30-32
composing, 9-12
constants, 57-58

data types, 51-54
deleting, 33

editing, 30-32, 50
errors, 329

Forms controls, 135
InputBox, 77
message boxes, 76-77, 100, 107
modules, 28-29
mySort, 13

names, 14

plan, 12

Quit, 338

running, 16-17

Step Into button, 201
Step Over button, 202

www.it-ebooks.info

http://www.it-ebooks.info/

Macro dialog box — mySort

subroutines, 111
text files, 301-303
UDFs, 184, 190191
variables, 49-51
declaration statements, 56
versions, 29
Word, 329, 335-336
workbooks, 15, 62
worksheets, 62-63
Macro dialog box, 16-17
Delete button, 33
shortcut keys, 17
Macro Recorder, 12-16
automation, 12
default names, 34
defaults, 14
Description field, 15
inefficiencies, 30
modules, 28
repetitive tasks, 12
Stop Recording button, 15
Stop Recording toolbar, 15
Store Macro In field, 15
Sub, 29
UDFs, 184
versions, 15
macro sheets, 20
MailItem, 344-345
Main Tabs, 10
Message Box
OptionButton, 242
text files, 303
message boxes
button configuration, 77
decision making, 76-77
IntelliSense, 77
macros, 100, 107
prompt argument, 77
methods
OOP, 43, 46
Workbook, 62
worksheets, 43
modules
class modules, 22, 263-277

collections, 268-269
embedding, 269-272
TextBox, 266-268
UDFs, 184
VBE, 264

code, 33

constants, 58

deleting, 36

export, 36

inserting, 33-34, 107

Macro Recorder, 28

macros, 28-29

Project Explorer, 33, 34

Project Explorer window, 28

rename, 34-35

standard, 22
UDFs, 184

UserForms, 22, 225-226, 247
cmdExit, 274

variable declaration statements, 56-57

VBE, 22
workbooks, 22, 34
Code window, 124
workbook events, 124
worksheets, 22
Code window, 113
View Code, 112-113
More Controls, 140
MouseOver, 270
MsgBox, 77
MsgBoxShowOnceOption, 318-321
MultiPage control
Page, 245
UserForms, 245
multiple statements, 76
MultiSelect, 236-237, 246
myChartMaker, 202
myFileName, 331
myPath, 331
mySheet
Locals window, 205
Nothing, 205
mySort
code, 31

www.it-ebooks.info

385

http://www.it-ebooks.info/

mySum — Office

CodeWindow, 21

macros, 13
mySum, 186
myValue, 49, 51

name. See also rename
defaults, Macro Recorder, 34
macros, 14
UDFs, 184
UserForms, 219
workbooks, 189
worksheets, 189, 208

Name
Application, 66—-67
Worksheet, 45

Name property
Properties window, 34
UserForms, 219

Names, ranges, 64

NameWB (), 189

nested loops, 94-95

New Formatting Rule dialog, 190

NewVal, 121

Next, 87
errors, 197

NextRow, ListBox, 247

NOT, 71-72

Nothing, 205

Number Format button, 168

objConnection, 309
Object, 52
Object Browser
Binoculars icon, 24
Classes pane, 23
Help file, 24
Search, 24
VBE, 23-24
Object field, 113, 125

Object Linking and Embedding Database

(OLE DB), 307

386

object model, 44-47
hierarchy, 44
Office, 23
object-oriented programming (OOP), 43—-47
collections, 46—-47
methods, 43, 46
properties, 43, 45
objRecordset, 309
ODBC. See Open Database Connectivity
Office
Access, 44, 353-362
controlling, 6
export, 356-358
QueryTables, 299-300
records, 353-356
runtime error, 355
versions, 355
automation, 327-332
controlling, 6
object model, 23
Outlook, 44, 343-351
email composition, 344-347
MaillItem, 344-345
opening, 343-344
PowerPoint, 44, 363-370
chart sheets, 365-367
CreateObject, 331
creating new presentation, 363-364
InputBox, 364-365
Open, 331
running presentations, 367-368
variable declaration statements, 331
worksheet range, 364-365
Ribbon Interface, 9
val, 331
versions, 328
Word, 44, 333-342
activating, 333-336
Code window, 30
controlling, 6
creating documents, 336
GetObject, 334
Immediate Window, 329
import, 338-339
late binding, 340
macros, 329, 335-336

www.it-ebooks.info

http://www.it-ebooks.info/

name - planning

printing, 337-338
ranges, 337
String, 339-340
Office button, 10
Save As, 284
OKCancel, 77
0ldval, 121
OLE DB. See Object Linking and Embedding
Database
OLEObject, 270-271
On Error GoTo, 207
On Error Resume Next, 334
one-dimensional arrays, 101
OnKey, 153
OOQP. See object-oriented programming
Open
Connection, 309
PowerPoint, 331
Recordset, 310
Workbook, 62
Open Database Connectivity (ODBC), 307, 308
OpenOrClosed, 190
OpenTest, 190
operating systems, 7
operators
conditional, 72-76
logical
decision making, 69-72
If...Then...Elself, 74
OptGroup, 274
Option Base, 103
Option Explicit, 54-55
OptionButton
GroupName, 243
Integer, 276
Label, 273
Message Box, 242
UserForms, 223, 241-243
Options button, 10
Options dialog box, 55, 66, 250
Options tab, 171
OR, 70-71
If...Then...Elself, 74
Outlook, 44, 343-351
email composition, 344-347
MailItem, 344-345

opening, 343-344

Page, 245
passwords
VBE, 37
worksheets, 78
PasswordChar, 234
photographs, 252-253
Picture, 253
PivotCache, 173-175
PivotTable, 173
Refresh button, 173
Worksheet_Change, 175
PivotChart, 171-173
Field buttons, 173
PivotTable, 171
PivotFields, 176
PivotItems, 177
PivotTable, 43
cells, 164
Field List, 167
loops, 178
PivotCache, 173
PivotChart, 171
PivotFields, 176
PivotItems, 177
Refresh menu item, 173
Refreshall, 178
Report Filter area, 167-168
reports, 163-170
source data, 174
source table, 164
updating, 119
Values area, 168-170
Workbook_Open, 178
Worksheet_Change, 175, 177-178
PivotTable icon, 171
PivotTable Tools section
Options tab, 171
Ribbon, 171
PivotTables, 177-178
planning
add-ins, 281

www.it-ebooks.info

387

http://www.it-ebooks.info/

Popular — ranges

macros, 12

Popular, 10

PowerPoint, 44, 363-370
chart sheets, 365-367
CreateObject, 331

creating new presentation, 363-364

InputBox, 364-365
Open, 331
running presentations, 367-368

variable declaration statements, 331

worksheet range, 364-365
Presentations.Add, 363
Preserve, 106
pre-sort

ComboBox, 253-255

ListBox, 253-255
primary keys, 308
printing

cancel, 130, 133

UserForms, 258

Word, 337-338
Printout, 130, 337-338
PrintPreview, 130
Private, 102

Private Sub Workbook_Open(), 132

Procedure field, 113-114, 125
procedures, 111
ActiveX controls, 135
statements, 114
Project Explorer
icons, 21
modules, 28, 33, 34
Properties window, 218
UserForms, 216, 218
VBE, 21, 124, 132
View Code, 28
Project Properties dialog box, 37
prompt argument
InputBox, 77
message boxes, 77
properties
defaults, chart, 45
OOP, 43, 45
Properties window
Caption property, 221
CommandButton, 141

388

Name property, 34
Picture, 253
Project Explorer, 218
VBE, 22
Protection tab, 37
Public, 57,58
arrays, 102
UDFs, 184
Public Declaration Function, 298

queries

databases, 308

Immediate Window, 205

Internet, QueryTables, 295-299
QueryClose, 251
QueryTables

Access, 299-300

Internet queries, 295-299
Question Mark icon, 24
Quick Watch window, 206
QuickBASIC, 4
Quit, 338

RAND (), 188

RAND, 189

Range, 44
cells, 63-64
ClearContents, 46

ranges
cells, with, 32
charts, 154-155
collections, 63-64
ComboBox, 239
Conditional Formatting, 190
e-mail, 345-346
Names, 64
Selection, 64
SpecialCells, 65
Step Into button, 201

www.it-ebooks.info

http://www.it-ebooks.info/

real-time charts — Quit SendKeys

Word, 337
worksheets, PowerPoint, 364-365
real-time charts, 258
records, 313
Access, 353-356
databases, 308
Record Macro button
Developer tab, 13
Visual Basic toolbar, 13
Record Macro dialog box, 29
Recordset
ADO, 309-310
Close, 310
Open, 310
recordsets, 307
databases, 308
Source, 310
recurring tasks automation, 5
ReDim, 106
ReDim Preserve, 106
Initialize, 268
Refresh, 46
Refresh button, 173
Refresh menu item, 173
RefreshAll
loops, 178
PivotTable, 178
relational database, 308

rename
charts, 159
modules, 34-35
repetitive tasks
automation, §
Macro Recorder, 12
reports, 163-170
Report Filter area, 167-168
Require Variable Declaration, 55, 250
Reset button, 199
Ribbon
Add-Ins tab, 288
Data tab, 299
Developer tab, 12, 136
File tab, 10
PivotTable Tools section, 171
Ribbon Developer tab
Add-Ins dialog box, 286

Stop Recording button, 16
Visual Basic button, 20
Ribbon Insert tab, 171
Ribbon Interface, 9, 10
Ribbon option, 10
RowSource
ComboBox, 238
ListBox, 237
Run button, 199
Run Macro button, 16
run time errors, 197, 334
Access, 355
error handler, 207
Find, 208-212
ListBox, 237
Locals window, 205
Watch window, 205

Same Size, 249
Save, 62
Save As
File tab, 284
Office button, 284
Saved, 45
scope
constants, 58
variables, 56-57
Search, 24
security, 7
add-ins, 280
SELECT, 311
Select, 30-31
With, 32
If...Then...Elself, 75
Select a Function pane, 192
Select Case, 74-75
worksheets, 80
Select Data Source dialog box, 299
Select Table dialog box, 300
Selection, 32
ranges, 64
Send To Back, 249
SendKeys, 315, 322-323

389

www.it-ebooks.info

http://www.it-ebooks.info/

SendMail() — run time errors

SendMail, 348
SheetManager, 286, 288
=SheetName (), 189
Sheets, 63
ShellExecute, 356
shortcut keys, 14-15
Ctl key, 20
Macro dialog box, 17
Record Macro dialog box, 29
Show

AppActivate ("Microsoft Excel"), 250

UserForms, 225
Show Developer tab, 10
Show Field List, 167
ShowDataForm, 322
ShowModal, 250

Simple Mail Transport Protocol (SMTP), 348

Single, 52
slideshowsettings.Run, 367
SMTP. See Simple Mail Transport Protocol
Solver, 288
Sort, 201
Sort Down, 254-255
Sort Up, 254-255
Source, 310
source data
cell values, 205
PivotTable, 174
source table, 164
Special button, 64
SpecialCells
collections, 64-635
Data Validation, 65
Go To Special dialog box, 190
ranges, 65
SQL. See Structured Query Language
standard modules, 22
UDFs, 184
statements. See also declaration statements
multiple, 76
procedure, 114
Static, arrays, 102
StaticRandom, 188
Step, 90
Step Into button

390

code, 201
Debugging toolbar, 201-202
macros, 201
Step Out button
Debugging toolbar, 203
End Sub, 203
Step Over button
Code window, 202
Debugging toolbar, 202-203
macros, 202
Stop Recording button
Macro Recorder, 15
Ribbon Developer tab, 16
Stop Recording toolbar
disappearance of, 16
Macro Recorder, 15
Store Macro In field, 15
String, 52
arrays, 101
If, 331
InputBox, 77
strVerify, 108
UDFs, 193-194
Word, 339-340
strText, 194
Structured Query Language (SQL), 299, 310-313
DELETE, 312-313
INSERT, 311-312
SELECT, 311
UPDATE, 312
strvalue, 206
strverify, 108
Sub, 201
deleting macros, 33
Macro Recorder, 29
subroutines, 111
suM, 183
SumColor, 186
syntax errors, 196-197

tables. See also PivotTable; QueryTables
arrays, 101

www.it-ebooks.info

http://www.it-ebooks.info/

Table Range field — UserForms

source, 164
Table Range field, 164
text files

cells, 303

external data, 301-303

macros, 301-303

Message Box, 303
TextBox

class modules, 266-268

ControlSource, 234

formatting, 234

PasswordChar, 234

UserForms, 234-236
ThisWorkbook, 132
Time, 233
times, 233

variable declaration statements, 53
To, 76
Toggle Breakpoint button, 204
toolbars. See also Debugging toolbar; Stop

Recording toolbar; Visual Basic toolbar

Forms toolbar, 136-139

icons, 27

UserForms, 249-250

Zoom, 252

VBE, 27
Tools, VBA Project Properties, 37
trapping errors, 207-209
two-dimensional arrays, 101
TxtGroup, 267

UBound, 102, 104
UDFs. See User Defined Functions
Undo, 120, 121
Ungroup, 249
Unload Me, 261
Cancel button, 226-227
CommandButton, 226-227
UserForms, 226-227
unloading UserForms, 253
Until, 94
UPDATE, 312

User Defined Functions (UDFs), 5, 183-194
alphanumeric strings, 186-187
Application.Caller, 186
argument list, 185
cells, 184
class modules, 184
colored cells, 185-186
comments, 194
Conditional Formatting, 190
copy and paste, 187
data types, 185
End Function, 184,194
errors, 188
Function, 184
hyperlinks, 187
Insert Function dialog, 191-193
Macro Recorder, 184
macros, 184, 190-191
name, 184
Public, 184
standard modules, 184
String, 193-194
UserForms, 184
volatile functions, 188-193
workbooks, 184
worksheets, 183, 184

UserForms, 215-229, 236-237, 246-248
add-ins, 281-284
advanced, 249-262
Cancel button, 224
Caption property, 219
CheckBox, 240-241

ActiveX controls, 142
Collection, 271
Close button, 250-251
closing, 226-228
code, 225-226
ComboBox, 238-239
AddItem, 238
End Sub, 238,257
pre-sort, 253-255
ranges, 239
RowSource, 238
unique items, 255-257
worksheets, 238
CommandButton, 223, 232, 254-255

www.it-ebooks.info

391

http://www.it-ebooks.info/

UserForm_Initialize — VBE. See Visual Basic Editor

Continue button, 251 unloading, automation, 253
controls, 219-220, 231-248 UserForm_Initialize, 275
creating, 216-217

designing, 218-224

dialog sheets, 315-316

Exit button, 224 val, 331
Frame control, 222-223, 243-245 #VALUE!, 188
Enabled, 245 values
Hide, 227-228 cells, 205
Initialize, 233,268,275 constants, 57
Label, 221, 232-234 Locals window, 205
OptionButton, 273 variables, 50
ListBox, 236-237, 246-248 # (number sign), 53
Click, 237 Value field, 206
events, 237 Value Field Settings dialog box, 168
Initialize, 237, 246 Values area, 168-170
loops, 248 variables
MultiSelect, 236-237, 246 arrays, 99
NextRow, 247 cells, 51
pre-sort, 253-255 charts, 160
RowSource, 237 constants, 57
runtime error, 237 data types, 49-50, 52
unique items, 255-257 declaration statements, 50
maximizing size, 252 applications, 57
modules, 22,225-226, 247 Chart, 151
cmdExit, 274 constants, 57
MultiPage control, 245 data types, 53-54
name, 219 dates, 53
Name property, 219 forcing, 54-56
OptionButton, 223, 241-243 macros, 56
photographs, 252-253 modules, 56-57
printing, 258 PowerPoint, 331
Project Explorer, 216, 218 times, 53
QueryClose, 251 elements, 100
real-time charts, 258 Locals window, 205
Show, 225 macros, 49-51
ShowModal, 250 need for, 50-51
TextBox, 234-236 scope, 56-57
class modules, 266-268 values, 50
ControlSource, 234 # (number sign), 53
formatting, 234 workbooks, 62
PasswordChar, 234 Variant, 52, 53-54
toolbar, 249-250 arrays, 54
Zoom, 252 VB. See Visual Basic
UDFs, 184 VBA Project Properties, 37
Unload Me, 226-227 VBE. See Visual Basic Editor
392

www.it-ebooks.info

http://www.it-ebooks.info/

vbModal — Workbook

vbModal, 250
versions, 7, 9-10
Access, 355
ActiveX controls, 140
dialog sheets, 316
Forms controls, 140
icons, 10
Macro Recorder, 15
macros, 29
Office, 328
View Code, 226
CommandButton, 142
Project Explorer, 28
UserForms, 226
VBE, 113
worksheet modules, 112-113
Visual Basic (VB), 4
Visual Basic button, 20
Visual Basic Editor (VBE), 19-25, 216
add-ins, 290
Break mode, 199
class modules, 264
code, 36-37
Code window, 21
Debug button, 197
Debugging toolbar, 198-207
Design Mode, 143
entering, 20
exiting, 24
icons, 20
Immediate Window, 22
locking, 36-37
modules, 22
Object Browser, 23-24
passwords, 37
Project Explorer, 21, 124, 132
Properties window, 22
protecting, 36-37
toolbars, 27
UserForms, 216
View Code, 113
windows, 20-22
worksheets, 20
Visual Basic toolbar
Record Macro button, 13

Run Macro button, 16
VLOOKUP, 183
volatile functions, 188-193

Watch window

Debugging toolbar, 205-206

Value field, 206
WebBrowser, 259-260

GoBack, 261

GoForward, 261

Initialize, 261

UserForms, 259-260
Webqueries, 295-299
WHERE, 312-313
While...Wend, 86, 94
windows. See also specific windows

VBE, 20-22
wWith, 32

advancetime, 367

cell range, 32
WithoutVariable, 51
Word, 44, 333-342

activating, 333-336

Code window, 30

controlling, 6

creating documents, 336

export, 333

GetObject, 334

Immediate Window, 329

import, 338-339

late binding, 340

macros, 329, 335-336

printing, 337-338

ranges, 337

String, 339-340
Word.Application, 334
Workbook, 23-24, 44, 45

Application, 61

Close, 62

methods, 62

Open, 62

Save, 62

393

www.it-ebooks.info

http://www.it-ebooks.info/

workbooks — worksheet events

workbooks, 216

Activate, 46

add-ins, 279, 280

chart sheets, 157

collections, 61-62

dialog sheets, 315

macros, 15, 62

modules, 22, 34

Code window, 124
workbook events, 124

name, 189

Saved, 45

simplification, 5-6

UDFs, 184

UserForms, 216

variables, 62

worksheets, 63
workbook events

automation, 123-134

code, 123-126

End Sub, 126

workbook modules, 124

Workbook_Activate, 127

Workbook_BeforeClose, 127

Workbook_BeforePrint, 130

Workbook_BeforeSave, 131

Workbook_Deactivate, 128

Workbook_NewSheet, 130

Workbook_Open, 126-127

Workbook_SheetActivate, 131

Workbook_SheetBeforeDoubleClick, 129

Workbook_SheetBeforeRightClick, 129

Workbook_SheetChange, 128

Workbook_SheetDeactivate, 131

Workbook_SheetPivotTableUpdate, 130

Workbook_SheetSelectionChange, 128-

129

Workbook_Activate, 127
Workbook_BeforeClose, 127
Workbook_BeforePrint, 130
Workbook_BeforeSave, 131
Workbook_Deactivate, 128
Workbook_NewSheet, 130
Workbook_Open, 272

PivotTable, 178

workbook events, 126-127

394

Workbooks, 61-62

If, 88
Workbook_SheetActivate, 131
Workbook_SheetBeforeDoubleClick, 129
Workbook_SheetBeforeRightClick, 129
Workbook_SheetChange, 128
Workbook_SheetDeactivate, 131
Workbook_SheetPivotTableUpdate, 130

Workbook_SheetSelectionChange, 128-129

Worksheet, 44,45
Name, 45
worksheets, 62-63
Activate, 46
cells, 43
Cells, 64
charts, 151
embedded, 154-155
chart sheets, 155-156
collections, 62-63
ComboBox, 238
defaults, 44
Do...Loop...While, 93
e-mail, 348
embedded charts, 154-155
functions, 5
hiding, 89
macros, 62-63
methods, 43
modules, 22
Code window, 113
View Code, 112-113
name, 189, 208
passwords, 78
ranges, PowerPoint, 364-365
relocating, 63
Select Case, 80
UDFs, 183, 184
VBE, 20
workbooks, 63
worksheet events
automation, 111-122
disabling, 114-115
enabling, 114-115
Worksheet_Activate, 117-118
Worksheet_BeforeDoubleClick, 116
Worksheet_BeforeRightClick, 117

www.it-ebooks.info

http://www.it-ebooks.info/

Worksheet_Activate — Zoom

Worksheet_Calculate, 118

Worksheet_Change, 115-116

Worksheet_Deactivate, 118

Worksheet_FollowHyperlink, 117

Worksheet_PivotTableUpdate, 119

Worksheet_SelectionChange, 116
Worksheet_Activate, 117-118
Worksheet_BeforeDoubleClick, 116
Worksheet_BeforeRightClick, 117
Worksheet_Calculate, 118
Worksheet_Change, 114

dialog sheets, 318

events, 115-116

PivotCache, 175

PivotTable, 175, 177-178
Worksheet_Deactivate, 118
Worksheet_FollowHyperlink, 117
Worksheet_PivotTableUpdate, 119
Worksheets, 46

ActiveWorkbook, 67

chart sheets, 63

Sheets, 63
Worksheet_SelectionChange, 116

.xla, 279

.xlam, 279

XLM. See Excel 4.0 Macro Language
.x1ls, 91,355

.x1lsm, 355

.x1lsx, 355

YesNoCancel, 77

zero-based numbering, 103
Zoom, 249, 252

www.it-ebooks.info

395

http://www.it-ebooks.info/

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and con-
ditions before opening the software packet(s) included with
this book “Book”. This is a license agreement “Agreement”
between you and Wiley Publishing, Inc. “WPI”. By opening the
accompanying software packet(s), you acknowledge that you
have read and accept the following terms and conditions. If you
do not agree and do not want to be bound by such terms and
conditions, promptly return the Book and the unopened soft-
ware packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or
entity) a nonexclusive license to use one copy of the enclosed
software program(s) (collectively, the “Software,” solely for
your own personal or business purposes on a single computer
(whether a standard computer or a workstation component of a
multi-user network). The Software is in use on a computer when
it is loaded into temporary memory (RAM) or installed into per-
manent memory (hard disk, CD-ROM, or other storage device).
WPI reserves all rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest,
including copyright, in and to the compilation of the Software
recorded on the physical packet included with this Book “Soft-
ware Media”. Copyright to the individual programs recorded on
the Software Media is owned by the author or other authorized
copyright owner of each program. Ownership of the Software
and all proprietary rights relating thereto remain with WPI and
its licensers.

3. Restrictions On Use and Transfer. (a) You may only (i)
make one copy of the Software for backup or archival pur-
poses, or (ii) transfer the Software to a single hard disk,
provided that you keep the original for backup or archival
purposes. You may not (i) rent or lease the Software, (ii) copy
or reproduce the Software through a LAN or other network
system or through any computer subscriber system or bulletin-
board system, or (iii) modify, adapt, or create derivative works
based on the Software. (b) You may not reverse engineer,
decompile, or disassemble the Software. You may transfer

the Software and user documentation on a permanent basis,
provided that the transferee agrees to accept the terms and
conditions of this Agreement and you retain no copies. If the
Software is an update or has been updated, any transfer must
include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must
follow the individual requirements and restrictions detailed for
each individual program in the About the CD-ROM appendix
of this Book or on the Software Media. These limitations are
also contained in the individual license agreements recorded on
the Software Media. These limitations may include a require-
ment that after using the program for a specified period of
time, the user must pay a registration fee or discontinue use. By
opening the Software packet(s), you will be agreeing to abide
by the licenses and restrictions for these individual programs
that are detailed in the About the CD-ROM appendix and/or
on the Software Media. None of the material on this Software
Media or listed in this Book may ever be redistributed, in origi-
nal or modified form, for commercial purposes.

5. Limited Warranty. (a) WPI warrants that the Software and
Software Media are free from defects in materials and workman-
ship under normal use for a period of sixty (60) days from the
date of purchase of this Book. If WPI receives notification within
the warranty period of defects in materials or workmanship, WPI
will replace the defective Software Media. (b) WPIAND THE
AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WITH RESPECT TO THE SOFTWARE, THE PROGRAMS,
THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE
SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT
THE OPERATION OF THE SOFTWARE WILL BE ERROR
FREE. (¢) This limited warranty gives you specific legal rights,
and you may have other rights that vary from jurisdiction to
jurisdiction.

6. Remedies. (a) WPT’s entire liability and your exclusive rem-
edy for defects in materials and workmanship shall be limited
to replacement of the Software Media, which may be returned
to WPI with a copy of your receipt at the following address:
Software Media Fulfillment Department, Attn.: Maya Studio
Projects: Texturing and Lighting, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-
2974. Please allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has resulted
from accident, abuse, or misapplication. Any replacement Soft-
ware Media will be warranted for the remainder of the original
warranty period or thirty (30) days, whichever is longer. (b)

In no event shall WPI or the author be liable for any damages
whatsoever (including without limitation damages for loss of
business profits, business interruption, loss of business infor-
mation, or any other pecuniary loss) arising from the use of or
inability to use the Book or the Software, even if WPI has been
advised of the possibility of such damages. (c) Because some
jurisdictions do not allow the exclusion or limitation of liability
for consequential or incidental damages, the above limitation or
exclusion may not apply to you.

7.U.S. Government Restricted Rights. Use, duplication, or
disclosure of the Software for or on behalf of the United States
of America, its agencies and/or instrumentalities “U.S. Govern-
ment” is subject to restrictions as stated in paragraph (c)(1)(ii)
of the Rights in Technical Data and Computer Software clause
of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the
Commercial Computer Software - Restricted Rights clause at
FAR 52.227-19, and in similar clauses in the NASA FAR supple-
ment, as applicable.

8. General. This Agreement constitutes the entire understand-
ing of the parties and revokes and supersedes all prior agree-
ments, oral or written, between them and may not be modified
or amended except in a writing signed by both parties hereto
that specifically refers to this Agreement. This Agreement
shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in
this Agreement are held by any court or tribunal to be invalid,
illegal, or otherwise unenforceable, each and every other pro-
vision shall remain in full force and effect.

www.it-ebooks.info

http://www.it-ebooks.info/

	Excel VBA
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Instructional Videos on DVD
	Conventions
	Supporting Websites and Code
	Errata
	p2p.wrox.com

	Section 1: Understanding the BASICs
	Lesson 1: Introducing VBA
	What Is VBA?
	A Brief History of VBA
	What VBA Can Do for You
	Automating a Recurring Task
	Automating a Repetitive Task
	Running a Macro Automatically if Another Action Takes Place
	Creating Your Own Worksheet Functions
	Simplifying the Workbook’s Look and Feel for Other Users
	Controlling Other Office Applications from Excel

	Liabilities of VBA
	Try It

	Lesson 2: Getting Started with Macros
	Composing Your First Macro
	Accessing the VBA Environment
	Using the Macro Recorder

	Running a Macro
	The Macro Dialog Box
	Shortcut Key

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 3: Introducing the
	What Is the VBE?
	How To Get Into the VBE
	Understanding the VBE
	The Project Explorer Window
	The Code Window
	The Properties Window
	The Immediate Window

	Understanding Modules
	Using the Object Browser
	Exiting the VBE
	Try It

	Lesson 4: Working in the VBE
	Toolbars in the VBE
	Macros and Modules
	Locating Your Macros
	Understanding the Code
	Editing a Macro with Comments and Improvements to the Code
	Deleting a Macro
	Inserting a Module
	Renaming a Module
	Deleting a Module

	Locking and Protecting the VBE
	Try It
	Lesson Requirements
	Step-by-Step

	Section 2: Diving Deeper into VBA
	Lesson 5: Object-oriented
	What “Object-Oriented Programming” Means
	The Object Model
	Properties
	Methods
	Collections

	Try It

	Lesson 6: Variables, Data Types,
	What Is a Variable?
	Assigning Values to Variables
	Why You Need Variables
	Data Types
	Understanding the Different Data Types
	Declaring a Variable for Dates and Times
	Declaring a Variable with the Proper Data Type

	Forcing Variable Declaration
	Understanding a Variable’s Scope
	Local Macro Level Only
	Module Level
	Application Level

	Constants
	Choosing the Scope and Lifetime of Your Constants

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 7: Understanding Objects and Collections
	Workbooks
	Worksheets
	Cells and Ranges
	SpecialCells
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 8: Making Decisions with VBA
	Understanding Logical Operators
	AND
	OR
	NOT

	Choosing Between This or That
	If…Then
	If…Then…Else
	If…Then…ElseIf
	Select Case

	Getting Users to Make Decisions
	Message Boxes
	Input Boxes

	Try It
	Lesson Requirements
	Step-by-Step

	Section 3: Beyond the Macro Recorder: Writing Your Own Code
	Lesson 9: Repeating Actions with Loops
	What Is a Loop?
	Types of Loops
	For…Next
	For…Each…Next
	Exiting a For… Loop
	Looping In Reverse with Step
	Do…While
	Do…Until
	Do…Loop…While
	Do…Loop…Until
	While…Wend

	Nesting Loops
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 10: Working with Arrays
	What Is an Array?
	What Arrays Can Do for You
	Declaring Arrays

	The Option Base Statement
	Boundaries in Arrays
	Declaring Arrays with Fixed Elements
	Declaring Dynamic Arrays with ReDim and Preserve
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 11: Automating Procedures
	What Is an “Event”?
	Worksheet Events — ​an Overview
	Where Does the Worksheet Event Code Go?
	Enabling and Disabling Events

	Examples of Common Worksheet Events
	Worksheet_Change Event
	Worksheet_SelectionChange Event
	Worksheet_BeforeDoubleClick Event
	Worksheet_BeforeRightClick Event
	Worksheet_FollowHyperlink Event
	Worksheet_Activate Event
	Worksheet_Deactivate Event
	Worksheet_Calculate Event
	Worksheet_PivotTableUpdate Event

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 12: Automating Procedures with Workbook Events
	Workbook Events — ​An Overview
	Where Does the Workbook Event Code Go?
	Entering Workbook Event Code

	Examples of Common Workbook Events
	Workbook_Open Event
	Workbook_BeforeClose Event
	Workbook_Activate Event
	Workbook_Deactivate Event
	Workbook_SheetChange Event
	Workbook_SheetSelectionChange Event
	Workbook_SheetBeforeDoubleClick Event
	Workbook_SheetBeforeRightClick Event
	Workbook_SheetPivotTableUpdate Event
	Workbook_NewSheet Event
	Workbook_BeforePrint Event
	Workbook_SheetActivate Event
	Workbook_SheetDeactivate Event
	Workbook_BeforeSave Event

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 13: Using Embedded Controls
	Working With Forms Controls and ActiveX Controls
	The Forms Toolbar
	The Control Toolbox

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 14: Programming Charts
	Adding a Chart to a Chart Sheet
	Adding an Embedded Chart to a Worksheet
	Moving a Chart
	Looping through All Embedded Charts
	Deleting Charts
	Renaming a Chart
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 15: Programming PivotTables
	Creating a PivotTable Report
	Hiding the PivotTable Field List
	Using the Report Filter Area
	Formatting Numbers in the Values Area
	Why It’s Called a PivotTable

	Creating a PivotChart
	Understanding PivotCaches
	Manipulating PivotFields in VBA
	Manipulating PivotItems with VBA
	Creating a PivotTables Collection
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 16: User Defined Functions
	What Is a User Defined Function?
	Characteristics of User Defined Functions
	Anatomy of a UDF
	UDF Examples That Solve Common Tasks

	Volatile Functions
	The Name of the Active Worksheet and Workbook
	UDFs with Conditional Formatting
	Calling Your Function from a Macro
	Adding a Description to the Insert Function Dialog

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 17: Debugging Your Code
	What Is Debugging?
	What Causes Errors?
	Weapons of Mass Debugging
	The Debugging Toolbar

	Trapping Errors
	Error Handler
	Bypassing Errors

	Try It
	Lesson Requirements
	Step-by-Step

	Section 4: Advanced Programming Techniques
	Lesson 18: Creating UserForms
	What Is a UserForm?
	Creating a UserForm
	Designing a UserForm
	Adding Controls to a UserForm
	Showing a UserForm
	Where Does the UserForm’s Code Go?
	Closing a UserForm
	Unloading a UserForm
	Hiding a UserForm

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 19: UserForm Controls and Their Functions
	Understanding the Frequently
Used UserForm Controls
	CommandButtons
	Labels
	TextBoxes
	ListBoxes
	ComboBoxes
	CheckBoxes
	OptionButtons
	Frames
	MultiPages

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 20: Advanced UserForms
	The UserForm Toolbar
	Modal Versus Modeless
	Disabling the UserForm’s Close Button
	Maximizing Your UserForm’s Size
	Selecting and Displaying Photographs on a UserForm
	Unloading a UserForm Automatically
	Pre-sorting the ListBox and ComboBox Items
	Populating ListBoxes and ComboBoxes with Unique Items
	Display a Real-Time Chart in a UserForm
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 21: Class Modules
	What Is a Class?
	What Is a Class Module?
	Creating Your Own Objects
	An Important Benefit of Class Modules
	Creating Collections
	Class Modules for Embedded Objects
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 22: Add-Ins
	What Is an Excel Add-in?
	Creating an Add-In
	Converting a File to an Add-In
	Installing an Add-In
	Creating a User Interface for Your Add-In
	Changing the Add-In’s Code
	Closing Add-Ins
	Removing an Add-In from the Add-Ins List
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 23: Managing External Data
	Creating QueryTables from Web Queries
	Creating a QueryTable for Access
	Using Text Files to Store External Data
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 24: Data Access with
	Introducing ADO
	The Connection Object
	The Recordset Object
	The Command Object

	An Introduction to Structured Query Language (SQL)
	The SELECT Statement
	The INSERT Statement
	The UPDATE Statement
	The DELETE Statement

	Try It

	Lesson 25: Not Gone, Not Forgotten
	Using Dialog Sheets
	What Does a Dialog Sheet Look Like?
	Option to Show Message Only Once

	Using XLM Get.Cell Functions
	Using the SendKeys Method
	Try It
	Lesson Requirements
	Step-by-Step

	Section 5: Interacting with Other
	Lesson 26: Overview of Office Automation from Excel
	Why Automate Another Application?
	Understanding Office Automation
	Early Binding
	Late Binding
	Which One Is Better?

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 27: Working with Word from Excel
	Activating a Word Document
	Activating the Word Application
	Opening and Activating a Word Document

	Creating a New Word Document
	Copying an Excel Range to a Word Document
	Printing a Word Document from Excel
	Importing a Word Document to Excel
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 28: Working with Outlook from Excel
	Opening Outlook
	Composing an E‑mail in Outlook from Excel
	Creating a MailItem Object
	Transferring an Excel Range to the Body of Your E‑mail
	Putting It All Together

	E‑mailing a Single Worksheet
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 29: Working with Access from Excel
	Adding a Record to an Access Table
	Exporting an Access Table to an Excel Spreadsheet
	Creating a New Table in Access
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 30: Working with PowerPoint
	Creating a New PowerPoint Presentation
	Copying a Worksheet Range to a PowerPoint Slide
	Copying Chart Sheets to PowerPoint Slides
	Running a PowerPoint Presentation from Excel
	Try It
	Lesson Requirements
	Step-by-Step

	Appendix: What’s on the DVD?
	System Requirements
	Using the DVD
	What’s on the DVD?
	Troubleshooting
	Customer Care

	Index

