week4: Kapitel 4: Das N-Perioden Binomialmodell, Teil1

Let S be some tradable asset with prices

$$
\begin{equation*}
S_{k}=S\left(t_{k}\right), \quad k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

and let

$$
\begin{equation*}
H=H\left(S_{0}, S_{1}, \ldots, S_{N-1}, S_{N}\right) \tag{2}
\end{equation*}
$$

be some option payoff with start date t_{0} and end date or maturity t_{N}. We want to replicate the option payoff (2) with a suitable trading strategy in the underlying S. For notational simplicity let us assume first that we have zero interest rates $r=0$. From the last chapter we know that a trading strategy holding δ_{k} assets at the end of day t_{k} generates the amount

$$
\begin{equation*}
V_{N}=V_{0}+\sum_{j=1}^{N} \delta_{j-1}\left(S_{j}-S_{j-1}\right) \tag{3}
\end{equation*}
$$

Each δ_{k} will be determined on the end of trading day t_{k}. On such a day, the asset prices $S_{0}, S_{1}, \ldots, S_{k}$ are known, but the asset prices $S_{k+1}, S_{k+2}, \ldots, S_{N}$ are not known yet, they are lying in the future. Thus, δ_{k} can be a function only of the known prices S_{0}, \ldots, S_{k},

$$
\begin{equation*}
\delta_{k}=\delta_{k}\left(S_{0}, S_{1}, \ldots, S_{k-1}, S_{k}\right) \tag{4}
\end{equation*}
$$

Definition 4.1: We say that an option payoff (2) can be replicated by a suitable trading strategy in the underlying if and only if there are choices of δ_{k} of the form (4) and some initial amount V_{0} such that (in case of zero interest rates)

$$
\begin{equation*}
H\left(S_{0}, S_{1}, \ldots, S_{N-1}, S_{N}\right)=V_{0}+\sum_{j=1}^{N} \delta_{j-1}\left(S_{j}-S_{j-1}\right) \tag{5}
\end{equation*}
$$

The initial amount $\mathbf{V}_{\mathbf{0}}$ which is needed to set up the replicating strategy is called the theoretical fair value of H or the price of the option \mathbf{H}. The process of replicating an option payoff H through formula (5), that is, through a trading strategy which holds δ_{j} pieces of the underlying S at the end of day t_{j}, is called hedging.

Now let us consider the question to what extent replication of options is possible. Equation (5) can be rewritten as

$$
H\left(S_{0}, S_{1}, \ldots, S_{N-1}, S_{N}\right)=V_{N-1}+\delta_{N-1}\left(S_{N}-S_{N-1}\right)
$$

or

$$
\begin{align*}
H\left(S_{0}, S_{1}, \ldots, S_{N-1}, S_{N}\right)-\delta_{N-1} S_{N} & =V_{N-1}-\delta_{N-1} S_{N-1} \\
& =\text { some function of } S_{0}, S_{1}, \ldots, S_{N-1} \tag{6}
\end{align*}
$$

That is, the right hand side of (6) is independent of S_{N}. Let us introduce the return of the asset S from t_{k-1} to t_{k},

$$
\begin{equation*}
\operatorname{ret}_{k}:=\frac{S_{k}-S_{k-1}}{S_{k-1}}=\frac{S_{k}}{S_{k-1}}-1 \tag{7}
\end{equation*}
$$

such that

$$
\begin{equation*}
S_{k}=S_{k-1}\left(1+\operatorname{ret}_{k}\right) \tag{8}
\end{equation*}
$$

Then equation (6) can be rewritten as

$$
\begin{equation*}
H\left(S_{0}, S_{1}, \ldots, S_{N-1}, S_{N-1}\left(1+\operatorname{ret}_{N}\right)\right)-\delta_{N-1} S_{N-1}\left(1+\operatorname{ret}_{N}\right)=\text { const } \tag{9}
\end{equation*}
$$

where the const in the equation above means that the left hand side of (9) has to be the same for all possible choices of ret ${ }_{N}$. Since there is only 1 free parameter in (9), namely δ_{N-1}, we can only allow for 2 possible choices for ret_{N}, say,

$$
\begin{equation*}
\operatorname{ret}_{N} \in\left\{\operatorname{ret}_{\text {up }}, \operatorname{ret}_{\text {down }}\right\} \tag{10}
\end{equation*}
$$

and in that case we have to have

$$
\begin{aligned}
& H\left(S_{0}, S_{1}, \ldots, S_{N-1}, S_{N-1}\left(1+\operatorname{ret}_{\text {up }}\right)\right)-\delta_{N-1} S_{N-1}\left(1+\operatorname{ret}_{\text {up }}\right)= \\
& H\left(S_{0}, S_{1}, \ldots, S_{N-1}, S_{N-1}\left(1+\operatorname{ret}_{\text {down }}\right)\right)-\delta_{N-1} S_{N-1}\left(1+\operatorname{ret}_{\text {down }}\right)
\end{aligned}
$$

which determines δ_{N-1} to

$$
\begin{equation*}
\delta_{N-1}=\frac{H\left(S_{0}, \ldots, S_{N-1}, S_{N-1}\left(1+\operatorname{ret}_{\mathrm{up}}\right)\right)-H\left(S_{0}, \ldots, S_{N-1}, S_{N-1}\left(1+\operatorname{ret}_{\text {down }}\right)\right)}{S_{N-1}\left(1+\operatorname{ret}_{\text {up }}\right)-S_{N-1}\left(1+\operatorname{ret}_{\text {down }}\right)} \tag{11}
\end{equation*}
$$

Thus, if we allow for 2 possible choices of returns only as in (10), replication of option payoffs seem to be possible. This leads to the following

Definition 4.2: If the price process $S_{k}=S\left(t_{k}\right)$ of some tradable asset S has the dynamics

$$
\begin{equation*}
S_{k}=S_{k-1}\left(1+\operatorname{ret}_{k}\right) \quad \text { with } \quad \operatorname{ret}_{k} \in\left\{\operatorname{ret}_{\text {up }}, \text { ret }_{\text {down }}\right\} \tag{12}
\end{equation*}
$$

for all k, then we say that S is given by the Binomial model.

Remark: Observe that in Definition 4.2 we have not introduced any probabilities for an up- or down-move, that is, we have not specified a probability $p_{\text {up }}$ such that an up-return ret $_{\text {up }}$ will occur and a probability $p_{\text {down }}=1-p_{\text {up }}$ for the occurence of a down-return. We did that because the replicating strategy and the theoretical option fair value V_{0} are actually independent of such probabilities.

Now we are in a position to formulate the following important

Theorem 4.1: Let S be some tradable asset whose price process is given by the Binomial model (12). Let r be some interest rate per period such that cash amounts G change their values according to $G \xrightarrow{t_{k-1} \rightarrow t_{k}} G(1+r)$. Then every option payoff

$$
H=H\left(S_{0}, \ldots, S_{N}\right)
$$

can be replicated. A replicating strategy is given by, for $k=0,1, \ldots, N-1$:

$$
\begin{equation*}
\delta_{k}=\delta_{k}\left(S_{0}, \cdots, S_{k}\right)=\frac{V_{k+1}^{\text {up }}-V_{k+1}^{\text {down }}}{S_{k+1}^{\text {up }}-S_{k+1}^{\text {down }}} \tag{13}
\end{equation*}
$$

with the abbreviations

$$
\begin{aligned}
S_{k+1}^{\text {up } / \text { down }} & :=S_{k}\left(1+\operatorname{ret}_{\mathrm{up} / \mathrm{down}}\right) \\
V_{k+1}^{\mathrm{up} / \mathrm{down}} & :=V_{k+1}\left(S_{0}, \cdots, S_{k}, S_{k+1}^{\text {up } / \mathrm{down}}\right)
\end{aligned}
$$

and the portfolio values V_{k}, including the theoretical fair value, the option price V_{0}, can be inductively calculated through the following formulae:

$$
V_{k}=(1+r)^{k} v_{k}
$$

with discounted portfolio values v_{k} given recursively by

$$
\begin{equation*}
v_{k}=w_{\mathrm{up}} v_{k+1}^{\mathrm{up}}+w_{\mathrm{down}} v_{k+1}^{\mathrm{down}} \tag{14}
\end{equation*}
$$

and the recursion starts at $k=N$ with discounted portfolio values

$$
v_{N}:=(1+r)^{-N} H\left(S_{0}, \cdots, S_{N}\right)
$$

The weights $w_{\text {up }}$ and $w_{\text {down }}$ are given by

$$
\begin{align*}
w_{\mathrm{up}} & =\frac{r-\operatorname{ret}_{\text {down }}}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}} \tag{15}\\
w_{\text {down }}=1-w_{\mathrm{up}} & =\frac{\operatorname{ret}_{\mathrm{up}}-r}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}} \tag{16}
\end{align*}
$$

Proof: For nonzero interest rates we have

$$
v_{N}=v_{0}+\sum_{j=1}^{N} \delta_{j-1}\left(s_{j}-s_{j-1}\right)
$$

which is equivalent to

$$
\begin{equation*}
v_{k+1}=v_{k}+\delta_{k}\left(s_{k+1}-s_{k}\right) \quad \forall k=0,1, \ldots, N-1 \tag{17}
\end{equation*}
$$

We have

$$
v_{k+1}=v_{k+1}\left(S_{0}, \cdots, S_{k}, S_{k+1}\right)=v_{k+1}\left(S_{0}, \cdots, S_{k}, S_{k}\left(1+\operatorname{ret}_{k}\right)\right)
$$

and the return ret $_{k}$ can be an up-move or a down-move in which case we get

$$
\begin{aligned}
& v_{k+1}^{\text {up }}=v_{k+1}\left(S_{0}, \cdots, S_{k}, S_{k+1}^{\text {up }}\right) \\
& v_{k+1}^{\text {down }}=v_{k+1}\left(S_{0}, \cdots, s_{k+1}\left(S_{0}, \cdots, S_{k+1}\right)=S_{k}\left(1+\operatorname{ret}_{\text {up }}\right)\right) \\
&=v_{k+1}\left(S_{0}, \cdots, S_{k}, S_{k}\left(1+\operatorname{ret}_{\text {down }}\right)\right)
\end{aligned}
$$

From (17), we have

$$
\begin{aligned}
v_{k+1}^{\mathrm{up}} & =v_{k}+\delta_{k}\left(s_{k+1}^{\mathrm{up}}-s_{k}\right) \\
v_{k+1}^{\text {down }} & =v_{k}+\delta_{k}\left(s_{k+1}^{\text {down }}-s_{k}\right)
\end{aligned}
$$

Thus,

$$
v_{k+1}^{\mathrm{up}}-v_{k+1}^{\text {down }}=\delta_{k}\left(s_{k+1}^{\mathrm{up}}-s_{k+1}^{\text {down }}\right)
$$

or

$$
\delta_{k}=\frac{v_{k+1}^{\text {up }}-v_{k+1}^{\text {down }}}{s_{k+1}^{\text {up }}-s_{k+1}^{\text {down }}}=\frac{e^{-r t_{k+1}}\left(V_{k+1}^{\text {up }}-V_{k+1}^{\text {down }}\right)}{e^{-r t_{k+1}}\left(S_{k+1}^{\text {up }}-S_{k+1}^{\text {down }}\right)}=\frac{V_{k+1}^{\text {up }}-V_{k+1}^{\text {down }}}{S_{k+1}^{\text {up }}-S_{k+1}^{\text {down }}}
$$

Solving (17) for v_{k},

$$
\begin{aligned}
v_{k} & =v_{k+1}-\delta_{k}\left(s_{k+1}-s_{k}\right) \\
& =v_{k+1}^{\text {up }}-\delta_{k}\left(s_{k+1}^{\text {up }}-s_{k}\right) \\
& =v_{k+1}^{\text {down }}-\delta_{k}\left(s_{k+1}^{\text {down }}-s_{k}\right)
\end{aligned}
$$

Let's take the up-equation and substitute the value for δ_{k} (we also could use the downequation, we would end up with the same result),

$$
\begin{aligned}
v_{k} & =v_{k+1}^{\mathrm{up}}-\delta_{k}\left(s_{k+1}^{\mathrm{up}}-s_{k}\right) \\
& =v_{k+1}^{\mathrm{up}}-\frac{v_{k+1}^{\mathrm{up}}-v_{k+1}^{\text {down }}}{s_{k+1}^{\mathrm{up}}-s_{k+1}^{\text {down }}}\left(s_{k+1}^{\mathrm{up}}-s_{k}\right) \\
& =\frac{s_{k+1}^{\text {up }}-s_{k+1}^{\text {down }}}{s_{k+1}^{\text {up }}-s_{k+1}^{\text {down }}} v_{k+1}^{\mathrm{up}}-\left(v_{k+1}^{\mathrm{up}}-v_{k+1}^{\text {down }}\right) \frac{s_{k+1}^{\text {up }}-s_{k}}{s_{k+1}^{\text {up }}-s_{k+1}^{\text {down }}} \\
& =\frac{s_{k+1}^{\text {up }}-s_{k+1}^{\text {down }}-s_{k+1}^{\mathrm{up}}+s_{k}}{s_{k+1}^{\text {up }}-s_{k+1}^{\text {down }}} v_{k+1}^{\mathrm{up}}+\frac{s_{k+1}^{\text {up }}-s_{k}}{s_{k+1}^{\text {up }}-s_{k+1}^{\text {down }}} v_{k+1}^{\text {down }} \\
& =\frac{s_{k}-s_{k+1}^{\text {down }}}{s_{k+1}^{\text {up }}-s_{k+1}^{\text {down }}} v_{k+1}^{\text {up }}+\frac{s_{k+1}^{\text {up }}-s_{k}}{s_{k+1}^{\text {up }}-s_{k+1}^{\text {down }}} v_{k+1}^{\text {down }} \\
& =: w_{\mathrm{up}} v_{k+1}^{\text {up }}+w_{\text {down }} v_{k+1}^{\text {down }}
\end{aligned}
$$

with weights $w_{\text {up }}$ and $w_{\text {down }}$ which apparently add up to 1 and, using the abbreviation $R:=$ $1+r$,

$$
w_{\text {up }}=\frac{s_{k}-s_{k+1}^{\text {down }}}{s_{k+1}^{\text {up }}-s_{k+1}^{\text {down }}}=\frac{R^{-k} S_{k}-R^{-(k+1)} S_{k+1}^{\text {down }}}{R^{-(k+1)}\left(S_{k+1}^{\text {up }}-S_{k+1}^{\text {down }}\right)}=\frac{R S_{k}-S_{k+1}^{\text {down }}}{S_{k+1}^{\text {up }}-S_{k+1}^{\text {down }}}
$$

or

$$
\begin{aligned}
w_{\mathrm{up}}=\frac{(1+r) S_{k}-S_{k+1}^{\text {down }}}{S_{k+1}^{\mathrm{up}}-S_{k+1}^{\text {down }}} & =\frac{(1+r) S_{k}-S_{k}\left(1+\operatorname{ret}_{\text {down }}\right)}{S_{k}\left(1+\operatorname{ret}_{\mathrm{up}}\right)-S_{k}\left(1+\operatorname{ret}_{\text {down }}\right)} \\
& =\frac{r-\operatorname{ret}_{\text {down }}}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}}
\end{aligned}
$$

and the theorem is proven.

Beispiel: Standard-Kauf-Option in einem 3-Perioden Binomialmodell \rightarrow Ü-Blatt 4

