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week7: Kapitel 4: Brownsche Bewegung, Wiener-Maß
und das Black-Scholes Modell, Teil2

Letztes Mal hatten wir für den Preisprozess die folgende Darstellung hergeleitet:
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The first term in the exponent converges to a Brownian motion xt = lim∆t→0

√
∆t

∑Nt

k=1 ϕk

and the last term vanishes, but what about the second term? There is the following

Theorem 4.2: Let

I∆t := ∆t
∑Nt

k=1 ϕ
2
k

with Nt = t/∆t and ϕ1, ϕ2, · · · being independent Gaussian random numbers with mean 0
and standard deviation 1. Then the following statements hold:

a) E[I∆t] = t

b) V[I∆t] = 2 t∆t

c) lim
∆t→0

Prob
[ ∣∣I∆t − t

∣∣ ≥ ε
]

= 0 ∀ε > 0 .

More intuitively, we may rewrite the statement of part (c) simply as

lim
∆t→0

I∆t = lim
∆t→0

∆t
∑Nt

k=1 ϕ
2
k = t .

Proof: For standard normal distributed random numbers we have

E[ϕ2] = 1

E[ϕ4] = 3

V[ϕ2] = E[ϕ4] −
(
E[ϕ2]

)2
= 2

since more generally

E[ϕ2n] = (2n− 1)!!



Thus we get
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= ∆tNt = t .

To calculate the variance, we rewrite it as a covariance since the covariance is a bilinear
quantity where we can bring sums from inside to the outside of the covariance as follows:
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= 2 t∆t .

Now we use Chebyshev’s inequality. It states that for any random variable X we have

Prob
( ∣∣X − E[X]

∣∣ ≥ ε
)

≤ V[X]

ε2
.

Then we put X = I∆t such that with the results from part (a) and (b) we obtain

Prob
( ∣∣ I∆t − t

∣∣ ≥ ε
)

≤ 2t∆t

ε2
∆t→0→ 0

This proves the theorem. ■

We summarize our results: The statistics of financial data suggests, as a first approxi-
mation, the stochastic model

Stk = Stk−1
(1 + µ∆tα + σ∆tβϕk)



with α = 1 and β = 1
2
which results in

Stk − Stk−1

Stk−1

=
∆Stk

Stk−1

= µ∆t+ σ
√
∆t ϕk (2)

Since a Brownian motion was defined as the combination of random numbers

xtk =
√
∆t

k∑
j=1

ϕj

we can write

√
∆t ϕk = xtk − xtk−1

which results in

∆Stk

Stk−1

= µ∆t+ σ (xtk − xtk−1
) = µ∆t + σ∆xtk (3)

or, in the continuous time limit ∆t → 0,

dSt

St

= µ dt + σ dxt (4)

where {xt}0<t≤T is a Brownian motion. And we saw that the discrete time solution (1) of (3)
(for µ ̸= 0 there is an additional µNt∆t in the exponent, as we had in the previous lecture)
converges to

St = S0 e
µt+σxt − σ2

2
t (5)

The solution (5) is usually refered to as a ‘geometric Brownian motion’. In a following section
we will rederive (5) from (4) as an application of the Ito-Lemma. We have the following very
important

Definition 4.2: Let {xt}t≥0 be a Brownian motion. Then the stochastic process (5),

St = S0 e
µt+σxt − σ2

2
t (6)

is called the Black-Scholes model for the asset price process {St}t≥0. It is a solution of
the stochastic differential equation (4),

dSt

St
= µ dt + σ dxt (7)

Equation (7) is called the Black-Scholes Stochastic Differential Equation or Black-
Scholes SDE (not to be confused with the Black-Scholes PDE, partial differential equation).

In discrete time, Black-Scholes paths can be simulated through

Stk = Stk−1

(
1 + µ∆t + σ

√
∆t ϕk

)
(8)

with the ϕk being standard normal distributed random numbers.



Excel/VBA-Demos:

a) Show through simulation that for small ∆t the Stk ’s calculated iteratively through (8)
and directly through (6) are approximately equal.

b) Confirm part (c) of Theorem 4.2. That is, show through simulation that in discrete
time for small ∆t

I∆t := ∆t
∑Nt

k=1 ϕ
2
k ≈ t .


