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week7: Kapitel 4: Brownsche Bewegung, Wiener-Maf}
und das Black-Scholes Modell, Teil2

Letztes Mal hatten wir fiir den Preisprozess die folgende Darstellung hergeleitet:
N o2 N
Sy = Sy exp{ avAtkz_;gzﬁk - 7At;¢z + O(VAY) } (1)

The first term in the exponent converges to a Brownian motion x; = lima; o VAt ij;l O
and the last term vanishes, but what about the second term? There is the following

Theorem 4.2: Let

Ing = AN 67

with Ny = t/At and ¢q, ¢o, -+ being independent Gaussian random numbers with mean 0
and standard deviation 1. Then the following statements hold:

a) E[[At] =1
b)  V[Ia] = 2tAt

¢) Jim Prob| [Is —t[ 2| =0 Ve>0.
At—0

More intuitively, we may rewrite the statement of part (c) simply as

lim In, = lm At} 67 = ¢
B

Proof: For standard normal distributed random numbers we have
El¢’] = 1
El¢] = 3
V¢! = El¢"] - (E[)" = 2
since more generally

E[¢*"] = (2n—1)!!



Thus we get

Ella] = At Elg])

To calculate the variance, we rewrite it as a covariance since the covariance is a bilinear
quantity where we can bring sums from inside to the outside of the covariance as follows:

V[-’At] = COV[IAt;]At]
Nt Nt
= COV[AtZQﬁ%, Atzqﬁ]
k=1 =1

Ny
= (A1)’ ) Cov[ ¢}, ¢ ]

k,b=1

Ny
= (A8 Y e Covl 6, 67 ]

k=1
N

= (A*) ] V[ 6} ]
k=1
Ny

= (A1) 2
k=1

= 2tAt.

Now we use Chebyshev’s inequality. It states that for any random variable X we have

VIX]

e2

Prob( | X — E[X]| > <)

Then we put X = Ix; such that with the results from part (a) and (b) we obtain

2tAt At—0
_>

g2 0

Prob(|IAt —t| > 5)

This proves the theorem. W

We summarize our results: The statistics of financial data suggests, as a first approxi-
mation, the stochastic model

St = Stk71 (1 + 1% A + 0o Atﬂ¢k)

k



with a =1 and g = % which results in

St — S, AS,
Stk—l Stk 1

= pAt+ovVAtg (2)
Since a Brownian motion was defined as the combination of random numbers
k
Itk = V At Z ¢j
j=1
we can write

VAt gy, = x, — Ty,

which results in

AS
S = pbtro(e, ) = udt+ oA, 3)
k—1
or, in the continuous time limit At — 0,
ds
?tt = pdt + odxy (4)

where {x;}o<i<7 is a Brownian motion. And we saw that the discrete time solution (1) of (3)
(for p # 0 there is an additional pN;At in the exponent, as we had in the previous lecture)
converges to

St — SO eut-l-axt—%t (5)
The solution (5) is usually refered to as a ‘geometric Brownian motion’. In a following section

we will rederive (5) from (4) as an application of the Ito-Lemma. We have the following very
important

Definition 4.2: Let {z;};>¢ be a Brownian motion. Then the stochastic process (5),
52
Sy = Spetttor— Tt (6)

is called the Black-Scholes model for the asset price process {S;}i>o. It is a solution of
the stochastic differential equation (4),

dS—S:f = pdt + odx, (7)

Equation (7) is called the Black-Scholes Stochastic Differential Equation or Black-
Scholes SDE (not to be confused with the Black-Scholes PDE, partial differential equation).

In discrete time, Black-Scholes paths can be simulated through

Stk = Stk—l (1 + [,I,At + o \/Atqbk) (8)

with the ¢, being standard normal distributed random numbers.



Excel/VBA-Demos:

a) Show through simulation that for small A¢ the Sy, ’s calculated iteratively through (8)
and directly through (6) are approximately equal.

b) Confirm part (c¢) of Theorem 4.2. That is, show through simulation that in discrete
time for small At

Ing = AN @2 o~ .



