week7: Kapitel 4: Brownsche Bewegung, Wiener-Maß und das Black-Scholes Modell, Teil2

Letztes Mal hatten wir für den Preisprozess die folgende Darstellung hergeleitet:

$$
\begin{equation*}
S_{t}=S_{0} \exp \left\{\sigma \sqrt{\Delta t} \sum_{k=1}^{N_{t}} \phi_{k}-\frac{\sigma^{2}}{2} \Delta t \sum_{k=1}^{N_{t}} \phi_{k}^{2}+O(\sqrt{\Delta t})\right\} \tag{1}
\end{equation*}
$$

The first term in the exponent converges to a Brownian motion $x_{t}=\lim _{\Delta t \rightarrow 0} \sqrt{\Delta t} \sum_{k=1}^{N_{t}} \phi_{k}$ and the last term vanishes, but what about the second term? There is the following

Theorem 4.2: Let

$$
I_{\Delta t}:=\Delta t \sum_{k=1}^{N_{t}} \phi_{k}^{2}
$$

with $N_{t}=t / \Delta t$ and $\phi_{1}, \phi_{2}, \cdots$ being independent Gaussian random numbers with mean 0 and standard deviation 1 . Then the following statements hold:
a) $\mathrm{E}\left[I_{\Delta t}\right]=t$
b) $\mathrm{V}\left[I_{\Delta t}\right]=2 t \Delta t$
c) $\quad \lim _{\Delta t \rightarrow 0} \operatorname{Prob}\left[\left|I_{\Delta t}-t\right| \geq \varepsilon\right]=0 \quad \forall \varepsilon>0$.

More intuitively, we may rewrite the statement of part (c) simply as

$$
\lim _{\Delta t \rightarrow 0} I_{\Delta t}=\lim _{\Delta t \rightarrow 0} \Delta t \sum_{k=1}^{N_{t}} \phi_{k}^{2}=t
$$

Proof: For standard normal distributed random numbers we have

$$
\begin{aligned}
\mathrm{E}\left[\phi^{2}\right] & =1 \\
\mathrm{E}\left[\phi^{4}\right] & =3 \\
\mathrm{~V}\left[\phi^{2}\right]=\mathrm{E}\left[\phi^{4}\right]-\left(\mathrm{E}\left[\phi^{2}\right]\right)^{2} & =2
\end{aligned}
$$

since more generally

$$
\mathrm{E}\left[\phi^{2 n}\right]=(2 n-1)!!
$$

Thus we get

$$
\begin{aligned}
\mathrm{E}\left[I_{\Delta t}\right] & =\Delta t \sum_{k=1}^{N_{t}} \mathrm{E}\left[\phi_{k}^{2}\right] \\
& =\Delta t \sum_{k=1}^{N_{t}} 1 \\
& =\Delta t N_{t}=t .
\end{aligned}
$$

To calculate the variance, we rewrite it as a covariance since the covariance is a bilinear quantity where we can bring sums from inside to the outside of the covariance as follows:

$$
\begin{aligned}
\mathrm{V}\left[I_{\Delta t}\right] & =\operatorname{Cov}\left[I_{\Delta t}, I_{\Delta t}\right] \\
& =\operatorname{Cov}\left[\Delta t \sum_{k=1}^{N_{t}} \phi_{k}^{2}, \Delta t \sum_{\ell=1}^{N_{t}} \phi_{\ell}^{2}\right] \\
& =(\Delta t)^{2} \sum_{k, \ell=1}^{N_{t}} \operatorname{Cov}\left[\phi_{k}^{2}, \phi_{\ell}^{2}\right] \\
& =(\Delta t)^{2} \sum_{k, \ell=1}^{N_{t}} \delta_{k, \ell} \operatorname{Cov}\left[\phi_{k}^{2}, \phi_{k}^{2}\right] \\
& =(\Delta t)^{2} \sum_{k=1}^{N_{t}} \mathrm{~V}\left[\phi_{k}^{2}\right] \\
& =(\Delta t)^{2} \sum_{k=1}^{N_{t}} 2 \\
& =2 t \Delta t .
\end{aligned}
$$

Now we use Chebyshev's inequality. It states that for any random variable X we have

$$
\operatorname{Prob}(|X-\mathrm{E}[X]| \geq \varepsilon) \leq \frac{\mathrm{V}[X]}{\varepsilon^{2}}
$$

Then we put $X=I_{\Delta t}$ such that with the results from part (a) and (b) we obtain

$$
\operatorname{Prob}\left(\left|I_{\Delta t}-t\right| \geq \varepsilon\right) \leq \frac{2 t \Delta t}{\varepsilon^{2}} \stackrel{\Delta t \rightarrow 0}{\rightarrow} 0
$$

This proves the theorem.

We summarize our results: The statistics of financial data suggests, as a first approximation, the stochastic model

$$
S_{t_{k}}=S_{t_{k-1}}\left(1+\mu \Delta t^{\alpha}+\sigma \Delta t^{\beta} \phi_{k}\right)
$$

with $\alpha=1$ and $\beta=\frac{1}{2}$ which results in

$$
\begin{equation*}
\frac{S_{t_{k}}-S_{t_{k-1}}}{S_{t_{k-1}}}=\frac{\Delta S_{t_{k}}}{S_{t_{k-1}}}=\mu \Delta t+\sigma \sqrt{\Delta t} \phi_{k} \tag{2}
\end{equation*}
$$

Since a Brownian motion was defined as the combination of random numbers

$$
x_{t_{k}}=\sqrt{\Delta t} \sum_{j=1}^{k} \phi_{j}
$$

we can write

$$
\sqrt{\Delta t} \phi_{k}=x_{t_{k}}-x_{t_{k-1}}
$$

which results in

$$
\begin{equation*}
\frac{\Delta S_{t_{k}}}{S_{t_{k-1}}}=\mu \Delta t+\sigma\left(x_{t_{k}}-x_{t_{k-1}}\right)=\mu \Delta t+\sigma \Delta x_{t_{k}} \tag{3}
\end{equation*}
$$

or, in the continuous time limit $\Delta t \rightarrow 0$,

$$
\begin{equation*}
\frac{d S_{t}}{S_{t}}=\mu d t+\sigma d x_{t} \tag{4}
\end{equation*}
$$

where $\left\{x_{t}\right\}_{0<t \leq T}$ is a Brownian motion. And we saw that the discrete time solution (1) of (3) (for $\mu \neq 0$ there is an additional $\mu N_{t} \Delta t$ in the exponent, as we had in the previous lecture) converges to

$$
\begin{equation*}
S_{t}=S_{0} e^{\mu t+\sigma x_{t}-\frac{\sigma^{2}}{2} t} \tag{5}
\end{equation*}
$$

The solution (5) is usually refered to as a 'geometric Brownian motion'. In a following section we will rederive (5) from (4) as an application of the Ito-Lemma. We have the following very important

Definition 4.2: Let $\left\{x_{t}\right\}_{t \geq 0}$ be a Brownian motion. Then the stochastic process (5),

$$
\begin{equation*}
S_{t}=S_{0} e^{\mu t+\sigma x_{t}-\frac{\sigma^{2}}{2} t} \tag{6}
\end{equation*}
$$

is called the Black-Scholes model for the asset price process $\left\{S_{t}\right\}_{t \geq 0}$. It is a solution of the stochastic differential equation (4),

$$
\begin{equation*}
\frac{d S_{t}}{S_{t}}=\mu d t+\sigma d x_{t} \tag{7}
\end{equation*}
$$

Equation (7) is called the Black-Scholes Stochastic Differential Equation or BlackScholes SDE (not to be confused with the Black-Scholes PDE, partial differential equation).

In discrete time, Black-Scholes paths can be simulated through

$$
\begin{equation*}
S_{t_{k}}=S_{t_{k-1}}\left(1+\mu \Delta t+\sigma \sqrt{\Delta t} \phi_{k}\right) \tag{8}
\end{equation*}
$$

with the ϕ_{k} being standard normal distributed random numbers.

Excel/VBA-Demos:

a) Show through simulation that for small Δt the $S_{t_{k}}$'s calculated iteratively through (8) and directly through (6) are approximately equal.
b) Confirm part (c) of Theorem 4.2. That is, show through simulation that in discrete time for small Δt

$$
I_{\Delta t}:=\Delta t \sum_{k=1}^{N_{t}} \phi_{k}^{2} \approx t
$$

