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Consider some discrete times tk in the intervall [0, T ],

tk = k T
N

= k∆t , k = 0, 1, ..., N (1)

where

N = NT = T
∆t

∈ N (2)

Let Stk = Sk∆t be the price of some stock at time tk and denote the returns by going from
one time step to the next by

rettk =
Stk − Stk−1

Stk−1

(3)

One may think of ∆t being one day and Stk being the closing prices at each day although
later we will consider the limit ∆t → 0. It is an empirical fact that the daily returns of many
assets are bell shaped, like a Gaussian distribution. Letzte Woche hatten wir uns dazu die
DAX-Returns der letzten 35 Jahre, von 1988 bis heute, angeschaut. Die Schlussfolgerung war
dann, das hatten wir auch am letzten Freitag gemacht: As a first approximation, one may
write down the following stochastic model for the returns:

rettk = mean + standard deviation× ϕk (4)

where the ϕk are identically independent normally distributed random numbers with mean
zero and variance one,

ϕk ∈ N (0, 1) i.i.d. (5)

This is only a first approximation. There are deviations from a Gaussian distribution. Most
financial data have more heavy tails than a normal distribution and a higher peak at the
mean value. Furthermore, the returns in (4) are not completely independent. Many financial
data show a positive correlation of the absolute values of the returns, of |rettk | and |rettk+m

|.
In the book of Shiryaev Essentials of Stochastic Finance one can find a detailed discussion of
the statistical analysis of financial data (in Chapter 4) as well as an overview of the proposed
stochastic models to fit these data.

We now analyze how the mean and the standard deviation in (4) have to scale with ∆t
in order to get a reasonable model in the time continuous case ∆t → 0. To this end we write

rettk = µ∆tα + σ∆tβ ϕk (6)



such that

Stk = Stk−1
(1 + µ∆tα + σ∆tβϕk)

or, with t = Nt ×∆t, Nt = t/∆t,

St = S0

Nt

Π
k=1

(
1 + µ∆tα + σ∆tβϕk

)
(7)

Suppose for the moment the model is deterministic, σ = 0. Then, using the first order Taylor
expansion log(1 + x) = x+O(x2) in the third line,

St = S0 (1 + µ∆tα)Nt

= S0 e
Nt log(1+µ∆tα)

= S0 e
Nt(µ∆tα+O(∆t2α))

= S0 e
µt∆tα−1+O(∆t2α−1) (8)

which gives α = 1 and exponential growth (or decrease) in the time continuous case, St =
S0 e

µt which is simply the solution of dS/S = µdt. Now consider the stochastic part in
(6). For simplicity, we put µ = 0. Then, now using the second order Taylor expansion
log(1 + x) = x− x2/2 +O(x3) in the third line,

St = S0

Nt

Π
k=1

(
1 + σ∆tβϕk

)
= S0 e

∑Nt
k=1 log(1+σ∆tβϕk)

= S0 e
∑Nt

k=1(σ∆tβϕk − 1
2
σ2∆t2βϕ2

k + O(∆t3β))

= S0 e
σ∆tβ

∑Nt
k=1 ϕk − σ2

2
∆t2β

∑Nt
k=1 ϕ

2
k + O(Nt∆t3β=∆t3β−1) (9)

We now consider for what values of β the expectation

E

[
f
(
∆tβ

∑Nt

k=1 ϕk

)]
=

∫
RNt

f
(
∆tβ

∑Nt

k=1 ϕk

) Nt

Π
k=1

1√
2π

e−
ϕ2k
2 dϕk (10)

has a nontrivial limit. Here f is some function. We make a substitution of variables
(ϕk)1≤k≤Nt → (xk)1≤k≤Nt defined as follows:

x1 =
√
∆t ϕ1

x2 =
√
∆t (ϕ1 + ϕ2)

x3 =
√
∆t (ϕ1 + ϕ2 + ϕ3)

...

xNt =
√
∆t (ϕ1 + ϕ2 + ...+ ϕNt)

⇔

ϕ1 = x1/
√
∆t

ϕ2 = (x2 − x1)/
√
∆t

ϕ3 = (x3 − x2)/
√
∆t

...

ϕNt = (xNt − xNt−1)/
√
∆t

(11)

The Jacobian of the transformation (11) is det ∂ϕ
∂x

= 1/
√
∆t

Nt
since, with N = Nt,



∂ϕ

∂x
=

− ∇x ϕ1 −
...

− ∇x ϕN −

 =


∂ϕ1

∂x1

∂ϕ1

∂x2
· · · ∂ϕ1

∂xN
∂ϕ2

∂x1

∂ϕ2

∂x2
· · · ∂ϕ2

∂xN
...

...
...

∂ϕN

∂x1

∂ϕN

∂x2
· · · ∂ϕN

∂xN



=



1√
∆t

0 · · · 0 0

− 1√
∆t

1√
∆t

0 · · · 0
. . . . . . . . .

...
0 − 1√

∆t
1√
∆t

0

0 0 · · · − 1√
∆t

1√
∆t


Thus the expectation (10) becomes, with N = Nt = t/∆t,

E

[
f
(
∆tβ

∑N
k=1 ϕk

)]
=

∫
RN

f
(
∆tβ

∑Nt

k=1 ϕk

) N

Π
k=1

{
1√
2π

e−
ϕ2k
2 dϕk

}
=

∫
RN

f
(
∆tβ−

1
2

√
∆t

∑N
k=1 ϕk

) N

Π
k=1

{
1√
2π

e−
ϕ2k
2

}
dϕ1 · · · dϕN

=

∫
RN

f
(
∆tβ−

1
2 xN

) N

Π
k=1

{
1√
2π

e−
(xk−xk−1)

2

2∆t

}
det

[
∂ϕ
∂x

]
dx1 · · · dxN

=

∫
RN

f
(
∆tβ−

1
2 xN

) N

Π
k=1

{
1√
2π

e−
(xk−xk−1)

2

2∆t

}
1

(
√
∆t)N

dx1 · · · dxN

=

∫
RN

f
(
∆tβ−

1
2 xN

) N

Π
k=1

{
1√

2π∆t
e−

(xk−1−xk)2

2∆t

}
dx1 · · · dxN

=

∫
RN

f
(
∆tβ−

1
2 xN

) N

Π
k=1

{
p∆t(xk−1, xk) dxk

}
(12)

where we introduced the kernel

pτ (x, y) :=
1√
2πτ

e−
(x−y)2

2τ (13)

and used the definition

x0 := 0 (14)

The kernel (13) has the following basic property:

Lemma 4.1: Let pt(x, y) be given by (13). Then∫
R ps(x, y)pt(y, z) dy = ps+t(x, z) (15)

Proof: Übungsblatt 6. ■



Using this lemma, we can actually perform the integrals over x1, x2, · · · , xN−1. We have∫
R dx1

∫
R dx2 · · ·

∫
R dxN−1 p∆t(x0, x1) p∆t(x1, x2)︸ ︷︷ ︸∫

dx1 → p2∆t(x0,x2)

p∆t(x2, x3) · · · p∆t(xN−1, xN)

=
∫
R dx2

∫
R dx3 · · ·

∫
R dxN−1 p2∆t(x0, x2) p∆t(x2, x3)︸ ︷︷ ︸∫

dx2 → p3∆t(x0,x3)

· · · p∆t(xN−1, xN)

=
∫
R dx3 · · ·

∫
R dxN−1 p3∆t(x0, x3) · · · p∆t(xN−1, xN)

=
∫
R dxN−1 p(N−1)∆t(x0, xN−1) p∆t(xN−1, xN)

= pN∆t(x0, xN)

Thus (12) simplifies to

E

[
f
(
∆tβ

∑Nt

k=1 ϕk

)]
=

∫
RN

f
(
∆tβ−

1
2 xN

) N

Π
k=1

{
p∆t(xk−1, xk) dxk

}
(16)

=

∫
R
f
(
∆tβ−

1
2 xN

)
× pN∆t(x0, xN) dxN

N∆t= t
x0 = 0
=

∫
R
f
(
∆tβ−

1
2 x

)
× 1√

2πt
e−

x2

2t dx (17)

Hence, a nontrivial meaningful limit is obtained only for β = 1
2
.

Instead of labelling the x with k ∈ {1, 2, ..., Nt}, we label them with tk := k∆t which has the
meaning of time. In particular, tN = N∆t = t. So, we rename xk → xk∆t = xtk . With that,
we write down the following very important

Definition 4.1: Let NT = T/∆t and pt(x, y) :=
1√
2πt

e−
(x−y)2

2t . Then the measure

dW ({xt}0<t≤T ) := lim
∆t→0

NT

Π
k=1

p∆t(x(k−1)∆t, xk∆t) dxk∆t (18)

is called the Wiener measure and the family of random variables or integration variables
{xt}0<t≤T is called a Brownian motion. In terms of i.i.d. random variables ϕk ∈ N (0, 1),

xt := lim
∆t→0

√
∆t

t/∆t∑
k=1

ϕk (19)

Remark: The time discretized version of the Wiener measure, this is what we actually will
usually use, is simply given by a product of Gaussian normal distributions. With N = NT =
T/∆t and tk = k∆t,

dW ({xtk}0<k≤N) =
N

Π
k=1

p∆t(xtk−1
, xtk) dxtk

=
N

Π
k=1

{
e−

( xtk
− xtk−1

)2

2∆t
dxtk√
2π∆t

}
=

N

Π
k=1

{
e−

ϕ2k
2

dϕk√
2π

}
(20)



And the time discretized Brownian motion xtk is given by

xtk =
√
∆t

k∑
j=1

ϕj (21)

from which we get the recursion

xtk = xtk−1
+

√
∆t ϕk (22)

The formulae (20,21,22) are very important and will be used over and over again.


