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weeklla: Kapitel 5.3: Die Black-Scholes PDE, Teill

In the the Black-Scholes model, the price of some liquid tradable asset or option under-
lying S; is modelled through the stochastic differential equation

dSt/St = ,Udt+0'dflft (1)

If the underlying price dynamics is modelled by the Binomial model, we know that every
option payoff H = H(Sr) can be replicated by a suitable trading strategy in the underling.
A crucial point in the derivation of that result was, that from one time step to the next, there
are only two possible choices for S(t;) given the value of S(tx—1). In the Black-Scholes model,
the discretized price dynamics is given by

Stk = Stk—1(1+:uAt+o-VAt¢k) (2)

and, given S;, ., there is now a whole continuous spectrum of prices S;, € R possible. So it is
not clear at all whether in this setting payoff replication is still possible. The answer is that
in the limit At — 0 exact payoff replication is still possible. To prove this, we need a slight
generalization of the Ito-formula. For simplicity, we start with zero rates, r = 0.

In the first chapter we saw that the portfolio value V;, of a selffinancing strategy, which
holds d;, , stocks ‘at the end of time ¢;_;” or ‘at the beginning of time ¢;” and readjusts this
to 0, stocks 'at the end of time ¢, after the asset price has switched from S;, | to S, , is given
by

k
V;fk = Vo + Z(Stjfl ) (Stj - Stjfl) = Vtkq + 515/@71 : (Stk - Stk71> (3)
j=1

In continuous time with ‘continuous trading’ this may be rewritten as a stochastic integral,
as an [to-integral

Vi = Vo + [od,dS, (4)

or in differential form, if we subtract the V;,  -term on the right hand side (3),
dv. = §dS (5)

where dV is the limit of

At—0
%

Vt(St) — Vt—At(St—At> = V(St, t) — V(St_At, t— At) dV (6)



Since we have V = V(S;,t) and S, is a stochastic quantity, we have to use the Ito-Formula,
the differential version of the Ito-Formula, to calculate the dV . Let’s start by recalling the
calculation rules for the Brownian motion,

(dz,)? = dt
de,dt = 0 (7)
(dt)> = 0

From this, we derived already in week9b the following

Theorem 5.3.1 (Ito-Formula for Functions of a Brownian Motion): Let
F=F() : R—>R

be an arbitrary two-times differentiable function of one variable and let {z;}o<;<7 be a Brow-
nian motion. Then we have the following identities:

a) Differential Version: Let dF(z;):= F(z;) — F(2;_q:). Then

dF(z;) = F'(z)dxy + 3 F"(2) (da,)?

= F'(x¢)dwy + 5 F'(zy)dt
b) Integral Version: We have
Far) — Flxo) = [ Fla)da, + 3 [ F"(xy) dt

where the stochastic dx;-integral above is to be defined as an Ito-integral according to

N N
Jo fla)dz, = > flay ) Az, = Am > fla ) VAt
k=1 k=1

lim
At—0

and the Brownain motion x;, , at time t;_y = (k — 1)At given by

k—1
xtk—l = V At Z QSJ .
7=1

A slightly generalized version of this is the following

Theorem 5.3.2 (Ito-Formula for Functions of a Brownian Motion and Time): Let
F = F(z,t) : R* - R

be an arbitrary two-times differentiable function of two variables and let {z;}o<;<r be a
Brownian motion. Then we have the following identities:



a) Differential Version: Let dF(zy,t):= F(xy,t) — F(xi_aq,t — dt). Then

dF = %dz, + 195 (dn,)? + 2 at
= Gde + {355 + 4 pat
b) Integral Version: We have

Flar,T) = Fo0) = Jy $de + [7{ 356 + 4 }a

where the stochastic dx-integral above again is to be defined as an Ito-integral.

Since we want to calculate quantities like

At—0
%

Vi(S) = Viae(Siar) = V(Sit) = V(Siaut — Af) dv

where S is given by
S = S(xt) = Syermtu=o/

we need actually a more general version than the two theorems above. Namely, the F' above
in the theorems is now the V', the portfolio value. However, we want to consider the V as a
function of S¢, not of z;. That is, we plug in stochastic objects, but not directly the Brownian
motion, but functions of it. To specify the class of stochastic objects we can plug into the V/
or some F' = F(S;,t), we need the following

Definition 5.3.1: An Ito diffusion is a stochastic process X; given by the SDE
dXt = G(Xt, t) dt + b(Xt, t) dl‘t

with x; being a Brownian motion.

Example: The Black-Scholes model given by the geometric Brownain motion
S = S(a,t) = Spermt ot/
is an Ito-diffusion since with Theorem 5.3.2
as, = Fan + {125 + Ll
— oSdr, + { 28 + (u—0?/2) St}dt

= O'Stdﬂft + ,LLStdt

which is equivalent to the Black-Scholes SDE

dS;/S; = pdt + odxy



Thus we have

a(St,t) = /.LSt
b(St,t> = O'St

in Definition 5.3.1 and S; is an Ito-diffusion. Now we can state a third theorem which
summarizes the formulae we will actually use:

Theorem 5.3.3 (Ito-Formula for Functions of an Ito-Diffusion and Time): Let
F = F(z,t) : R* - R

be an arbitrary two-times differentiable function of two variables and let {z:}o<;<r be a
Brownian motion. Let X; be an Ito-diffusion given by the SDE

dXt = Q(Xt,t) dt + b(Xt,t) de‘t

We plug X; into the first argument of F' and consider the function F = F(X,t) . Then we
have the following identities:

a) Differential Version: Let dF(X,,t) = F(Xy,t) — F(Xi—a,t — dt) with X, being
the Ito-diffusion from above. Then

dF = 28dx, + 125 (dX,)? + 2Lt
= % (adt + bdr,) + 125 (adt + bdx)? + 2L dt
= L (qdt + bdx,) + L 2L at + L gt
= {ag—g + Len —f}dt + b da,
b) Integral Version: We have
F(Xr,T) = F(Xo,0) = Ji{a%E + 555 + & bat + [ b9 dn,

where the stochastic dx-integral above again is to be defined as an Ito-integral.

Now we are in a position to calculate dV', the change of the value of the replicating portfolio
in contiuous time. With the Ito-Formula, we get

AV = 22dS + 194 (dS)? + L dt

= 3Vd5+{§a—v 257 +%Z}dt (8)



Thus, if this change should be given by trading ¢ stocks of the underlying, that is, if this
should be equal to 6 dS,

v = %as + {15k + L £ sas (9)

we have to have the equations

5 = 9 (10)
and
19%028% + 22 = 0 (11)

which is the Black-Scholes equation for zero interest rates. Thus, if (10) and (11) are fulfilled,
we can use the integral version of Theorem 5.3.3 with X; = S; and F(X;,t) =V (S, t) and

(dS)? = S2(udt + odr,)? "CITEEEE g2 50 g (12)
to obtain

V(S,T) = V(S0,0) = [ 3ds, + f {15ko2s7 + 2} an

[

-~

=0

= foT (5, 1) dSe (13)

Thus, some payoff H = H(Sr) can be exactly replicated in continuous time if we impose the
final condition

V(5r,T) = H(S5r) (14)
in addition to (11).

When interest rates are present, a similar derivation can be done. Since this is an important
calculation and an important result, in the continuous time Black-Scholes model exact payoff
replication is still possible, we state this in a separate theorem which we will formulate and
prove in the next lecture.



