week11a: Kapitel 5.3: Die Black-Scholes PDE, Teil1

In the the Black-Scholes model, the price of some liquid tradable asset or option underlying S_{t} is modelled through the stochastic differential equation

$$
\begin{equation*}
d S_{t} / S_{t}=\mu d t+\sigma d x_{t} \tag{1}
\end{equation*}
$$

If the underlying price dynamics is modelled by the Binomial model, we know that every option payoff $H=H\left(S_{T}\right)$ can be replicated by a suitable trading strategy in the underling. A crucial point in the derivation of that result was, that from one time step to the next, there are only two possible choices for $S\left(t_{k}\right)$ given the value of $S\left(t_{k-1}\right)$. In the Black-Scholes model, the discretized price dynamics is given by

$$
\begin{equation*}
S_{t_{k}}=S_{t_{k-1}}\left(1+\mu \Delta t+\sigma \sqrt{\Delta t} \phi_{k}\right) \tag{2}
\end{equation*}
$$

and, given $S_{t_{k-1}}$, there is now a whole continuous spectrum of prices $S_{t_{k}} \in \mathbb{R}$ possible. So it is not clear at all whether in this setting payoff replication is still possible. The answer is that in the limit $\Delta t \rightarrow 0$ exact payoff replication is still possible. To prove this, we need a slight generalization of the Ito-formula. For simplicity, we start with zero rates, $r=0$.

In the first chapter we saw that the portfolio value $V_{t_{k}}$ of a selffinancing strategy, which holds $\delta_{t_{k-1}}$ stocks 'at the end of time t_{k-1} ' or 'at the beginning of time t_{k} ' and readjusts this to $\delta_{t_{k}}$ stocks 'at the end of time t_{k} after the asset price has switched from $S_{t_{k-1}}$ to $S_{t_{k}}$, is given by

$$
\begin{equation*}
V_{t_{k}}=V_{0}+\sum_{j=1}^{k} \delta_{t_{j-1}} \cdot\left(S_{t_{j}}-S_{t_{j-1}}\right)=V_{t_{k-1}}+\delta_{t_{k-1}} \cdot\left(S_{t_{k}}-S_{t_{k-1}}\right) \tag{3}
\end{equation*}
$$

In continuous time with 'continuous trading' this may be rewritten as a stochastic integral, as an Ito-integral

$$
\begin{equation*}
V_{t}=V_{0}+\int_{0}^{t} \delta_{\tau} d S_{\tau} \tag{4}
\end{equation*}
$$

or in differential form, if we subtract the $V_{t_{k-1}}$-term on the right hand side (3),

$$
\begin{equation*}
d V=\delta d S \tag{5}
\end{equation*}
$$

where $d V$ is the limit of

$$
\begin{equation*}
V_{t}\left(S_{t}\right)-V_{t-\Delta t}\left(S_{t-\Delta t}\right)=V\left(S_{t}, t\right)-V\left(S_{t-\Delta t}, t-\Delta t\right) \xrightarrow{\Delta t \rightarrow 0} d V \tag{6}
\end{equation*}
$$

Since we have $V=V\left(S_{t}, t\right)$ and S_{t} is a stochastic quantity, we have to use the Ito-Formula, the differential version of the Ito-Formula, to calculate the $d V$. Let's start by recalling the calculation rules for the Brownian motion,

$$
\begin{align*}
\left(d x_{t}\right)^{2} & =d t \\
d x_{t} d t & =0 \tag{7}\\
(d t)^{2} & =0
\end{align*}
$$

From this, we derived already in week9b the following

Theorem 5.3.1 (Ito-Formula for Functions of a Brownian Motion): Let

$$
F=F(x): \mathbb{R} \rightarrow \mathbb{R}
$$

be an arbitrary two-times differentiable function of one variable and let $\left\{x_{t}\right\}_{0 \leq t \leq T}$ be a Brownian motion. Then we have the following identities:
a) Differential Version: Let $d F\left(x_{t}\right):=F\left(x_{t}\right)-F\left(x_{t-d t}\right)$. Then

$$
\begin{aligned}
d F\left(x_{t}\right) & =F^{\prime}\left(x_{t}\right) d x_{t}+\frac{1}{2} F^{\prime \prime}\left(x_{t}\right)\left(d x_{t}\right)^{2} \\
& =F^{\prime}\left(x_{t}\right) d x_{t}+\frac{1}{2} F^{\prime \prime}\left(x_{t}\right) d t
\end{aligned}
$$

b) Integral Version: We have

$$
F\left(x_{T}\right)-F\left(x_{0}\right)=\int_{0}^{T} F^{\prime}\left(x_{t}\right) d x_{t}+\frac{1}{2} \int_{0}^{T} F^{\prime \prime}\left(x_{t}\right) d t
$$

where the stochastic $d x_{t}$-integral above is to be defined as an Ito-integral according to

$$
\int_{0}^{T} f\left(x_{t}\right) d x_{t}=\lim _{\Delta t \rightarrow 0} \sum_{k=1}^{N} f\left(x_{t_{k-1}}\right) \Delta x_{t_{k}}=\lim _{\Delta t \rightarrow 0} \sum_{k=1}^{N} f\left(x_{t_{k-1}}\right) \sqrt{\Delta t} \phi_{k}
$$

and the Brownain motion $x_{t_{k-1}}$ at time $t_{k-1}=(k-1) \Delta t$ given by

$$
x_{t_{k-1}}=\sqrt{\Delta t} \sum_{j=1}^{k-1} \phi_{j} .
$$

A slightly generalized version of this is the following

Theorem 5.3.2 (Ito-Formula for Functions of a Brownian Motion and Time): Let

$$
F=F(x, t): \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

be an arbitrary two-times differentiable function of two variables and let $\left\{x_{t}\right\}_{0 \leq t \leq T}$ be a Brownian motion. Then we have the following identities:
a) Differential Version: Let $d F\left(x_{t}, t\right):=F\left(x_{t}, t\right)-F\left(x_{t-d t}, t-d t\right)$. Then

$$
\begin{aligned}
d F & =\frac{\partial F}{\partial x} d x_{t}+\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}\left(d x_{t}\right)^{2}+\frac{\partial F}{\partial t} d t \\
& =\frac{\partial F}{\partial x} d x_{t}+\left\{\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial F}{\partial t}\right\} d t
\end{aligned}
$$

b) Integral Version: We have

$$
F\left(x_{T}, T\right)-F\left(x_{0}, 0\right)=\int_{0}^{T} \frac{\partial F}{\partial x} d x_{t}+\int_{0}^{T}\left\{\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial F}{\partial t}\right\} d t
$$

where the stochastic $d x_{t}$-integral above again is to be defined as an Ito-integral.

Since we want to calculate quantities like

$$
V_{t}\left(S_{t}\right)-V_{t-\Delta t}\left(S_{t-\Delta t}\right)=V\left(S_{t}, t\right)-V\left(S_{t-\Delta t}, t-\Delta t\right) \xrightarrow{\Delta t \rightarrow 0} d V
$$

where S is given by

$$
S=S\left(x_{t}, t\right)=S_{0} e^{\sigma x_{t}+\left(\mu-\sigma^{2} / 2\right) t}
$$

we need actually a more general version than the two theorems above. Namely, the F above in the theorems is now the V, the portfolio value. However, we want to consider the V as a function of S_{t}, not of x_{t}. That is, we plug in stochastic objects, but not directly the Brownian motion, but functions of it. To specify the class of stochastic objects we can plug into the V or some $F=F\left(S_{t}, t\right)$, we need the following

Definition 5.3.1: An Ito diffusion is a stochastic process X_{t} given by the SDE

$$
d X_{t}=a\left(X_{t}, t\right) d t+b\left(X_{t}, t\right) d x_{t}
$$

with x_{t} being a Brownian motion.

Example: The Black-Scholes model given by the geometric Brownain motion

$$
S_{t}=S\left(x_{t}, t\right)=S_{0} e^{\sigma x_{t}+\left(\mu-\sigma^{2} / 2\right) t}
$$

is an Ito-diffusion since with Theorem 5.3.2

$$
\begin{aligned}
d S_{t} & =\frac{\partial S}{\partial x} d x_{t}+\left\{\frac{1}{2} \frac{\partial^{2} S}{\partial x^{2}}+\frac{\partial S}{\partial t}\right\} d t \\
& =\sigma S_{t} d x_{t}+\left\{\frac{\sigma^{2}}{2} S_{t}+\left(\mu-\sigma^{2} / 2\right) S_{t}\right\} d t \\
& =\sigma S_{t} d x_{t}+\mu S_{t} d t
\end{aligned}
$$

which is equivalent to the Black-Scholes SDE

$$
d S_{t} / S_{t}=\mu d t+\sigma d x_{t}
$$

Thus we have

$$
\begin{aligned}
a\left(S_{t}, t\right) & =\mu S_{t} \\
b\left(S_{t}, t\right) & =\sigma S_{t}
\end{aligned}
$$

in Definition 5.3.1 and S_{t} is an Ito-diffusion. Now we can state a third theorem which summarizes the formulae we will actually use:

Theorem 5.3.3 (Ito-Formula for Functions of an Ito-Diffusion and Time): Let

$$
F=F(x, t): \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

be an arbitrary two-times differentiable function of two variables and let $\left\{x_{t}\right\}_{0 \leq t \leq T}$ be a Brownian motion. Let X_{t} be an Ito-diffusion given by the SDE

$$
d X_{t}=a\left(X_{t}, t\right) d t+b\left(X_{t}, t\right) d x_{t}
$$

We plug X_{t} into the first argument of F and consider the function $F=F\left(X_{t}, t\right)$. Then we have the following identities:
a) Differential Version: Let $d F\left(X_{t}, t\right):=F\left(X_{t}, t\right)-F\left(X_{t-d t}, t-d t\right)$ with X_{t} being the Ito-diffusion from above. Then

$$
\begin{aligned}
d F & =\frac{\partial F}{\partial x} d X_{t}+\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}\left(d X_{t}\right)^{2}+\frac{\partial F}{\partial t} d t \\
& =\frac{\partial F}{\partial x}\left(a d t+b d x_{t}\right)+\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}\left(a d t+b d x_{t}\right)^{2}+\frac{\partial F}{\partial t} d t \\
& =\frac{\partial F}{\partial x}\left(a d t+b d x_{t}\right)+\frac{b^{2}}{2} \frac{\partial^{2} F}{\partial x^{2}} d t+\frac{\partial F}{\partial t} d t \\
& =\left\{a \frac{\partial F}{\partial x}+\frac{b^{2}}{2} \frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial F}{\partial t}\right\} d t+b \frac{\partial F}{\partial x} d x_{t}
\end{aligned}
$$

b) Integral Version: We have

$$
F\left(X_{T}, T\right)-F\left(X_{0}, 0\right)=\int_{0}^{T}\left\{a \frac{\partial F}{\partial x}+\frac{b^{2}}{2} \frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial F}{\partial t}\right\} d t+\int_{0}^{T} b \frac{\partial F}{\partial x} d x_{t}
$$

where the stochastic $d x_{t}$-integral above again is to be defined as an Ito-integral.

Now we are in a position to calculate $d V$, the change of the value of the replicating portfolio in contiuous time. With the Ito-Formula, we get

$$
\begin{align*}
d V & =\frac{\partial V}{\partial S} d S+\frac{1}{2} \frac{\partial^{2} V}{\partial S^{2}}(d S)^{2}+\frac{\partial V}{\partial t} d t \\
& =\frac{\partial V}{\partial S} d S+\left\{\frac{1}{2} \frac{\partial^{2} V}{\partial S^{2}} \sigma^{2} S^{2}+\frac{\partial V}{\partial t}\right\} d t \tag{8}
\end{align*}
$$

Thus, if this change should be given by trading δ stocks of the underlying, that is, if this should be equal to $\delta d S$,

$$
\begin{equation*}
d V=\frac{\partial V}{\partial S} d S+\left\{\frac{1}{2} \frac{\partial^{2} V}{\partial S^{2}} \sigma^{2} S^{2}+\frac{\partial V}{\partial t}\right\} d t \stackrel{!}{=} \delta d S \tag{9}
\end{equation*}
$$

we have to have the equations

$$
\begin{equation*}
\delta=\frac{\partial V}{\partial S} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \frac{\partial^{2} V}{\partial S^{2}} \sigma^{2} S^{2}+\frac{\partial V}{\partial t}=0 \tag{11}
\end{equation*}
$$

which is the Black-Scholes equation for zero interest rates. Thus, if (10) and (11) are fulfilled, we can use the integral version of Theorem 5.3.3 with $X_{t}=S_{t}$ and $F\left(X_{t}, t\right)=V\left(S_{t}, t\right)$ and

$$
\begin{equation*}
\left(d S_{t}\right)^{2}=S_{t}^{2}\left(\mu d t+\sigma d x_{t}\right)^{2} \quad \text { Rechenregeln } \mathrm{BB} \quad S_{t}^{2} \sigma^{2} d t \tag{12}
\end{equation*}
$$

to obtain

$$
\begin{align*}
V\left(S_{T}, T\right)-V\left(S_{0}, 0\right) & =\int_{0}^{T} \frac{\partial V}{\partial S} d S_{t}+\int_{0}^{T} \underbrace{\left\{\frac{1}{2} \frac{\partial^{2} V}{\partial S^{2}} \sigma^{2} S_{t}^{2}+\frac{\partial V}{\partial t}\right\}}_{=0} d t \\
& =\int_{0}^{T} \delta\left(S_{t}, t\right) d S_{t} \tag{13}
\end{align*}
$$

Thus, some payoff $H=H\left(S_{T}\right)$ can be exactly replicated in continuous time if we impose the final condition

$$
\begin{equation*}
V\left(S_{T}, T\right)=H\left(S_{T}\right) \tag{14}
\end{equation*}
$$

in addition to (11).
When interest rates are present, a similar derivation can be done. Since this is an important calculation and an important result, in the continuous time Black-Scholes model exact payoff replication is still possible, we state this in a separate theorem which we will formulate and prove in the next lecture.

