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week11a: Kapitel 5.3: Die Black-Scholes PDE, Teil1

In the the Black-Scholes model, the price of some liquid tradable asset or option under-
lying St is modelled through the stochastic differential equation

dSt/St = µ dt+ σ dxt (1)

If the underlying price dynamics is modelled by the Binomial model, we know that every
option payoff H = H(ST ) can be replicated by a suitable trading strategy in the underling.
A crucial point in the derivation of that result was, that from one time step to the next, there
are only two possible choices for S(tk) given the value of S(tk−1). In the Black-Scholes model,
the discretized price dynamics is given by

Stk = Stk−1
( 1 + µ∆t + σ

√
∆t ϕk ) (2)

and, given Stk−1
, there is now a whole continuous spectrum of prices Stk ∈ R possible. So it is

not clear at all whether in this setting payoff replication is still possible. The answer is that
in the limit ∆t → 0 exact payoff replication is still possible. To prove this, we need a slight
generalization of the Ito-formula. For simplicity, we start with zero rates, r = 0.

In the first chapter we saw that the portfolio value Vtk of a selffinancing strategy, which
holds δtk−1

stocks ‘at the end of time tk−1’ or ‘at the beginning of time tk’ and readjusts this
to δtk stocks ’at the end of time tk after the asset price has switched from Stk−1

to Stk , is given
by

Vtk = V0 +
k∑

j=1

δtj−1
· (Stj − Stj−1

) = Vtk−1
+ δtk−1

· (Stk − Stk−1
) (3)

In continuous time with ‘continuous trading’ this may be rewritten as a stochastic integral,
as an Ito-integral

Vt = V0 +
∫ t

0
δτ dSτ (4)

or in differential form, if we subtract the Vtk−1
-term on the right hand side (3),

dV = δ dS (5)

where dV is the limit of

Vt(St)− Vt−∆t(St−∆t) = V (St, t)− V (St−∆t, t−∆t)
∆t→0→ dV (6)



Since we have V = V (St, t) and St is a stochastic quantity, we have to use the Ito-Formula,
the differential version of the Ito-Formula, to calculate the dV . Let’s start by recalling the
calculation rules for the Brownian motion,

(dxt)
2 = dt

dxt dt = 0 (7)

(dt)2 = 0

From this, we derived already in week9b the following

Theorem 5.3.1 (Ito-Formula for Functions of a Brownian Motion): Let

F = F (x) : R → R

be an arbitrary two-times differentiable function of one variable and let {xt}0≤t≤T be a Brow-
nian motion. Then we have the following identities:

a) Differential Version: Let dF (xt) := F (xt)− F (xt−dt). Then

dF (xt) = F ′(xt) dxt + 1
2
F ′′(xt) (dxt)

2

= F ′(xt) dxt + 1
2
F ′′(xt) dt

b) Integral Version: We have

F (xT ) − F (x0) =
∫ T

0
F ′(xt) dxt + 1

2

∫ T

0
F ′′(xt) dt

where the stochastic dxt-integral above is to be defined as an Ito-integral according to

∫ T

0
f(xt) dxt = lim

∆t→0

N∑
k=1

f(xtk−1
)∆xtk = lim

∆t→0

N∑
k=1

f(xtk−1
)
√
∆t ϕk

and the Brownain motion xtk−1
at time tk−1 = (k − 1)∆t given by

xtk−1
=

√
∆t

k−1∑
j=1

ϕj .

A slightly generalized version of this is the following

Theorem 5.3.2 (Ito-Formula for Functions of a Brownian Motion and Time): Let

F = F (x, t) : R2 → R

be an arbitrary two-times differentiable function of two variables and let {xt}0≤t≤T be a
Brownian motion. Then we have the following identities:



a) Differential Version: Let dF (xt, t) := F (xt, t)− F (xt−dt, t− dt). Then

dF = ∂F
∂x

dxt + 1
2

∂2F
∂x2 (dxt)

2 + ∂F
∂t

dt

= ∂F
∂x

dxt +
{

1
2

∂2F
∂x2 + ∂F

∂t

}
dt

b) Integral Version: We have

F (xT , T ) − F (x0, 0) =
∫ T

0
∂F
∂x

dxt +
∫ T

0

{
1
2

∂2F
∂x2 + ∂F

∂t

}
dt

where the stochastic dxt-integral above again is to be defined as an Ito-integral.

Since we want to calculate quantities like

Vt(St)− Vt−∆t(St−∆t) = V (St, t)− V (St−∆t, t−∆t)
∆t→0→ dV

where S is given by

S = S(xt, t) = S0 e
σxt +(µ−σ2/2)t

we need actually a more general version than the two theorems above. Namely, the F above
in the theorems is now the V , the portfolio value. However, we want to consider the V as a
function of St, not of xt. That is, we plug in stochastic objects, but not directly the Brownian
motion, but functions of it. To specify the class of stochastic objects we can plug into the V
or some F = F (St, t), we need the following

Definition 5.3.1: An Ito diffusion is a stochastic process Xt given by the SDE

dXt = a(Xt, t) dt + b(Xt, t) dxt

with xt being a Brownian motion.

Example: The Black-Scholes model given by the geometric Brownain motion

St = S(xt, t) = S0 e
σxt +(µ−σ2/2)t

is an Ito-diffusion since with Theorem 5.3.2

dSt = ∂S
∂x

dxt +
{

1
2

∂2S
∂x2 + ∂S

∂t

}
dt

= σ St dxt +
{

σ2

2
St + (µ− σ2/2)St

}
dt

= σ St dxt + µSt dt

which is equivalent to the Black-Scholes SDE

dSt/St = µ dt + σ dxt



Thus we have

a(St, t) = µSt

b(St, t) = σ St

in Definition 5.3.1 and St is an Ito-diffusion. Now we can state a third theorem which
summarizes the formulae we will actually use:

Theorem 5.3.3 (Ito-Formula for Functions of an Ito-Diffusion and Time): Let

F = F (x, t) : R2 → R

be an arbitrary two-times differentiable function of two variables and let {xt}0≤t≤T be a
Brownian motion. Let Xt be an Ito-diffusion given by the SDE

dXt = a(Xt, t) dt + b(Xt, t) dxt

We plug Xt into the first argument of F and consider the function F = F (Xt, t) . Then we
have the following identities:

a) Differential Version: Let dF (Xt, t) := F (Xt, t) − F (Xt−dt, t − dt) with Xt being
the Ito-diffusion from above. Then

dF = ∂F
∂x

dXt + 1
2

∂2F
∂x2 (dXt)

2 + ∂F
∂t

dt

= ∂F
∂x

(a dt + b dxt) + 1
2

∂2F
∂x2 (a dt + b dxt)

2 + ∂F
∂t

dt

= ∂F
∂x

(a dt + b dxt) + b2

2
∂2F
∂x2 dt + ∂F

∂t
dt

=
{
a ∂F

∂x
+ b2

2
∂2F
∂x2 + ∂F

∂t

}
dt + b ∂F

∂x
dxt

b) Integral Version: We have

F (XT , T ) − F (X0, 0) =
∫ T

0

{
a ∂F

∂x
+ b2

2
∂2F
∂x2 + ∂F

∂t

}
dt +

∫ T

0
b ∂F

∂x
dxt

where the stochastic dxt-integral above again is to be defined as an Ito-integral.

Now we are in a position to calculate dV , the change of the value of the replicating portfolio
in contiuous time. With the Ito-Formula, we get

dV = ∂V
∂S

dS + 1
2
∂2V
∂S2 (dS)

2 + ∂V
∂t

dt

= ∂V
∂S

dS +
{

1
2
∂2V
∂S2 σ

2S2 + ∂V
∂t

}
dt (8)



Thus, if this change should be given by trading δ stocks of the underlying, that is, if this
should be equal to δ dS,

dV = ∂V
∂S

dS +
{

1
2
∂2V
∂S2 σ

2S2 + ∂V
∂t

}
dt

!
= δ dS (9)

we have to have the equations

δ = ∂V
∂S

(10)

and

1
2
∂2V
∂S2 σ

2S2 + ∂V
∂t

= 0 (11)

which is the Black-Scholes equation for zero interest rates. Thus, if (10) and (11) are fulfilled,
we can use the integral version of Theorem 5.3.3 with Xt = St and F (Xt, t) = V (St, t) and

(dSt)
2 = S2

t (µ dt + σ dxt)
2 Rechenregeln BB

= S2
t σ

2 dt (12)

to obtain

V (ST , T ) − V (S0, 0) =
∫ T

0
∂V
∂S

dSt +
∫ T

0

{
1
2
∂2V
∂S2 σ

2S2
t + ∂V

∂t

}
︸ ︷︷ ︸

= 0

dt

=
∫ T

0
δ(St, t) dSt (13)

Thus, some payoff H = H(ST ) can be exactly replicated in continuous time if we impose the
final condition

V (ST , T ) = H(ST ) (14)

in addition to (11).

When interest rates are present, a similar derivation can be done. Since this is an important
calculation and an important result, in the continuous time Black-Scholes model exact payoff
replication is still possible, we state this in a separate theorem which we will formulate and
prove in the next lecture.


