6. Übungsblatt zur Vorlesung Finanzmathematik II

- **1.Aufgabe:** Es sei $\{x_t\}_{t\geq 0}$ eine Brownsche Bewegung, $dW(\{x_t\}_{0< t\leq T})$ sei das Wiener-Maß und der Erwartungswert bezüglich W sei gegeben durch $\mathsf{E}[f] = \int f(\{x_t\}) \, dW(\{x_t\}_{0< t\leq T})$.
 - a) Berechnen Sie folgende Erwartungswerte (0 < $t \le T$):
 - a1) $\mathsf{E}[x_t]$
 - a2) $E[x_t^2]$
 - a3) $\mathsf{E}[x_t^n]$ mit $n \in \mathbb{N}$ beliebig.

Erinnern Sie sich dazu an die Formeln für Gauss'sche Integrale aus der Finanzmathematik I, die hatten wir uns im \ddot{U} -Blatt5 angeschaut:

https://hsrm-mathematik.de/WS2324/master/Finanzmathematik1/ueb5.pdf

b) Berechnen Sie die Varianz $V[x_t]$ und die Standardabweichung $\sqrt{V[x_t]}$ und skizzieren Sie die Standardabweichung als Funktion von $t \in [0, T]$ etwa für T = 4.

Da sämtliche zu berechnenden Grössen von der Form $\int f(x_t) dW(\{x_t\}_{0 < t \le T})$ sind und nicht etwa $\int f(x_{t_1}, x_{t_2}) dW(\{x_t\}_{0 < t \le T})$, können Sie hier das Theorem 6.1 aus der Vorlesung mit m = 1 anwenden.

2.Aufgabe: Es sei $\{x_t\}_{t\geq 0}$ eine Brownsche Bewegung, $dW(\{x_t\}_{0< t\leq T})$ sei das Wiener-Maß und $\mathsf{E}[\;\cdot\;]$ bezeichne den Erwartungswert bezüglich des Wiener-Maßes. Weiter sei $\{S_t\}_{t\geq 0}$ der Preisprozess des Black-Scholes Modells, gegeben durch

$$S_t = S_0 e^{\mu t + \sigma x_t - \frac{\sigma^2}{2}t}$$

Berechnen Sie den Erwartungswert $\mathsf{E}[\,S_t\,]$ und die Varianz $\mathsf{V}[\,S_t\,]$. Benutzen Sie dazu wieder das Theorem 6.1 aus der Vorlesung mit m=1.