10. Übungsblatt zur Vorlesung Finanzmathematik II

Aufgabe 1) Überprüfen Sie mit einer geeigneten Excel/VBA Simulation, dass die stochastische Rekursion für den Ornstein-Uhlenbeck Prozess,

$$X_{t_k} = X_{t_{k-1}} + \kappa(\mu - X_{t_{k-1}}) \Delta t + \sigma \sqrt{\Delta t} \phi_k$$

tatsächlich durch den expliziten Ausdruck

$$X_{t_k} = \mu + (X_0 - \mu) (1 - \kappa \Delta t)^k + \sigma \sqrt{\Delta t} \sum_{j=1}^k \phi_j (1 - \kappa \Delta t)^{k-j}$$

gelöst wird.

Aufgabe 2) Überprüfen Sie mit Hilfe einer geeigneten Excel/VBA Simulation, dass der Erwartungswert und die Varianz eines Ornstein-Uhlenbeck Prozesses für hinreichend kleine Zeitschritte $\Delta t \to 0$ tatsächlich durch die Grössen

$$\mathsf{E}[X_t] = \mu + (X_0 - \mu) e^{-\kappa t}$$

$$V[X_t] = \frac{\sigma^2}{2\kappa} (1 - e^{-2\kappa t})$$

gegeben sind. Berechnen Sie dazu den Erwartungswert $\mathsf{E}[X_t]$ und die Varianz

$$V[X_t] = E[(X_t - E[X_t])^2]$$

mit Hilfe einer Monte Carlo Simulation. Das heisst, simulieren Sie etwa 1000 oder 10000 OU-Pfade und berechnen Sie dann die auftretenden Erwartungswerte als Mittelwerte über alle simulierten Pfade.