1. Übungsblatt zur Vorlesung Finanzmathematik II

(Auffrischung Finanzmathematik I)

Aufgabe 1) Wir betrachten das folgende 1-Perioden Binomialmodell mit allgemeinen Parametern:

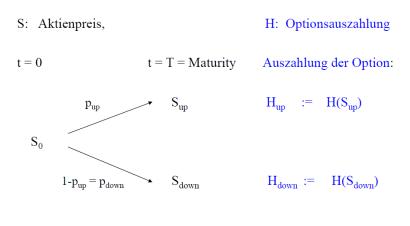


Abbildung 1: Ein-Perioden Binomialmodell mit allgemeinen Parametern

Man kann durch eine geeignete Handelsstrategie, ich kaufe δ Aktien zur Zeit t=0, die Optionsauszahlung bei t=T exakt replizieren. Das Geld V_0 , was man braucht, um diese replizierende Strategie aufsetzen zu können, ist der Preis der Option H. Für die beiden gesuchten Variablen V_0 und δ kann man, durch Betrachten des up- und des down-Falls in dem 1-Perioden-Modell in Abbildung 1, zwei Gleichungen herleiten; man hat dann also 2 Gleichungen mit 2 Variablen, die man nach V_0 und δ auflösen kann.

- a) Finden Sie diese beiden Gleichungen für V_0 und δ und lösen Sie sie dann nach V_0 und δ auf.
- b) Die Formel für V_0 lässt sich in der Form

$$V_0 = w_{\rm up} H_{\rm up} + w_{\rm down} H_{\rm down}$$

schreiben. Bestimmen Sie die genauen Formeln für $w_{\rm up}$ und $w_{\rm down}$ und zeigen Sie, dass

$$w_{\rm up} + w_{\rm down} = 1$$

gilt. Die Zahlen $w_{\rm up}$ und $w_{\rm down}$ könnte man also als Wahrscheinlichkeiten interpretieren, man nennt sie auch 'Risiko-neutrale' Wahrscheinlichkeiten im Gegensatz zu den 'real world' Wahrscheinlichkeiten $p_{\rm up}$ und $p_{\rm down}$ aus Abbildung 1, die für den Optionspreis V_0 offensichtlich völlig irrelevant sind.

Aufgabe 2) Wir betrachten eine Handelsstrategie mit N Handelszeitpunkten

$$t_0$$
, t_1 , t_2 , \cdot , t_{N-1} , t_N

Zum Zeitpunkt t_0 haben wir ein Startkapital V_0 . Wir handeln mit einem Underlying S, etwa eine Aktie, welche am Ende vom Tag t_k den Preis $S_k = S(t_k)$ habe. Wir verfolgen folgende Handelsstrategie:

- Am Ende vom Tag t_0 kaufen wir δ_0 Aktien zum Preis S_0 .
- Am Ende vom Tag t_1 verkaufen wir die δ_0 Aktien vom Vortag und kaufen δ_1 neue, beides zum Preis S_1 .
- Allgemein: Am Ende vom Tag t_k verkaufen wir die δ_{k-1} Aktien vom Vortag und kaufen δ_k neue, beides zum Preis S_k .
- Am Ende vom Tag t_N wird die Position geschlossen, wir verkaufen die δ_{N-1} Aktien vom Vortag, zum Preis S_N , und kaufen keine neuen mehr.
- a) Die Zinsen seien null. Zeigen Sie, dass durch diese Handelsstrategie bei Zeit t_N der Betrag

$$V_N = V_0 + \sum_{k=1}^{N} \delta_{k-1} (S_k - S_{k-1})$$

generiert worden ist.

b) Die Zinsen seien jetzt ungleich null. Wir nehmen an, dass ein Geldbetrag G in jeder Handelsperiode von t_{k-1} nach t_k gemäss

$$G \stackrel{\stackrel{\text{die Zeit vergeht}}{\longrightarrow}}{\longrightarrow} G(1+r)$$

verzinst wird. Zeigen Sie, dass die Handelsstrategie dann bei Zeit t_N den folgenden Betrag V_N generiert hat:

$$V_N = (1+r)^N v_N$$

wobei v_N gegeben ist durch

$$v_N = v_0 + \sum_{k=1}^N \delta_{k-1}(s_k - s_{k-1})$$

mit den diskontierten Grössen

$$s_k := (1+r)^{-k} S_k$$

 $v_k := (1+r)^{-k} V_k$

Insbesondere ist also $v_0 = V_0$, das war das Startgeld.