Probe-Klausur zur Vorlesung Dynamik der Teilchen und Felder

Nachname:						
Vorname:						
Matrikelnummer:					(falls anwendbar) Note:	
Aufgabe:	1	2	3	4		Summe:
Punkte:	15	20	9	6		50
erreicht:						

Zugelassene Hilfsmittel: 1 beidseitig beschriebenes DIN A4 Blatt, eine Formelsammlung und ein einfacher Taschenrechner

Bevor Sie beginnen: Bitte geben Sie Ihre elektronischen Kommunikationsgeräte vorne ab. Wenn während der Klausur etwa ein Mobil-Telefon benutzt wird, muss die Klausur als nicht bestanden gewertet werden.

1.Aufgabe (15 Punkte): Wir betrachten die kräftefreie Bewegung eines Teilchens der Masse m in der (x, y)-Ebene und parametrisieren die Bewegung durch Polarkoordinaten

$$\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix} = r \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

- a) Wählen Sie r und φ als die verallgemeinerte Koordinaten und geben Sie die Lagrange-Funktion L an. Vereinfachen Sie Ihr Resultat soweit wie möglich.
- b) Leiten Sie die Euler-Lagrange Gleichungen für r und φ her und vereinfachen Sie sie soweit wie möglich.

2.Aufgabe (20 Punkte): Wir parametrisieren die Bewegung eines Teilchens der Masse m im \mathbb{R}^3 durch Kugelkoordinaten,

$$\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = r \begin{pmatrix} \cos \varphi \sin \theta \\ \sin \varphi \sin \theta \\ \cos \theta \end{pmatrix}$$

Die Lagrange-Funktion für die kräftefreie Bewegung mit V=0 lautet dann

$$L = \frac{m}{2}\dot{\vec{x}}^2 = \frac{m}{2}\left\{\dot{r}^2 + r^2\dot{\varphi}^2\sin^2\theta + r^2\dot{\theta}^2\right\}$$

wenn wir $(q, \dot{q}) = (r, \varphi, \theta, \dot{r}, \dot{\varphi}, \dot{\theta})$ als die verallgemeinerten Koordinaten wählen. Wir wollen jetzt die Bewegung in einem Zentralpotential (z.B. V(r) = const/r, Coulomb-Potential)

$$V = V(r)$$

betrachten.

- a) Geben Sie die Lagrange-Funktion an.
- b) Stellen Sie die Euler-Lagrange Gleichungen auf.
- c) Berechnen Sie die verallgemeinerten Impulse $(p_r, p_{\varphi}, p_{\theta})$.
- d) Berechnen Sie die Hamilton-Funktion $H = H(r, \varphi, \theta, p_r, p_{\varphi}, p_{\theta}).$
- e) Stellen Sie die Hamiltonschen Gleichungen auf.

3.Aufgabe (9 Punkte): Wir betrachten die Bewegung eines Teilchens der Masse m=1 in einem 1-dimensionalen Potential V gegeben durch

$$V(x) := 1 - \cos(x) .$$

Wir wählen die Anfangsbedingungen

$$x_0 = \varepsilon \ll 1$$

$$\dot{x}_0 = 0.$$

- a) Skizzieren Sie die Funktion V(x).
- b) Für kleine $\varepsilon \ll 1$, etwa $\varepsilon = \frac{1}{10}$, erhält man näherungsweise harmonische Schwingungen als Lösungen der Bewegungsgleichung. Berechnen Sie die Periodendauer T dieser Schwingungen mit Hilfe einer geeigneten Näherung.
- **4.Aufgabe (6 Punkte):** Eine Kugel mit der Masse m=1kg bewege sich unter dem Einfluss der Schwerkraft $\vec{F}=(0,0,-mg)$ reibungsfrei auf einer schiefen Ebene, die mit einem Winkel von 45° gegen die (x,y)-Ebene geneigt ist. Die Kugel befinde sich zur Zeit t=0 in Ruhe in einer Höhe von z=1 Meter auf der schiefen Ebene und wird dann losgelassen. Wie lange dauert es, bis die Kugel eine Höhe von z=0 erreicht hat?