4.6

Date values 81

sum() function is only one of many functions we’ll consider in chapter 5. Functions
allow you to transform data with flexibility and ease.

You can remove any observation with missing data by using the na.omit () function.
na.omit () deletes any rows with missing data. Let’s apply this to our leadership dataset
in the following listing.

Listing 4.4 Using na.omit () to delete incomplete observations

> leadership Data frame with

manager date country gender age gl g2 g3 g4 g5 nﬁsﬁngdata

1 1 10/24/08 us M 32 5 4 5 5 5

2 2 10/28/08 us F 40 3 5 2 5 5

3 3 10/01/08 UK F 25 3 5 5 5 2

4 4 10/12/08 UK M 39 3 3 4 NA NA

5 5 05/01/09 UK F 99 2 2 1 2 1

> newdata <- na.omit (leadership) Data frame with

> newdata complete cases only
manager date country gender age gl g2 g3 g4 g5

1 1 10/24/08 us M 32 5 4 5 5 5

2 2 10/28/08 us F 40 3 5 2 5 5

3 3 10/01/08 UK F 25 3 5 5 5 2

5 5 05/01/09 UK F 99 2 2 1 2 1

Any rows containing missing data are deleted from leadership before the results are
saved to newdata.

Deleting all observations with missing data (called listwise deletion) is one of several
methods of handling incomplete datasets. If there are only a few missing values or
they’re concentrated in a small number of observations, listwise deletion can provide
a good solution to the missing values problem. But if missing values are spread
throughout the data, or there’s a great deal of missing data in a small number of
variables, listwise deletion can exclude a substantial percentage of your data. We’ll
explore several more sophisticated methods of dealing with missing values in chapter
15. Next, let’s take a look at dates.

Date values

Dates are typically entered into R as character strings and then translated into date vari-
ables that are stored numerically. The function as.Date () is used to make this transla-
tion. The syntax is as.Date(x, "input_format"), where x is the character data and
input_format gives the appropriate format for reading the date (see table 4.4).

Table 4.4 Date formats

Meaning Example
%d Day as a number (0-31) 01-31
%a Abbreviated weekday Mon
%A Unabbreviated weekday Monday

o
=4

Month (00-12) 00-12

82

CHAPTER 4 Basic data management

Table 4.4 Date formats (continued)

Meaning Example
%b Abbreviated month Jan
$B Unabbreviated month January
Sy 2-digit year o7
%Y 4-digit year 2007

The default format for inputting dates is yyyy-mm-dd. The statement
mydates <- as.Date(c("2007-06-22", "2004-02-13"))

converts the character data to dates using this default format. In contrast,

strDates <- c¢("01/05/1965", "08/16/1975")
dates <- as.Date(strDates, "%m/%$d/%$Y")

reads the data using a mm/dd/yyyy format.
In our leadership dataset, date is coded as a character variable in mm/dd/yy format.
Therefore:

myformat <- "%m/%d/%y"
leadership$date <- as.Date(leadership$date, myformat)

uses the specified format to read the character variable and replace it in the data frame
as a date variable. Once the variable is in date format, you can analyze and plot the
dates using the wide range of analytic techniques covered in later chapters.

Two functions are especially useful for time-stamping data. Sys.Date () returns
today’s date and date () returns the current date and time. As I write this, it’s December
12, 2010 at 4:28pm. So executing those functions produces
> Sys.Date ()

[1] "2010-12-01"

> date()
[1] "Wed Dec 01 16:28:21 2010"

You can use the format (x, format="output_format") function to output datesin a
specified format, and to extract portions of dates:

> today <- Sys.Date()

> format (today, format="%B %$d %Y")

[1] "December 01 2010"

> format (today, format="%A")
[1] "Wednesday"

The format () function takes an argument (a date in this case) and applies an output
format (in this case, assembled from the symbols in table 4.4). The important result
here is that there are only two more days until the weekend!

When R stores dates internally, they’re represented as the number of days since
January 1, 1970, with negative values for earlier dates. That means you can perform
arithmetic operations on them. For example:

> startdate <- as.Date("2004-02-13")
> enddate <- as.Date("2011-01-22")

4.6.1

4.6.2

4.7

Type conversions 83

> days <- enddate - startdate

> days

Time difference of 2535 days

displays the number of days between February 13, 2004 and January 22, 2011.

Finally, you can also use the function difftime () to calculate a time interval and
express it as seconds, minutes, hours, days, or weeks. Let’s assume that I was born on
October 12, 1956. How old am I?
> today <- Sys.Date()
> dob <- as.Date("1956-10-12")
> difftime(today, dob, units="weeks")

Time difference of 2825 weeks
Apparently, I am 2825 weeks old. Who knew? Final test: On which day of the week was
I born?

Converting dates to character variables

Although less commonly used, you can also convert date variables to character vari-
ables. Date values can be converted to character values using the as.character ()
function:

strDates <- as.character (dates)

The conversion allows you to apply a range of character functions to the data values
(subsetting, replacement, concatenation, etc.). We’ll cover character functions in de-
tail in chapter 5.

Going further

To learn more about converting character data to dates, take a look at help (as.
Date) and help(strftime). To learn more about formatting dates and times, see
help (ISOdatetime). The lubridate package contains a number of functions that
simplify working with dates, including functions to identify and parse date-time data,
extract date-time components (for example, years, months, days, etc.), and perform
arithmetic calculations on date-times. If you need to do complex calculations with
dates, the £Calendar package can also help. It provides a myriad of functions for deal-
ing with dates, can handle multiple time zones at once, and provides sophisticated
calendar manipulations that recognize business days, weekends, and holidays.

Type conversions

In the previous section, we discussed how to convert character data to date values, and
vice versa. R provides a set of functions to identify an object’s data type and convert it
to a different data type.

Type conversions in R work in a similar fashion to those in other statistical
programming languages. For example, adding a character string to a numeric vector
converts all the elements in the vector to character values. You can use the functions
listed in table 4.5 to test for a data type and to convert it to a given type.

84

4.8

CHAPTER 4 Basic data management

Table 4.5 Type conversion functions

Test Convert

is.numeric () as.numeric()
is.character () as.character ()
is.vector () as.vector ()
is.matrix() as.matrix()
is.data.frame() as.data.frame ()
is.factor () as.factor ()
is.logical () as.logical()

Functions of the form is.datatype () return TRUE or FALSE, whereas as . datatype ()
converts the argument to that type. The following listing provides an example.

Listing 4.5 Converting from one data type to another

> a <-¢c(1,2,3)
> a

[1]1 1 2 3

> is.numeric(a)
[1] TRUE

> is.vector(a)
[1] TRUE

> a <- as.character(a)
> a

1y "1 2™ "3n

> is.numeric(a)

[1] FALSE

> is.vector(a)

[1] TRUE

> is.character (a)

[1] TRUE

When combined with the flow controls (such as i£-then) that we’ll discuss in chapter
5, the is.datatype () function can be a powerful tool, allowing you to handle data in
different ways, depending on its type. Additionally, some R functions require data of

a specific type (character or numeric, matrix or data frame) and the as.datatype()
will let you transform your data into the format required prior to analyses.

Sorting data

Sometimes, viewing a dataset in a sorted order can tell you quite a bit about the data.
For example, which managers are most deferential? To sort a data frame in R, use
the order () function. By default, the sorting order is ascending. Prepend the sorting
variable with a minus sign to indicate a descending order. The following examples il-
lustrate sorting with the leadership data frame.

	Front Cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	The examples
	Code conventions
	Author Online
	About the author
	Who should read this book
	Roadmap

	about the cover illustration
	Part 1 Getting started
	1 Introduction to R
	1.1 Why use R?
	1.2 Obtaining and installing R
	1.3 Working with R
	1.3.1 Getting started
	1.3.2 Getting help
	1.3.3 The workspace
	1.3.4 Input and output

	1.4 Packages
	1.4.1 What are packages?
	1.4.2 Installing a package
	1.4.3 Loading a package
	1.4.4 Learning about a package

	1.5 Batch processing
	1.6 Using output as input—reusing results
	1.7 Working with large datasets
	1.8 Working through an example
	1.9 Summary

	2 Creating a dataset
	2.1 Understanding datasets
	2.2 Data structures
	2.2.1 Vectors
	2.2.2 Matrices
	2.2.3 Arrays
	2.2.4 Data frames
	2.2.5 Factors
	2.2.6 Lists

	2.3 Data input
	2.3.1 Entering data from the keyboard
	2.3.2 Importing data from a delimited text file
	2.3.3 Importing data from Excel
	2.3.4 Importing data from XML
	2.3.5 Webscraping
	2.3.6 Importing data from SPSS
	2.3.7 Importing data from SAS
	2.3.8 Importing data from Stata
	2.3.9 Importing data from netCDF
	2.3.10 Importing data from HDF5
	2.3.11 Accessing database management systems (DBMSs)
	2.3.12 Importing data via Stat/Transfer

	2.4 Annotating datasets
	2.4.1 Variable labels
	2.4.2 Value labels

	2.5 Useful functions for working with data objects
	2.6 Summary

	3 Getting started with graphs
	3.1 Working with graphs
	3.2 A simple example
	3.3 Graphical parameters
	3.3.1 Symbols and lines
	3.3.2 Colors
	3.3.3 Text characteristics
	3.3.4 Graph and margin dimensions

	3.4 Adding text, customized axes, and legends
	3.4.1 Titles
	3.4.2 Axes
	3.4.3 Reference lines
	3.4.4 Legend
	3.4.5 Text annotations

	3.5 Combining graphs
	3.5.1 Creating a figure arrangement with fine control

	3.6 Summary

	4 Basic data management
	4.1 A working example
	4.2 Creating new variables
	4.3 Recoding variables
	4.4 Renaming variables
	4.5 Missing values
	4.5.1 Recoding values to missing
	4.5.2 Excluding missing values from analyses

	4.6 Date values
	4.6.1 Converting dates to character variables
	4.6.2 Going further

	4.7 Type conversions
	4.8 Sorting data
	4.9 Merging datasets
	4.9.1 Adding columns
	4.9.2 Adding rows

	4.10 Subsetting datasets
	4.10.1 Selecting (keeping) variables
	4.10.2 Excluding (dropping) variables
	4.10.3 Selecting observations
	4.10.4 The subset() function
	4.10.5 Random samples

	4.11 Using SQL statements to manipulate data frames
	4.12 Summary

	5 Advanced data management
	5.1 A data management challenge
	5.2 Numerical and character functions
	5.2.1 Mathematical functions
	5.2.2 Statistical functions
	5.2.3 Probability functions
	5.2.4 Character functions
	5.2.5 Other useful functions
	5.2.6 Applying functions to matrices and data frames

	5.3 A solution for our data management challenge
	5.4 Control flow
	5.4.1 Repetition and looping
	5.4.2 Conditional execution

	5.5 User-written functions
	5.6 Aggregation and restructuring
	5.6.1 Transpose
	5.6.2 Aggregating data
	5.6.3 The reshape package

	5.7 Summary

	Part 2 Basic methods
	6 Basic graphs
	6.1 Bar plots
	6.1.1 Simple bar plots
	6.1.2 Stacked and grouped bar plots
	6.1.3 Mean bar plots
	6.1.4 Tweaking bar plots
	6.1.5 Spinograms

	6.2 Pie charts
	6.3 Histograms
	6.4 Kernel density plots
	6.5 Box plots
	6.5.1 Using parallel box plots to compare groups
	6.5.2 Violin plots

	6.6 Dot plots
	6.7 Summary

	7 Basic statistics
	7.1 Descriptive statistics
	7.1.1 A menagerie of methods
	7.1.2 Descriptive statistics by group
	7.1.3 Visualizing results

	7.2 Frequency and contingency tables
	7.2.1 Generating frequency tables
	7.2.2 Tests of independence
	7.2.3 Measures of association
	7.2.4 Visualizing results
	7.2.5 Converting tables to flat files

	7.3 Correlations
	7.3.1 Types of correlations
	7.3.2 Testing correlations for significance
	7.3.3 Visualizing correlations

	7.4 t-tests
	7.4.1 Independent t-test
	7.4.2 Dependent t-test
	7.4.3 When there are more than two groups

	7.5 Nonparametric tests of group differences
	7.5.1 Comparing two groups
	7.5.2 Comparing more than two groups

	7.6 Visualizing group differences
	7.7 Summary

	Part 3 Intermediate methods
	8 Regression
	8.1 The many faces of regression
	8.1.1 Scenarios for using OLS regression
	8.1.2 What you need to know

	8.2 OLS regression
	8.2.1 Fitting regression models with lm()
	8.2.2 Simple linear regression
	8.2.3 Polynomial regression
	8.2.4 Multiple linear regression
	8.2.5 Multiple linear regression with interactions

	8.3 Regression diagnostics
	8.3.1 A typical approach
	8.3.2 An enhanced approach
	8.3.3 Global validation of linear model assumption
	8.3.4 Multicollinearity

	8.4 Unusual observations
	8.4.1 Outliers
	8.4.2 High leverage points
	8.4.3 Influential observations

	8.5 Corrective measures
	8.5.1 Deleting observations
	8.5.2 Transforming variables
	8.5.3 Adding or deleting variables
	8.5.4 Trying a different approach

	8.6 Selecting the "best" regression model
	8.6.1 Comparing models
	8.6.2 Variable selection

	8.7 Taking the analysis further
	8.7.1 Cross-validation
	8.7.2 Relative importance

	8.8 Summary

	9 Analysis of variance
	9.1 A crash course on terminology
	9.2 Fitting ANOVA models
	9.2.1 The aov() function
	9.2.2 The order of formula terms

	9.3 One-way ANOVA
	9.3.1 Multiple comparisons
	9.3.2 Assessing test assumptions

	9.4 One-way ANCOVA
	9.4.1 Assessing test assumptions
	9.4.2 Visualizing the results

	9.5 Two-way factorial ANOVA
	9.6 Repeated measures ANOVA
	9.7 Multivariate analysis of variance (MANOVA)
	9.7.1 Assessing test assumptions
	9.7.2 Robust MANOVA

	9.8 ANOVA as regression
	9.9 Summary

	10 Power analysis
	10.1 A quick review of hypothesis testing
	10.2 Implementing power analysis with the pwr package
	10.2.1 t-tests
	10.2.2 ANOVA
	10.2.3 Correlations
	10.2.4 Linear models
	10.2.5 Tests of proportions
	10.2.6 Chi-square tests
	10.2.7 Choosing an appropriate effect size in novel situations

	10.3 Creating power analysis plots
	10.4 Other packages
	10.5 Summary

	11 Intermediate graphs
	11.1 Scatter plots
	11.1.1 Scatter plot matrices
	11.1.2 High-density scatter plots
	11.1.3 3D scatter plots
	11.1.4 Bubble plots

	11.2 Line charts
	11.3 Correlograms
	11.4 Mosaic plots
	11.5 Summary

	12 Resampling statistics and bootstrapping
	12.1 Permutation tests
	12.2 Permutation test with the coin package
	12.2.1 Independent two-sample and k-sample tests
	12.2.2 Independence in contingency tables
	12.2.3 Independence between numeric variables
	12.2.4 Dependent two-sample and k-sample tests
	12.2.5 Going further

	12.3 Permutation tests with the lmPerm package
	12.3.1 Simple and polynomial regression
	12.3.2 Multiple regression
	12.3.2 One-way ANOVA and ANCOVA
	12.3.4 Two-way ANOVA

	12.4 Additional comments on permutation tests
	12.5 Bootstrapping
	12.6 Bootstrapping with the boot package
	12.6.1 Bootstrapping a single statistic
	12.6.2 Bootstrapping several statistics

	12.7 Summary

	Part 4 Advanced methods
	13 Generalized linear models
	13.1 Generalized linear models and the glm() function
	13.1.1 The glm() function
	13.1.2 Supporting functions
	13.1.3 Model fit and regression diagnostics

	13.2 Logistic regression
	13.2.1 Interpreting the model parameters
	13.2.2 Assessing the impact of predictors on the probability of an outcome
	13.2.3 Overdispersion
	13.2.4 Extensions

	13.3 Poisson regression
	13.3.1 Interpreting the model parameters
	13.3.2 Overdispersion
	13.3.3 Extensions

	13.4 Summary

	14 Principal components and factor analysis
	14.1 Principal components and factor analysis in R
	14.2 Principal components
	14.2.1 Selecting the number of components to extract
	14.2.2 Extracting principal components
	14.2.3 Rotating principal components
	14.2.4 Obtaining principal components scores

	14.3 Exploratory factor analysis
	14.3.1 Deciding how many common factors to extract
	14.3.2 Extracting common factors
	14.3.3 Rotating factors
	14.3.4 Factor scores
	14.3.5 Other EFA-related packages

	14.4 Other latent variable models
	14.5 Summary

	15 Advanced methods for missing data
	15.1 Steps in dealing with missing data
	15.2 Identifying missing values
	15.3 Exploring missing values patterns
	15.3.1 Tabulating missing values
	15.3.2 Exploring missing data visually
	15.3.3 Using correlations to explore missing values

	15.4 Understanding the sources and impact of missing data
	15.5 Rational approaches for dealing with incomplete data
	15.6 Complete-case analysis (listwise deletion)
	15.7 Multiple imputation
	15.8 Other approaches to missing data
	15.8.1 Pairwise deletion
	15.8.2 Simple (nonstochastic) imputation

	15.9 Summary

	16 Advanced graphics
	16.1 The four graphic systems in R
	16.2 The lattice package
	16.2.1 Conditioning variables
	16.2.2 Panel functions
	16.2.3 Grouping variables
	16.2.4 Graphic parameters
	16.2.5 Page arrangement

	16.3 The ggplot2 package
	16.4 Interactive graphs
	16.4.1 Interacting with graphs: identifying points
	16.4.2 playwith
	16.4.3 latticist
	16.4.4 Interactive graphics with the iplots package
	16.4.5 rggobi

	16.5 Summary

	afterword: Into the rabbit hole
	appendix A Graphic user interfaces
	appendix B Customizing the startup environment
	appendix C Exporting data from R
	C.1 Delimited text file
	C.2 Excel spreadsheet
	C.3 Statistical applications

	appendix D Creating publication-quality output
	D.3 Comments
	D.1 High-quality typesetting with Sweave (R + LaTeX)
	D.2 Joining forces with OpenOffice using odfWeave

	appendix E Matrix Algebra in R
	appendix F Packages used in this book
	appendix G Working with large datasets
	G.1 Efficient programming
	G.2 Storing data outside of RAM
	G.3 Analytic packages for large datasets

	appendix H Updating an R installation
	Index
	Symbol
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back Cover

