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Kapitel 4: Brownsche Bewegung, Wiener-Maf
und das Black-Scholes Modell, Teill

Nachdem wir uns in der letzten Veranstaltung einen groben Uberblick iiber das sehr zentrale
und wichtige 4. Kapitel verschafft hatten, miissen wir uns jetzt die Rechnungen im Detail
anschauen:

Consider some discrete times ¢, in the intervall [0, 77,
ty = k% = kAt, k=0,1,..N (1)

where

N=Nr=L¢eN (2)
Let S;, = Skat be the price of some stock at time t; and denote the returns by going from
one time step to the next by

ret;, = T Pthor (3)

One may think of At being one day and S;, being the closing prices at each day although
later we will consider the limit At — 0. It is an empirical fact that the daily returns of many
assets are bell shaped, like a Gaussian distribution. Das hatten wir uns insbesondere in der
Excel/VBA-Vorlesung auf dem 9. und 10. Ubungsblatt angeschaut, erinnern wir uns kurz an
diese Sachen:

— ExcelVBA-Uebungl0.pdf , ExcelVBA-LoesunglO.xlsm

Thus, as a first approximation, one may write down the following stochastic model

ret;,, = mean + standard deviation X ¢y, (4)

where the ¢, are identically independent normally distributed random variables with mean
zero and variance one,

b € N(0,1) iid. (5)

This is only a first approximation. There are deviations from a Gaussian distribution. Most
financial data have more heavy tails than a normal distribution and a higher peak at the
mean value. Furthermore, the returns in (4) are not completely independent. Many financial
data show a positive correlation of the absolute values of the returns, of |ret; | and |ret;, |
In the book of Shiryaev FEssentials of Stochastic Finance one can find a detailed discussion of



the statistical analysis of financial data (in Chapter 4) as well as an overview of the proposed
stochastic models to fit these data.

We now analyze how the mean and the standard deviation in (4) have to scale with At
in order to get a reasonable model in the time continuous case At — 0. To this end we write

ret;, = uAt*+ oA’ ¢y (6)
such that
Stk = Stk71 (1 + 12 Ata + o At6¢k)

or, with t = N; x At, Ny = t/At,

Ny
Sy =S [ (1 + n At + o AtPg,) (7)

k=1

Suppose for the moment the model is deterministic, ¢ = 0. Then, using the first order Taylor
expansion log(1 + z) = x + O(2?) in the third line,

St = SO (1 + uAta>Nt
_ SO eNt log(1+p At%)

- SO eNt (LAL*+O(AL?))

SO 6,u,tAt‘*’1—&-O(A7§2"“’1) (8)

which gives a = 1 and exponential growth (or decrease) in the time continuous case, S; =
So et which is simply the solution of dS/S = udt. Now consider the stochastic part in
(6). For simplicity, we put g = 0. Then, now using the second order Taylor expansion
log(1+ x) =z — 2?/2 + O(2®) in the third line,

Ny

Si = So[](1+0At%)

k=1
- S, e ity log(1+0 At gy)
— S, oty (0 AP gy — 302 A1267 + O(AFF))

N, o2 N, _
So e’ At Phty Ok~ TARB il okt O(NeAPP=AP—1) (9)

We now consider for what values of g the expectation
4 2

e[ r(aesiia)| = [ r(arsiie) B et an (10)

has a nontrivial limit. Here f is some function. We make a substitution of variables
(dr)1<k<n, — (Tr)1<k<n, defined as follows:



Ty = \/E o1 0 = x1/\/E
zy = VAL($1+ bo) ¢ = (w2—m1)/VAL
vy = VAL(d1+ b2+ ¢s) & ¢35 = (w3—x)/VAL (11)

o, = VAL (61t dot ot On,) o, = (5, —an-1)/VAL

The Jacobian of the transformation (11) is det % =1/v At since, with N = N,
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Thus the expectation (10) becomes, with N = N, = t/At,
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= / f(At 2 xN) II {pAt(xk_l, J}k) dZL’k } (12)
RN k=1
where we introduced the kernel
_(z—y)?
pr(,y) == m=e 7 (13)
and used the definition

The kernel (13) has the following basic property:



Lemma 4.1: Let pi(x,y) be given by (13). Then

prS(l.?y)pt(y?Z) dy = szrt(maz) (15)

Proof: Ubungsblatt 5. M

Using this lemma, we can actually perform the integrals over xy, 2o, -+ ,xx_1. We have

Jadzy Jgdza - [y dun_y pac(wo, 21) pa(w1, @2) par(w2, 25) - par(zn-1,2n)

~~

J dz1 = paai(zo,z2)

= fR ds fR dz - - fR dry_q ?mt(%o, T2) Pat(T2, 133)1 o pad(Tno1, TN)

g
J dz2 — p3at(zo,z3)

= fR drz - - fR drn_y P3At($0, 953) T pAt($N—1, wN)
= f]R drn-1 p(N-1)at(To; TN-1) Par(TN-1,TN)
= pnac(To, TN)

Thus (12) simplifies to

E[f(AtBfotl ¢k)] -~ /R f(Ar ) i { pAt(fEk—laxk)dmk} (16)
= /f(Atﬂ_éacN) X pyac(To, xn) dry
R
=0 /R FAP ) x e de (17)

Hence, a nontrivial meaningful limit is obtained only for g = %

Instead of labelling the = with k& € {1,2, ..., N;}, we label them with ¢; := kAt which has the
meaning of time. In particular, ty = NAt =t. So, we rename xy, — Tra; = 2y, With that,
we write down the following very important

_(a=y)?

Definition 4.1: Let Ny = T/At and pi(z,y) := ﬁ e~ 2 . Then the measure

. NT
AW ({zi}oci<r) = UHm I pac(@k—1)at; Teat) dTras (18)
At—0 k=1
1s called the Wiener measure and the family of random wvariables or integration variables
{z¢}o<t<r 18 called a Brownian motion. In terms of i.i.d. random variables ¢ € N(0,1),

t/At

xy = lim \/Kthzﬁk (19)
k=1

At—0



Remark: The time discretized version of the Wiener measure, this is what we actually will
usually use, is simply given by a product of Gaussian normal distributions. With N = Np =
T/At and tr = k‘At,

N
dW({xtk}0<kSN> = klillpAt<'rtk—l7xtk)d‘rtk

2
N g =24 )" g
— LA | t
= 2At k
kl;ll{ ‘ VoAt }
_4

N
= {2 20

And the time discretized Brownian motion z;, is given by
k
m, = VALY ¢ (21)
j=1
from which we get the recursion

Ty, = Ty, + VAL ¢ (22)

The formulae (20,21,22) are very important and will be used over and over again.



