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Kapitel 9: Das risikoneutrale Pricing-Maß für das Black-Scholes Modell
und Monte Carlo Evaluation

The discounted portfolio value of a selffinancing strategy in discrete time was given by

vtk = v0 +
k∑
j=1

δtj−1
(stj − stj−1

) (1)

where vtk = e−rtkVtk is the discounted portfolio value at time tk = k∆t, k = 0, 1, ..., NT =
T/∆t and stk = e−rtkStk denotes the discounted asset price. Suppose that the price process
Stk is given by a geometric Brownian motion such that

stk = e−rtk S0 e
(µ−σ

2

2
)tk+σxtk = S0 e

σxtk+(µ−r−σ2/2)tk =: s(xtk , tk) (2)

Suppose further that we have some european option with payoff H or discounted payoff
h = e−rTH where h = h(StN ) or more generally h = h(St0 , ..., StN ), N = NT , and suppose
that there is a replicating strategy

δtk = δtk(St1 , ..., Stk) (3)

such that

h = vtN = v0 +
N∑
k=1

δtk−1
(stk − stk−1

) (4)

Since v0 = V0, the price of the option, is a number, we can write

v0 = E[ v0 ] = E[h ]−
N∑
k=1

E
[
δtk−1

(stk − stk−1
)
]

(5)

where the expectation in (5) can be choosen arbitrarily. Let us consider (5) for the Wiener
measure,

dW ({xt}0<t≤T ) = lim
∆t→0

NT
Π
k=1

p∆t(x(k−1)∆t, xk∆t) dxk∆t (6)

Because of Theorem 4.1 we have

EW
[
δk−1(sk − sk−1)

]
(7)

=

∫
Rk
δk−1(xt1 , ..., xtk−1

)
(
s(xtk , tk)− s(xtk−1

, tk−1)
) k

Π
j=1

ptj−tj−1
(xtj−1

, xtj) dxtj



The integration variable xtk shows up only at one place such that we can write

EW
[
δk−1(sk − sk−1)

]
=

∫
Rk−1

δk−1(xt1 , ..., xtk−1
)
(∫

R s(xtk , tk) ptk−tk−1
(xtk−1

, xtk) dxtk − s(xtk−1
, tk−1)

)
×

k−1

Π
j=1

ptj−tj−1
(xtj−1

, xtj) dxtj

=

∫
Rk−1

δk−1(xt1 , ..., xtk−1
)
(
EW
[
s(xtk , tk)|xtk−1

]
− s(xtk−1

, tk−1)
) k−1

Π
j=1

ptj−tj−1
(xtj−1

, xtj) dxtj

where we introduced the conditional expectation

EW
[
f({xs}0≤s≤T )|xt

]
:=

∫
f({xs}) dW ({xs}t<s≤T ) (8)

with the obvious definition (t = Nt∆t)

dW ({xt}t<s≤T ) := lim
∆t→0

NT
Π

j=Nt+1
p∆t(x(j−1)∆t, xj∆t) dxj∆t (9)

In particular, if the function f in (8) depends only on a single xs, f = f(xs), then

EW
[
f(xs)|xt

]
=


f(xs) if t ≥ s∫
R
f(xs) ps−t(xt, xs) dxs if t < s

(10)

Let us compute the conditional expectation EW
[
s(xtk , tk)|xtk−1

]
in the last line of (7). We

have, using ∆t = tk − tk−1

EW
[
s(xtk , tk)|xtk−1

]
=

∫
R
s(xtk , tk) ptk−tk−1

(xtk−1
, xtk) dxtk

= 1√
2π∆t

∫
R
S0 e

σxtk+(µ−r−σ2/2)tke−
(xtk

−xtk−1
)2

2∆t dxtk

= S0 e
σxtk−1

+(µ−r−σ2/2)tk 1√
2π

∫
R
eσ
√

∆t ye−
y2

2 dy

= S0 e
σxtk−1

+(µ−r−σ2/2)tk e
σ2

2
(tk−tk−1)

= s(xtk−1
, tk−1) e(µ−r)(tk−tk−1) (11)

Now, suppose the factor e(µ−r)(tk−tk−1) in (11) would be absent. Then the round brackets in
the third line of (7) would be zero for all k and the price of the option v0 would be given
by the expectation of the discounted payoff. Thus, we would be able to compute the price
without knowing the hedging strategy, provided that there is a replicating strategy. Now,
this factor is not absent but we can ask the following question: Is there some measure dW̃
such that

EW̃
[
s(xtk , tk)|xtk−1

]
= s(xtk−1

, tk−1) (12)



If this is the case then we can compute the price v0 of the option with discounted payoff h by
taking the expectation value with respect to dW̃ ,

v0 = EW̃ [h ] (13)

since the round brackets in the third line of (7) all vanish. There is the following

Theorem 9.1: Let stk = s(xtk , tk) be a discounted geometric Brownian motion given by (2).
Define the kernels p̃t(x, y) = p̃µ,r,σt (x, y) by

p̃t(x, y) := 1√
2πt

e−
(x−y−µ−rσ t)2

2t (14)

Then:

a) The kernels p̃ satisfy ∫
R
p̃s(x, y) p̃t(y, z) dy = p̃s+t(x, z) (15)

and
∫
R p̃s(x, y) dy = 1 for all x. That is, the measure

dW̃ ({xt}0<t≤T ) := lim
∆t→0

NT
Π
k=1

p̃∆t(x(k−1)∆t, xk∆t) dxk∆t (16)

is well defined.

b) The price process (2) is a martingale with respect to dW̃ . That is,

EW̃
[
s(xt′ , t

′) |xt
]

:=

∫
s(xt′ , t

′) dW̃ ({xs}t<s≤T )

= s(xt, t) ∀ t < t′ (17)

The measure dW̃ is called an equivalent martingale measure (with respect to the price
process st).

Proof: a) Let pt(x, y) be the kernel of Chapter 4,

pt(x, y) =
1√
2πt

e−
(x−y)2

2t

Then

p̃t(x, y) = pt
(
x− µ−r

σ
t, y
)

= pt
(
x, y + µ−r

σ
t
)

= pt
(
x− µ−r

2σ
, y + µ−r

2σ

)
(18)

such that, with Lemma 4.1,∫
R
p̃s(x, y) p̃t(y, z) dy =

∫
R
ps
(
x− µ−r

σ
s, y
)
pt
(
y, z + µ−r

σ
t
)
dy

= ps+t
(
x− µ−r

σ
s, z + µ−r

σ
t
)

= p̃s+t(x, z) (19)



which proves part (a). Part (b) is obtained as (11),

EW̃
[
s(xt′ , t

′) |xt
]

=

∫
R
s(xt′ , t

′) p̃t′−t(xt, xt′) dxt′

= 1√
2π(t′−t)

∫
R
S0 e

σxt′+(µ−r−σ2/2)t′e
−

(xt−xt′−
µ−r
σ (t′−t))

2

2(t′−t) dxt′

= S0 e
σxt+(µ−r−σ2/2)t e−

σ2

2
(t′−t) 1√

2π(t′−t)

∫
R
eσ(xt′−xt+

µ−r
σ

(t′−t)) e
−

(xt−xt′−
µ−r
σ (t′−t))

2

2(t′−t) dxt′

= S0 e
σxt+(µ−r−σ2/2)t e−

σ2

2
(t′−t) 1√

2π

∫
R
eσ
√
t′−t y e−

y2

2 dy

= S0 e
σxt+(µ−r−σ2/2)t

= s(xt, t) (20)

This proves the theorem. �


