Kapitel 9: Das risikoneutrale Pricing-Maß für das Black-Scholes Modell und Monte Carlo Evaluation

The discounted portfolio value of a selffinancing strategy in discrete time was given by

$$
\begin{equation*}
v_{t_{k}}=v_{0}+\sum_{j=1}^{k} \delta_{t_{j-1}}\left(s_{t_{j}}-s_{t_{j-1}}\right) \tag{1}
\end{equation*}
$$

where $v_{t_{k}}=e^{-r t_{k}} V_{t_{k}}$ is the discounted portfolio value at time $t_{k}=k \Delta t, k=0,1, \ldots, N_{T}=$ $T / \Delta t$ and $s_{t_{k}}=e^{-r t_{k}} S_{t_{k}}$ denotes the discounted asset price. Suppose that the price process $S_{t_{k}}$ is given by a geometric Brownian motion such that

$$
\begin{equation*}
s_{t_{k}}=e^{-r t_{k}} S_{0} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t_{k}+\sigma x_{t_{k}}}=S_{0} e^{\sigma x_{t_{k}}+\left(\mu-r-\sigma^{2} / 2\right) t_{k}}=: s\left(x_{t_{k}}, t_{k}\right) \tag{2}
\end{equation*}
$$

Suppose further that we have some european option with payoff H or discounted payoff $h=e^{-r T} H$ where $h=h\left(S_{t_{N}}\right)$ or more generally $h=h\left(S_{t_{0}}, \ldots, S_{t_{N}}\right), N=N_{T}$, and suppose that there is a replicating strategy

$$
\begin{equation*}
\delta_{t_{k}}=\delta_{t_{k}}\left(S_{t_{1}}, \ldots, S_{t_{k}}\right) \tag{3}
\end{equation*}
$$

such that

$$
\begin{equation*}
h=v_{t_{N}}=v_{0}+\sum_{k=1}^{N} \delta_{t_{k-1}}\left(s_{t_{k}}-s_{t_{k-1}}\right) \tag{4}
\end{equation*}
$$

Since $v_{0}=V_{0}$, the price of the option, is a number, we can write

$$
\begin{equation*}
v_{0}=\mathrm{E}\left[v_{0}\right]=\mathrm{E}[h]-\sum_{k=1}^{N} \mathrm{E}\left[\delta_{t_{k-1}}\left(s_{t_{k}}-s_{t_{k-1}}\right)\right] \tag{5}
\end{equation*}
$$

where the expectation in (5) can be choosen arbitrarily. Let us consider (5) for the Wiener measure,

$$
\begin{equation*}
d W\left(\left\{x_{t}\right\}_{0<t \leq T}\right)=\lim _{\Delta t \rightarrow 0} \prod_{k=1}^{N_{T}} p_{\Delta t}\left(x_{(k-1) \Delta t}, x_{k \Delta t}\right) d x_{k \Delta t} \tag{6}
\end{equation*}
$$

Because of Theorem 4.1 we have

$$
\begin{align*}
\mathrm{E}_{W} & {\left[\delta_{k-1}\left(s_{k}-s_{k-1}\right)\right] } \tag{7}\\
& =\int_{\mathbb{R}^{k}} \delta_{k-1}\left(x_{t_{1}}, \ldots, x_{t_{k-1}}\right)\left(s\left(x_{t_{k}}, t_{k}\right)-s\left(x_{t_{k-1}}, t_{k-1}\right)\right) \prod_{j=1}^{k} p_{t_{j}-t_{j-1}}\left(x_{t_{j-1}}, x_{t_{j}}\right) d x_{t_{j}}
\end{align*}
$$

The integration variable $x_{t_{k}}$ shows up only at one place such that we can write

$$
\begin{aligned}
\mathrm{E}_{W} & {\left[\delta_{k-1}\left(s_{k}-s_{k-1}\right)\right] } \\
& =\int_{\mathbb{R}^{k-1}} \delta_{k-1}\left(x_{t_{1}}, \ldots, x_{t_{k-1}}\right)\left(\int_{\mathbb{R}} s\left(x_{t_{k}}, t_{k}\right) p_{t_{k}-t_{k-1}}\left(x_{t_{k-1}}, x_{t_{k}}\right) d x_{t_{k}}-s\left(x_{t_{k-1}}, t_{k-1}\right)\right) \times \\
& \prod_{j=1}^{k-1} p_{t_{j}-t_{j-1}}\left(x_{t_{j-1}}, x_{t_{j}}\right) d x_{t_{j}} \\
& =\int_{\mathbb{R}^{k-1}} \delta_{k-1}\left(x_{t_{1}}, \ldots, x_{t_{k-1}}\right)\left(\mathrm{E}_{W}\left[s\left(x_{t_{k}}, t_{k}\right) \mid x_{t_{k-1}}\right]-s\left(x_{t_{k-1}}, t_{k-1}\right)\right) \prod_{j=1}^{k-1} p_{t_{j}-t_{j-1}}\left(x_{t_{j-1}}, x_{t_{j}}\right) d x_{t_{j}}
\end{aligned}
$$

where we introduced the conditional expectation

$$
\begin{equation*}
\mathrm{E}_{W}\left[f\left(\left\{x_{s}\right\}_{0 \leq s \leq T}\right) \mid x_{t}\right]:=\int f\left(\left\{x_{s}\right\}\right) d W\left(\left\{x_{s}\right\}_{t<s \leq T}\right) \tag{8}
\end{equation*}
$$

with the obvious definition $\left(t=N_{t} \Delta t\right)$

$$
\begin{equation*}
d W\left(\left\{x_{t}\right\}_{t<s \leq T}\right):=\lim _{\Delta t \rightarrow 0}{\underset{j=N_{t}+1}{N_{T}} p_{\Delta t}\left(x_{(j-1) \Delta t}, x_{j \Delta t}\right) d x_{j \Delta t}, ~}_{\prod_{j}} \tag{9}
\end{equation*}
$$

In particular, if the function f in (8) depends only on a single $x_{s}, f=f\left(x_{s}\right)$, then

$$
\mathrm{E}_{W}\left[f\left(x_{s}\right) \mid x_{t}\right]= \begin{cases}f\left(x_{s}\right) & \text { if } t \geq s \tag{10}\\ \int_{\mathbb{R}} f\left(x_{s}\right) p_{s-t}\left(x_{t}, x_{s}\right) d x_{s} & \text { if } t<s\end{cases}
$$

Let us compute the conditional expectation $\mathrm{E}_{W}\left[s\left(x_{t_{k}}, t_{k}\right) \mid x_{t_{k-1}}\right]$ in the last line of (7). We have, using $\Delta t=t_{k}-t_{k-1}$

$$
\begin{align*}
\mathrm{E}_{W}\left[s\left(x_{t_{k}}, t_{k}\right) \mid x_{t_{k-1}}\right] & =\int_{\mathbb{R}} s\left(x_{t_{k}}, t_{k}\right) p_{t_{k}-t_{k-1}}\left(x_{t_{k-1}}, x_{t_{k}}\right) d x_{t_{k}} \\
& =\frac{1}{\sqrt{2 \pi \Delta t}} \int_{\mathbb{R}} S_{0} e^{\sigma x_{t_{k}}+\left(\mu-r-\sigma^{2} / 2\right) t_{k}} e^{-\frac{\left(x_{t_{k}}-x_{k-1}\right)^{2}}{2 \Delta t}} d x_{t_{k}} \\
& =S_{0} e^{\sigma x_{t_{k-1}}+\left(\mu-r-\sigma^{2} / 2\right) t_{k}} \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{\sigma \sqrt{\Delta t} y} e^{-\frac{y^{2}}{2}} d y \\
& =S_{0} e^{\sigma x_{t_{k-1}}+\left(\mu-r-\sigma^{2} / 2\right) t_{k}} e^{\frac{\sigma^{2}}{2}\left(t_{k}-t_{k-1}\right)} \\
& =s\left(x_{t_{k-1}}, t_{k-1}\right) e^{(\mu-r)\left(t_{k}-t_{k-1}\right)} \tag{11}
\end{align*}
$$

Now, suppose the factor $e^{(\mu-r)\left(t_{k}-t_{k-1}\right)}$ in (11) would be absent. Then the round brackets in the third line of (7) would be zero for all k and the price of the option v_{0} would be given by the expectation of the discounted payoff. Thus, we would be able to compute the price without knowing the hedging strategy, provided that there is a replicating strategy. Now, this factor is not absent but we can ask the following question: Is there some measure $d \tilde{W}$ such that

$$
\begin{equation*}
\mathrm{E}_{\tilde{W}}\left[s\left(x_{t_{k}}, t_{k}\right) \mid x_{t_{k-1}}\right]=s\left(x_{t_{k-1}}, t_{k-1}\right) \tag{12}
\end{equation*}
$$

If this is the case then we can compute the price v_{0} of the option with discounted payoff h by taking the expectation value with respect to $d \tilde{W}$,

$$
\begin{equation*}
v_{0}=\mathrm{E}_{\tilde{W}}[h] \tag{13}
\end{equation*}
$$

since the round brackets in the third line of (7) all vanish. There is the following

Theorem 9.1: Let $s_{t_{k}}=s\left(x_{t_{k}}, t_{k}\right)$ be a discounted geometric Brownian motion given by (2). Define the kernels $\tilde{p}_{t}(x, y)=\tilde{p}_{t}^{\mu, r, \sigma}(x, y)$ by

$$
\begin{equation*}
\tilde{p}_{t}(x, y):=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{\left(x-y-\frac{\mu-r}{\sigma} t\right)^{2}}{2 t}} \tag{14}
\end{equation*}
$$

Then:
a) The kernels \tilde{p} satisfy

$$
\begin{equation*}
\int_{\mathbb{R}} \tilde{p}_{s}(x, y) \tilde{p}_{t}(y, z) d y=\tilde{p}_{s+t}(x, z) \tag{15}
\end{equation*}
$$

and $\int_{\mathbb{R}} \tilde{p}_{s}(x, y) d y=1$ for all x. That is, the measure

$$
\begin{equation*}
d \tilde{W}\left(\left\{x_{t}\right\}_{0<t \leq T}\right):=\lim _{\Delta t \rightarrow 0} \prod_{k=1}^{N_{T}} \tilde{p}_{\Delta t}\left(x_{(k-1) \Delta t}, x_{k \Delta t}\right) d x_{k \Delta t} \tag{16}
\end{equation*}
$$

is well defined.
b) The price process (2) is a martingale with respect to $d \tilde{W}$. That is,

$$
\begin{align*}
\mathrm{E}_{\tilde{W}}\left[s\left(x_{t^{\prime}}, t^{\prime}\right) \mid x_{t}\right] & :=\int s\left(x_{t^{\prime}}, t^{\prime}\right) d \tilde{W}\left(\left\{x_{s}\right\}_{t<s \leq T}\right) \\
& =s\left(x_{t}, t\right) \quad \forall t<t^{\prime} \tag{17}
\end{align*}
$$

The measure $d \tilde{W}$ is called an equivalent martingale measure (with respect to the price process s_{t}).

Proof: a) Let $p_{t}(x, y)$ be the kernel of Chapter 4,

$$
p_{t}(x, y)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{(x-y)^{2}}{2 t}}
$$

Then

$$
\begin{equation*}
\tilde{p}_{t}(x, y)=p_{t}\left(x-\frac{\mu-r}{\sigma} t, y\right)=p_{t}\left(x, y+\frac{\mu-r}{\sigma} t\right)=p_{t}\left(x-\frac{\mu-r}{2 \sigma}, y+\frac{\mu-r}{2 \sigma}\right) \tag{18}
\end{equation*}
$$

such that, with Lemma 4.1,

$$
\begin{align*}
\int_{\mathbb{R}} \tilde{p}_{s}(x, y) \tilde{p}_{t}(y, z) d y & =\int_{\mathbb{R}} p_{s}\left(x-\frac{\mu-r}{\sigma} s, y\right) p_{t}\left(y, z+\frac{\mu-r}{\sigma} t\right) d y \\
& =p_{s+t}\left(x-\frac{\mu-r}{\sigma} s, z+\frac{\mu-r}{\sigma} t\right)=\tilde{p}_{s+t}(x, z) \tag{19}
\end{align*}
$$

which proves part (a). Part (b) is obtained as (11),

$$
\begin{align*}
& \mathrm{E}_{\tilde{W}}\left[s\left(x_{t^{\prime}}, t^{\prime}\right) \mid x_{t}\right]=\int_{\mathbb{R}} s\left(x_{t^{\prime}}, t^{\prime}\right) \tilde{p}_{t^{\prime}-t}\left(x_{t}, x_{t^{\prime}}\right) d x_{t^{\prime}} \\
& \quad=\frac{1}{\sqrt{2 \pi\left(t^{\prime}-t\right)}} \int_{\mathbb{R}} S_{0} e^{\sigma x_{t^{\prime}}+\left(\mu-r-\sigma^{2} / 2\right) t^{\prime}} e^{-\frac{\left(x_{t}-x_{t^{\prime}} \frac{\mu-r}{\sigma}\left(t^{\prime}-t\right)\right)^{2}}{2\left(t^{\prime}-t\right)}} d x_{t^{\prime}} \\
& \quad=S_{0} e^{\sigma x_{t}+\left(\mu-r-\sigma^{2} / 2\right) t} e^{-\frac{\sigma^{2}\left(t^{\prime}-t\right)}{} \frac{1}{\sqrt{2 \pi\left(t^{\prime}-t\right)}} \int_{\mathbb{R}} e^{\sigma\left(x_{t^{\prime}}-x_{t}+\frac{\mu-r}{\sigma}\left(t^{\prime}-t\right)\right)} e^{-\frac{\left(x_{t}-x_{t^{\prime}}-\frac{\mu-r}{\sigma}\left(t^{\prime}-t\right)\right)^{2}}{2\left(t^{\prime}-t\right)}} d x_{t^{\prime}}} \\
& =S_{0} e^{\sigma x_{t}+\left(\mu-r-\sigma^{2} / 2\right) t} e^{-\frac{\sigma^{2}}{2}\left(t^{\prime}-t\right)} \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{\sigma \sqrt{t^{\prime}-t} y} e^{-\frac{y^{2}}{2}} d y \\
& =S_{0} e^{\sigma x_{t}+\left(\mu-r-\sigma^{2} / 2\right) t} \\
& =s\left(x_{t}, t\right) \tag{20}
\end{align*}
$$

This proves the theorem.

