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Kapitel 8: Stochastic Calculus und Payoff Replication
im Black-Scholes Modell, Teil1

In the last chapter we derived the Black-Scholes equation by considering the recursion
relations of the replicating portfolio in the approximating Binomial model and then we took
the continuous time limit. In this chapter we ask the following question: Is it possible to
derive the Black-Scholes equation directly from the Black-Scholes model

dSt/St = µ dt+ σ dxt (1)

in continuous time, without using the approximating Binomial model? The answer is yes. In
the following, we will use the Ito-formula to make the appropriate calculations. For simplicity,
we start with zero rates, r = 0.

In the first chapter we saw that the portfolio value Vtk of a selffinancing strategy, which
holds δtk−1

stocks ‘at the end of time tk−1’ or ‘at the beginning of time tk’ and readjusts this
to δtk stocks ’at the end of time tk after the asset price has switched from Stk−1

to Stk , is given
by

Vtk = V0 +
k∑
j=1

δtj−1
· (Stj − Stj−1

) = Vtk−1
+ δtk−1

· (Stk − Stk−1
) (2)

In continuous time with ‘continuous trading’ this may be rewritten as a stochastic integral,
as an Ito-integral

Vt = V0 +
∫ t

0
δτ dSτ (3)

or in differential form, if we subtract the Vtk−1
-term on the right hand side (2),

dV = δ dS (4)

where dV is the limit of

Vt(St)− Vt−∆t(St−∆t) = V (St, t)− V (St−∆t, t−∆t)
∆t→0→ dV (5)

Since we have V = V (St, t) and St is a stochastic quantity, we have to use the Ito-Formula,
the differential version of the Ito-Formula, to calculate the dV . Let’s start by recalling the
calculation rules for the Brownian motion,

(dxt)
2 = dt

dxt dt = 0 (6)

(dt)2 = 0



As a consequence of these rules, we obtained the Ito-Formula in Chapter 4. There was a
differential version and an integral version. Let’s summarize both versions in the following

Theorem 8.1 (Ito-Formula for Functions of a Brownian Motion): Let

F = F (x) : R → R

be an arbitrary two-times differentiable function of one variable and let {xt}0≤t≤T be a Brow-
nian motion. Then we have the following identities:

a) Differential Version: Let dF (xt) := F (xt)− F (xt−dt). Then

dF (xt) = F ′(xt) dxt + 1
2
F ′′(xt) (dxt)

2

= F ′(xt) dxt + 1
2
F ′′(xt) dt

b) Integral Version: We have

F (xT ) − F (x0) =
∫ T

0
F ′(xt) dxt + 1

2

∫ T
0
F ′′(xt) dt

where the stochastic dxt-integral above is to be defined as an Ito-integral according to

∫ T
0
f(xt) dxt = lim

∆t→0

N∑
k=1

f(xtk−1
) ∆xtk = lim

∆t→0

N∑
k=1

f(xtk−1
)
√

∆t φk

and the Brownain motion xtk−1
at time tk−1 = (k − 1)∆t given by

xtk−1
=
√

∆t
k−1∑
j=1

φj .

A slightly generalized version of this is the following

Theorem 8.2 (Ito-Formula for Functions of a Brownian Motion and Time): Let

F = F (x, t) : R2 → R

be an arbitrary two-times differentiable function of two variables and let {xt}0≤t≤T be a
Brownian motion. Then we have the following identities:

a) Differential Version: Let dF (xt, t) := F (xt, t)− F (xt−dt, t− dt). Then

dF = ∂F
∂x
dxt + 1

2
∂2F
∂x2

(dxt)
2 + ∂F

∂t
dt

= ∂F
∂x
dxt +

{
1
2
∂2F
∂x2

+ ∂F
∂t

}
dt

b) Integral Version: We have

F (xT , T ) − F (x0, 0) =
∫ T

0
∂F
∂x
dxt +

∫ T
0

{
1
2
∂2F
∂x2

+ ∂F
∂t

}
dt

where the stochastic dxt-integral above again is to be defined as an Ito-integral.



Since we want to calculate quantities like

Vt(St)− Vt−∆t(St−∆t) = V (St, t)− V (St−∆t, t−∆t)
∆t→0→ dV

where S is given by

S = S(xt, t) = S0 e
σxt + (µ−σ2/2)t

we need actually a more general version than the two theorems above. Namely, the F above
in the theorems is now the V , the portfolio value. However, we want to consider the V as a
function of St, not of xt. That is, we plug in stochastic objects, but not directly the Brownian
motion, but functions of it. To specify the class of stochastic objects we can plug into the V
or some F = F (St, t), we need the following

Definition 8.3: An Ito diffusion is a stochastic process Xt given by the SDE

dXt = a(Xt, t) dt + b(Xt, t) dxt

with xt being a Brownian motion.

Example: The Black-Scholes model given by the geometric Brownain motion

St = S(xt, t) = S0 e
σxt + (µ−σ2/2)t

is an Ito-diffusion since with Theorem 8.2

dSt = ∂S
∂x
dxt +

{
1
2
∂2S
∂x2

+ ∂S
∂t

}
dt

= σ St dxt +
{

σ2

2
St + (µ− σ2/2)St

}
dt

= σ St dxt + µSt dt

which is of course equivalent to the SDE we derived already in Chapter 4,

dSt/St = µ dt + σ dxt

Thus we have

a(St, t) = µSt

b(St, t) = σ St

in Definition 8.3 and St is an Ito-diffusion. Now we can state a third theorem which summa-
rizes the formulae we will actually use:

Theorem 8.4 (Ito-Formula for Functions of an Ito-Diffusion and Time): Let

F = F (x, t) : R2 → R

be an arbitrary two-times differentiable function of two variables and let {xt}0≤t≤T be a
Brownian motion. Let Xt be an Ito-diffusion given by the SDE

dXt = a(Xt, t) dt + b(Xt, t) dxt

We plug Xt into the first argument of F and consider the function F = F (Xt, t) . Then we
have the following identities:



a) Differential Version: Let dF (Xt, t) := F (Xt, t) − F (Xt−dt, t − dt) with Xt being
the Ito-diffusion from above. Then

dF = ∂F
∂x
dXt + 1

2
∂2F
∂x2

(dXt)
2 + ∂F

∂t
dt

= ∂F
∂x

(a dt + b dxt) + 1
2
∂2F
∂x2

(a dt + b dxt)
2 + ∂F

∂t
dt

= ∂F
∂x

(a dt + b dxt) + b2

2
∂2F
∂x2

dt + ∂F
∂t
dt

=
{
a ∂F
∂x

+ b2

2
∂2F
∂x2

+ ∂F
∂t

}
dt + b ∂F

∂x
dxt

b) Integral Version: We have

F (XT , T ) − F (X0, 0) =
∫ T

0

{
a ∂F
∂x

+ b2

2
∂2F
∂x2

+ ∂F
∂t

}
dt +

∫ T
0
b ∂F
∂x
dxt

where the stochastic dxt-integral above again is to be defined as an Ito-integral.

Now we are in a position to calculate dV , the change of the value of the replicating portfolio
in contiuous time. With the Ito-Formula, we get

dV = ∂V
∂S
dS + 1

2
∂2V
∂S2 (dS)2 + ∂V

∂t
dt

= ∂V
∂S
dS +

{
1
2
∂2V
∂S2 σ

2S2 + ∂V
∂t

}
dt (7)

Thus, if this change should be given by trading δ stocks of the underlying, that is, if this
should be equal to δ dS,

dV = ∂V
∂S
dS +

{
1
2
∂2V
∂S2 σ

2S2 + ∂V
∂t

}
dt

!
= δ dS (8)

we have to have the equations

δ = ∂V
∂S

(9)

which coincides with the definition of the previous chapter and

1
2
∂2V
∂S2 σ

2S2 + ∂V
∂t

= 0 (10)

which is the Black-Scholes equation for zero interest rates. Thus, if (9) and (10) are fulfilled,
we can use the integral version of Theorem 8.4 with Xt = St and F (Xt, t) = V (St, t) and

(dSt)
2 = S2

t (µ dt + σ dxt)
2 Rechenregeln BB

= S2
t σ

2 dt (11)

to obtain

V (ST , T ) − V (S0, 0) =
∫ T

0
∂V
∂S
dSt +

∫ T
0

{
1
2
∂2V
∂S2 σ

2S2 + ∂V
∂t

}
︸ ︷︷ ︸

= 0

dt

=
∫ T

0
δ(St, t) dSt (12)



Thus, some payoff H = H(ST ) can be exactly replicated in continuous time if we impose the
final condition

V (ST , T ) = H(ST ) (13)

in addition to (10).

When interest rates are present, a similar derivation can be done. Since this is an important
calculation and an important result, in the continuous time Black-Scholes model exact payoff
replication is still possible, we state this in a separate theorem which we will formulate and
prove tomorrow.


