Kapitel 7: Die Black-Scholes PDE

In chapter 5, we approximated the Black-Scholes model

$$
\begin{equation*}
d S_{t} / S_{t}=\mu d t+\sigma d x_{t} \tag{1}
\end{equation*}
$$

with a suitable Binomial model and were able to derive a pricing formula for option payoffs $H=H\left(S_{T}\right)$. The time 0 theoretical fair value is given by

$$
\begin{equation*}
V_{0}^{\mathrm{BS}}=e^{-r T} \int_{\mathbb{R}} H\left(S_{0} e^{\sigma \sqrt{T} y} e^{\left(r-\frac{\sigma^{2}}{2}\right) T}\right) \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} d y \tag{2}
\end{equation*}
$$

One can show that this quantity can also be obtained as the unique solution of the following partial differential equation: $V_{0}^{\mathrm{BS}}=V\left(S=S_{0}, t=0\right)$ where $V(S, t)$ is a solution of

$$
\begin{align*}
\frac{\partial V}{\partial t}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V & =0 \tag{3}\\
V(S, t=T) & =H(S) \tag{4}
\end{align*}
$$

Equation (3) is called the Black-Scholes equation. Instead of doing just a brute force calculation and checking that indeed (2) is a solution of (3), which would give no further insight in the origin of (3), we will now derive $(3,4)$ as the contiuous time limit of the recursion relations for the replicating portfolio values in the approximating Binomial model. Recall from Theorem 2.1 that the replicating strategy $\delta_{t_{k}}$ and the portfolio values $V_{t_{k}}$ can be inductively (from $k=N$ to $k=0$) calculated through the following formulae:

$$
\begin{align*}
V_{t_{k}} & =\frac{\left(1-d_{\Delta t}-d_{\Delta t} \mathrm{ret}_{\text {down }}\right) V_{t_{k+1}}^{\mathrm{up}}-\left(1-d_{\Delta t}-d_{\Delta t} \mathrm{ret}_{\mathrm{up}}\right) V_{t_{k+1}}^{\text {down }}}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}} \tag{5}\\
V_{t_{N}} & =H
\end{align*}
$$

where

$$
\begin{equation*}
V_{t_{k+1}}^{\text {up,down }}:=V_{t_{k+1}}\left(S_{t_{k}}\left(1+\operatorname{ret}_{\mathrm{up}, \mathrm{down}}\right)\right) \tag{6}
\end{equation*}
$$

and, with time steps $t_{k}=k \Delta t$, the discount factor $d_{k, k+1}=e^{-r\left(t_{k+1}-t_{k}\right)}$ of Theorem 2.1 becomes

$$
\begin{equation*}
d_{k, k+1}=e^{-r \Delta t} \tag{7}
\end{equation*}
$$

The delta's are obtained from

$$
\begin{equation*}
\delta_{t_{k}}=\frac{V_{t_{k+1}}\left(S_{t_{k}}\left(1+\operatorname{ret}_{\mathrm{up}}\right)\right)-V_{t_{k+1}}\left(S_{t_{k}}\left(1+\operatorname{ret}_{\text {down }}\right)\right)}{S_{t_{k}}\left(1+\operatorname{ret}_{\mathrm{up}}\right)-S_{t_{k}}\left(1+\operatorname{ret}_{\text {down }}\right)} \tag{8}
\end{equation*}
$$

The Binomial model which approximates the Black-Scholes model (1) is given by

$$
\begin{align*}
\operatorname{ret}_{\mathrm{up}} & =\mu \Delta t+\sigma \sqrt{\Delta t} \tag{9}\\
\operatorname{ret}_{\text {down }} & =\mu \Delta t-\sigma \sqrt{\Delta t} \tag{10}
\end{align*}
$$

The delta's of (8) simply become

$$
\begin{equation*}
\delta_{t}=\frac{\partial V\left(S_{t}, t\right)}{\partial S_{t}} \tag{11}
\end{equation*}
$$

in the contiuum limit $\Delta t \rightarrow 0$. Now let us consider the continuum limit of (5). To get a feeling for the problem, let us first put the interest rates to zero, $r=0$. In that case (5) reduces to

$$
\begin{align*}
V_{t_{k}} & =\frac{-\operatorname{ret}_{\text {down }} V_{t_{k+1}}^{\mathrm{up}}+\operatorname{ret}_{\mathrm{up}} V_{t_{k+1}}^{\text {down }}}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}} \\
& =\frac{(-\mu \Delta t+\sigma \sqrt{\Delta T}) V_{t_{k+1}}^{\mathrm{up}}+(\mu \Delta t+\sigma \sqrt{\Delta T}) V_{t_{k+1}}^{\text {down }}}{2 \sigma \sqrt{\Delta t}} \\
& =\frac{V_{t_{k+1}}^{\mathrm{up}}+V_{t_{k+1}}^{\text {down }}}{2}-\mu \Delta t \frac{V_{t_{k+1}^{\mathrm{up}}}-V_{t_{k+1}}^{\text {down }}}{2 \sigma \sqrt{\Delta t}} \tag{12}
\end{align*}
$$

Motivated by the Black-Scholes equation where a term $\frac{\partial V}{\partial t}$ shows up, we subtract on both sides of (12) the term $V_{t_{k+1}}\left(S_{t_{k}}\right)$,

$$
\begin{align*}
V_{t_{k}}\left(S_{t_{k}}\right)-V_{t_{k+1}}\left(S_{t_{k}}\right)= & \frac{V_{t_{k+1}}^{\text {up }}+V_{t_{k+1}}^{\text {down }}}{2}-\mu \Delta t \frac{V_{t_{k+1}}^{\mathrm{up}}-V_{t_{k+1}}^{\text {down }}}{2 \sigma \sqrt{\Delta t}}-V_{t_{k+1}}\left(S_{t_{k}}\right) \\
= & \frac{V_{t_{k+1}}^{\text {up }}-2 V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t)\right)+V_{t_{k+1}}^{\text {down }}}{2}-\mu \Delta t \frac{V_{t_{k+1}}^{\text {up }}-V_{t_{k+1}}^{\text {down }}}{2 \sigma \sqrt{\Delta t}} \\
& +V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t)\right)-V_{t_{k+1}}\left(S_{t_{k}}\right) \tag{13}
\end{align*}
$$

We devide this by Δt and obtain

$$
\begin{equation*}
\frac{V_{t_{k}}\left(S_{t_{k}}\right)-V_{t_{k+1}}\left(S_{t_{k}}\right)}{\Delta t}=\operatorname{term}_{1}+\operatorname{term}_{2}+\operatorname{term}_{3} \tag{14}
\end{equation*}
$$

with the following quantities:

$$
\begin{align*}
\operatorname{term}_{1} & =\frac{V_{t_{k+1}}^{\text {up }}-2 V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t)\right)+V_{t_{k+1}}^{\text {down }}}{2 \Delta t} \\
& =\frac{\sigma^{2} S_{t_{k}}^{2}}{2} \frac{V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t+\sigma \sqrt{\Delta t})\right)-2 V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t)\right)+V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t-\sigma \sqrt{\Delta t})\right)}{\left(S_{t_{k}} \sigma \sqrt{\Delta t}\right)^{2}} \\
& \stackrel{\Delta t \rightarrow 0}{ } \frac{\sigma^{2} S_{t_{k}}^{2}}{2} \frac{\partial^{2} V}{\left(\partial S_{t_{k}}\right)^{2}} \tag{15}\\
\operatorname{term}_{2} & =-\mu \frac{V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t+\sigma \sqrt{\Delta t})\right)-V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t-\sigma \sqrt{\Delta t})\right)}{2 \sigma \sqrt{\Delta t}} \\
& =-\mu S_{t_{k}} \frac{V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t+\sigma \sqrt{\Delta t})\right)-V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t-\sigma \sqrt{\Delta t})\right)}{2 S_{t_{k}} \sigma \sqrt{\Delta t}} \\
& \xrightarrow{\Delta t \rightarrow 0}-\mu S_{t_{k}} \frac{\partial V}{\partial S_{t_{k}}} \tag{16}
\end{align*}
$$

$$
\begin{align*}
\operatorname{term}_{3} & =\frac{V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t)\right)-V_{t_{k+1}}\left(S_{t_{k}}\right)}{\Delta t} \\
& =S_{t_{k}} \mu \frac{V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t)\right)-V_{t_{k+1}}\left(S_{t_{k}}\right)}{S_{t_{k}} \mu \Delta t} \\
& \stackrel{\Delta t \rightarrow 0}{\longrightarrow} \mu S_{t_{k}} \frac{\partial V}{\partial S_{t_{k}}} \tag{17}
\end{align*}
$$

Thus, with the notation $V=V\left(S_{t}, t\right)$ instead of $V_{t_{k}}\left(S_{t_{k}}\right)$, we get

$$
\begin{aligned}
-\frac{\partial V\left(S_{t}, t\right)}{\partial t} & =\lim _{\Delta t \rightarrow 0} \frac{V_{t_{k}}\left(S_{t_{k}}\right)-V_{t_{k+1}}\left(S_{t_{k}}\right)}{\Delta t} \\
& =\frac{\sigma^{2} S_{t}^{2}}{2} \frac{\partial^{2} V\left(S_{t}, t\right)}{\partial S_{t}^{2}}-\mu S_{t} \frac{\partial V\left(S_{t}, t\right)}{\partial S_{t}}+\mu S_{t} \frac{\partial V\left(S_{t}, t\right)}{\partial S_{t}}
\end{aligned}
$$

or

$$
\begin{equation*}
\frac{\partial V\left(S_{t}, t\right)}{\partial t}+\frac{\sigma^{2} S_{t}^{2}}{2} \frac{\partial^{2} V\left(S_{t}, t\right)}{\partial S_{t}^{2}}=0 \tag{18}
\end{equation*}
$$

which is the Black-Scholes equation for zero interest rates. To obtain the Black-Scholes equation with nonzero interest rates, we rewrite (5) as follows:

$$
\begin{align*}
V_{t_{k}}= & \frac{\left(1-d_{\Delta t}-d_{\Delta t} \operatorname{ret}_{\text {down }}\right) V_{t_{k+1}}^{\mathrm{up}}-\left(1-d_{\Delta t}-d_{\Delta t} \mathrm{ret}_{\mathrm{up}}\right) V_{t_{k+1}}^{\mathrm{down}}}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}} \\
= & \frac{-\operatorname{ret}_{\text {down }} V_{t_{k+1}}^{\mathrm{up}}+\operatorname{ret}_{\mathrm{up}} V_{t_{k+1}}^{\text {down }}}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}} \tag{19}\\
& +\frac{\left(1-d_{\Delta t}-\left(d_{\Delta t}-1\right) \operatorname{ret}_{\text {down }}\right) V_{t_{k+1}}^{\mathrm{up}}-\left(1-d_{\Delta t}-\left(d_{\Delta t}-1\right) \operatorname{ret}_{\mathrm{up}}\right) V_{t_{k+1}}^{\text {down }}}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}}
\end{align*}
$$

The first term in (19) is the contribution for zero interest rates and has been considered following (12). The second term in (19),

$$
\begin{equation*}
\left(1-d_{\Delta t}\right) \times \frac{\left(1+\operatorname{ret}_{\text {down }}\right) V_{t_{k+1}}^{\text {up }}-\left(1+\operatorname{ret}_{\text {up }}\right) V_{t_{k+1}}^{\text {down }}}{\operatorname{ret}_{\text {up }}-\operatorname{ret}_{\text {down }}} \tag{20}
\end{equation*}
$$

is new. Thus, for non zero interest rates (14) changes to

$$
\begin{equation*}
\frac{V_{t_{k}}\left(S_{t_{k}}\right)-V_{t_{k+1}}\left(S_{t_{k}}\right)}{\Delta t}=\operatorname{term}_{1}+\operatorname{term}_{2}+\operatorname{term}_{3}+\operatorname{term}_{4} \tag{21}
\end{equation*}
$$

with a fourth term given by

$$
\begin{align*}
& \operatorname{term}_{4}= \frac{1-d_{\Delta t}}{\Delta t} \times\left\{\frac{V_{t_{k+1}}^{\mathrm{up}}-V_{t_{k+1}}^{\text {down }}}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}}+\frac{\operatorname{ret}_{\text {down }} V_{t_{k+1}}^{\mathrm{up}}-\operatorname{ret}_{\mathrm{up}} V_{t_{k+1}}^{\text {down }}}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}}\right\} \\
&= \frac{1-e^{-r \Delta t}}{\Delta t} \times\left\{\frac{V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t+\sigma \sqrt{\Delta t})\right)-V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t-\sigma \sqrt{\Delta t})\right)}{2 \sigma \sqrt{\Delta t}}\right. \\
&\left.\quad+\frac{(\mu \Delta t-\sigma \sqrt{\Delta t}) V_{t_{k+1}}^{\mathrm{up}}-(\mu \Delta t+\sigma \sqrt{\Delta t}) V_{t_{k+1}}^{\text {down }}}{2 \sigma \sqrt{\Delta t}}\right\} \\
&= \frac{1-e^{-r \Delta t}}{\Delta t} \times\left\{S_{t_{k}} \frac{V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t+\sigma \sqrt{\Delta t})\right)-V_{t_{k+1}}\left(S_{t_{k}}(1+\mu \Delta t-\sigma \sqrt{\Delta t})\right)}{2 S_{t_{k}} \sigma \sqrt{\Delta t}}\right. \\
&\left.+\mu \Delta t \frac{V_{t_{k+1}}^{\mathrm{up}}-V_{t_{k+1}}^{\text {down }}}{2 \sigma \sqrt{\Delta t}}-\frac{V_{t_{k+1}}^{\text {up }}+V_{t_{k+1}}^{\text {down }}}{2}\right\} \\
& \xrightarrow{\Delta t \rightarrow 0} r \times\left\{S_{t_{k}} \frac{\partial V}{\partial S_{t_{k}}}+0-V\right\} \tag{22}
\end{align*}
$$

and (21) becomes

$$
\begin{equation*}
-\frac{\partial V\left(S_{t}, t\right)}{\partial t}=\frac{\sigma^{2} S_{t}^{2}}{2} \frac{\partial^{2} V\left(S_{t}, t\right)}{\partial S_{t}^{2}}+r S_{t} \frac{\partial V\left(S_{t}, t\right)}{\partial S_{t}}-r V \tag{23}
\end{equation*}
$$

which is the Black-Scholes equation (3) with non zero interest rates.

