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Kapitel 7: Die Black-Scholes PDE

In chapter 5, we approximated the Black-Scholes model
dSt/St = ,Udt—f—(fdxt (1)

with a suitable Binomial model and were able to derive a pricing formula for option payoffs
H = H(Sr). The time 0 theoretical fair value is given by
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One can show that this quantity can also be obtained as the unique solution of the following
partial differential equation: V25 = V(S = Sy, t = 0) where V (S, ) is a solution of
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Equation (3) is called the Black-Scholes equation. Instead of doing just a brute force calcu-
lation and checking that indeed (2) is a solution of (3), which would give no further insight
in the origin of (3), we will now derive (3,4) as the contiuous time limit of the recursion rela-
tions for the replicating portfolio values in the approximating Binomial model. Recall from
Theorem 2.1 that the replicating strategy d;, and the portfolio values V;, can be inductively
(from k = N to k = 0) calculated through the following formulae:
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where
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and, with time steps ¢, = kAt, the discount factor dj ., = e "+17%) of Theorem 2.1
becomes
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The delta’s are obtained from
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The Binomial model which approximates the Black-Scholes model (1) is given by
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The delta’s of (8) simply become
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in the contiuum limit At — 0. Now let us consider the continuum limit of (5). To get a
feeling for the problem, let us first put the interest rates to zero, r = 0. In that case (5)
reduces to
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Motivated by the Black-Scholes equation where a term %—‘t/ shows up, we subtract on both
sides of (12) the term V;,, (S, ),
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We devide this by At and obtain
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with the following quantities:
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Thus, with the notation V' = V' (S;,t) instead of V;, (S, ), we get
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which is the Black-Scholes equation for zero interest rates. To obtain the Black-Scholes
equation with nonzero interest rates, we rewrite (5) as follows:

(1 —day — dAtl"etdOWn>‘/tup . (1 —da, — dAtretup)‘/tdown
V., = k+1 1
" retup — retdown

up d
—Tebdown V},,, + Tetup Vi TT" )
retyp — retaown

(1 — dAt — (dAt — 1)retdown) V?liil — (1 - dAt - (dAt - 1)retup) Vdown

tri1

retyp, — retaown

The first term in (19) is the contribution for zero interest rates and has been considered
following (12). The second term in (19),
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is new. Thus, for non zero interest rates (14) changes to
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with a fourth term given by



Vdown

up down up
1 —da Vtk+1 B Vtk+1 I€tdown V;fkﬂ — Telyp Vi,
termy = X +
At retyp — retdown retyp — retdown

e y {V;Hl (St (1 + pAt + oVAL)) — Vi, (e, (1 + pAt — oV AL))
At 20V At
. (uAt — oV AL) VP — (uAt + oV At) V;jjvlvn}

tet1

20V At
Vieor (St (1 + pAt + oV/AL)) — Vi, (Si, (1 + pAt — ov/At))

1— e—rAt

L e,

At 2Stk0\/ At

S R
20V At 2
At—0 oV
— r X {Stkﬁtk + 0 — V} (22)
and (21) becomes
2Q2 72

t

_8V(St,t) . o St 0 V(St,t) i TSt QV(St, ) I v (23)

o 2 9S? a5,

which is the Black-Scholes equation (3) with non zero interest rates.



