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Kapitel 5: Das Black-Scholes Modell als zeitstetiger Grenzwert
des Binomialmodells, Teil2

Gestern haben wir gesehen, dass ein Binomialmodell mit Returns

retup = µ∆t+ σ
√

∆t (1)

retdown = µ∆t− σ
√

∆t (2)

im Limes ∆t→ 0 die Dynamik eines Black-Scholes Modells approximieren tut. Diese Tatsache
benutzen wir jetzt, um Optionspreise im Black-Scholes Modell zu berechnen.

Now that we are in a position to approximate the Black-Scholes model with a suitable Bi-
nomial model, we can consider option prices and replicating strategies. Consider first the
case of a european option with payoff H = H(ST ) which depends only on the stock price at
maturity. According to Theorem 3.2, its theoretical fair value V0 is given by (tN = T , t0 = 0)

V0 = e−rT
N∑
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with the risk neutral probability
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and up- and down-returns given by
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Using er∆t = 1 + r∆t+O
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)
and neglecting terms quadratic in ∆t, we can write
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To obtain the option price under the Black-Scholes model, we have to calculate the ∆t → 0
limit of (3). A naive guess could be that the risk neutral probabilities converge actually to
1/2 and then (3) actually coincides with the real world expectation value (with f = H)
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and this expression converges to the real world Black-Scholes expectation value
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If this would be true, it would be actually quite bad since in that case the option price would
depend on the drift parameter µ and this parameter is basically not predictable. Knowing
µ is basically equivalent to knowing whether the underlying is going up or down, this is not
predictable. Recall that the basic result of the very elementary example in chapter 0 was
that you have to buy half a stock and then you are save, regardless whether the underlying
is going up or down.

Fortunately this is still true in the Black-Scholes model. The
√

∆t-term in the risk
neutral probabilities is actually highly important and it has the effect that in the continuous
time limit the drift parameter µ completely drops out of the pricing formula, it is simply
substituted by the interest rate parameter r. There is the following

Theorem 5.2: Consider a Binomial model with returns (1,2) which converges to the Black-
Scholes model with dSt/St = µdt + σdxt with real world drift parameter µ. Let V Bin

0 be the
theoretical fair value of some european option H = H(ST ) in the Binomial model. Then
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where the theoretical fair value under the Black-Scholes model in given by
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Proof: As in the proof of Theorem 5.1, we have
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Abbreviating
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the risk neutral probability (5) is written as
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Using the Taylor expansion for log(1 + x) again,
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Thus, the theoretical fair value (3) in the Binomial model becomes, again ignoring the last

exponential eO(
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∆t) in (13),
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Making the substitution of variables
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which coincides with (9). �

In the next chapter we apply the basic pricing formula (9),
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to standard call and put options and obtain in this way the famous Black-Scholes formulae,
for which Robert Merton and Myron Scholes received the Economics Nobel Prize in 1997
(“for a new method to determine the value of derivatives”). Fischer Black died in 1995.


