## Kapitel 5: Das Black-Scholes Modell als zeitstetiger Grenzwert des Binomialmodells, Teil2

Gestern haben wir gesehen, dass ein Binomialmodell mit Returns

$$
\begin{align*}
\operatorname{ret}_{\text {up }} & =\mu \Delta t+\sigma \sqrt{\Delta t}  \tag{1}\\
\operatorname{ret}_{\text {down }} & =\mu \Delta t-\sigma \sqrt{\Delta t} \tag{2}
\end{align*}
$$

im Limes $\Delta t \rightarrow 0$ die Dynamik eines Black-Scholes Modells approximieren tut. Diese Tatsache benutzen wir jetzt, um Optionspreise im Black-Scholes Modell zu berechnen.

Now that we are in a position to approximate the Black-Scholes model with a suitable Binomial model, we can consider option prices and replicating strategies. Consider first the case of a european option with payoff $H=H\left(S_{T}\right)$ which depends only on the stock price at maturity. According to Theorem 3.2, its theoretical fair value $V_{0}$ is given by $\left(t_{N}=T, t_{0}=0\right)$

$$
\begin{equation*}
V_{0}=e^{-r T} \sum_{k=0}^{N} H\left(S_{0}\left(1+\operatorname{ret}_{\mathrm{up}}\right)^{k}\left(1+\operatorname{ret}_{\mathrm{down}}\right)^{N-k}\right) \times\binom{ N}{k} p_{\mathrm{rn}}^{k}\left(1-p_{\mathrm{rn}}\right)^{N-k} \tag{3}
\end{equation*}
$$

with the risk neutral probability

$$
\begin{equation*}
p_{\mathrm{rn}}=\frac{e^{r \Delta t}-1-\operatorname{ret}_{\text {down }}}{\operatorname{ret}_{\mathrm{up}}-\operatorname{ret}_{\text {down }}} \tag{4}
\end{equation*}
$$

and up- and down-returns given by

$$
\begin{aligned}
\operatorname{ret}_{\text {up }} & =\mu \Delta t+\sigma \sqrt{\Delta t} \\
\operatorname{ret}_{\text {down }} & =\mu \Delta t-\sigma \sqrt{\Delta t}
\end{aligned}
$$

Using $e^{r \Delta t}=1+r \Delta t+O\left((\Delta t)^{2}\right)$ and neglecting terms quadratic in $\Delta t$, we can write

$$
\begin{equation*}
p_{\mathrm{rn}}=\frac{(r-\mu) \Delta t+\sigma \sqrt{\Delta t}}{2 \sigma \sqrt{\Delta t}}=\frac{1+\frac{r-\mu}{\sigma} \sqrt{\Delta t}}{2} \tag{5}
\end{equation*}
$$

To obtain the option price under the Black-Scholes model, we have to calculate the $\Delta t \rightarrow 0$ limit of (3). A naive guess could be that the risk neutral probabilities converge actually to $1 / 2$ and then (3) actually coincides with the real world expectation value (with $f=H$ )

$$
\begin{equation*}
\mathrm{E}^{\mathrm{Bin}}\left[f\left(S_{t}\right)\right]=\sum_{k=0}^{N} f\left(S_{0}(1+\mu \Delta t+\sigma \sqrt{\Delta t})^{k}(1+\mu \Delta t-\sigma \sqrt{\Delta t})^{N-k}\right) \times \frac{1}{2^{N}}\binom{N}{k} \tag{6}
\end{equation*}
$$

and this expression converges to the real world Black-Scholes expectation value

$$
\begin{align*}
\mathrm{E}^{\mathrm{BS}}\left[f\left(S_{t}\right)\right] & =\int f\left(S_{0} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma x_{t}}\right) d W\left(\left\{x_{t}\right\}_{0<t \leq T}\right) \\
& =\int_{\mathbb{R}} f\left(S_{0} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma x_{t}}\right) \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x_{t}^{2}}{2 t}} d x_{t} \\
& =\int_{\mathbb{R}} f\left(S_{0} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sqrt{t} \sigma x}\right) \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \tag{7}
\end{align*}
$$

If this would be true, it would be actually quite bad since in that case the option price would depend on the drift parameter $\mu$ and this parameter is basically not predictable. Knowing $\mu$ is basically equivalent to knowing whether the underlying is going up or down, this is not predictable. Recall that the basic result of the very elementary example in chapter 0 was that you have to buy half a stock and then you are save, regardless whether the underlying is going up or down.

Fortunately this is still true in the Black-Scholes model. The $\sqrt{\Delta t}$-term in the risk neutral probabilities is actually highly important and it has the effect that in the continuous time limit the drift parameter $\mu$ completely drops out of the pricing formula, it is simply substituted by the interest rate parameter $r$. There is the following

Theorem 5.2: Consider a Binomial model with returns $(1,2)$ which converges to the BlackScholes model with $d S_{t} / S_{t}=\mu d t+\sigma d x_{t}$ with real world drift parameter $\mu$. Let $V_{0}^{\text {Bin }}$ be the theoretical fair value of some european option $H=H\left(S_{T}\right)$ in the Binomial model. Then

$$
\begin{equation*}
\lim _{\Delta t \rightarrow 0} V_{0}^{\mathrm{Bin}}=V_{0}^{\mathrm{BS}} \tag{8}
\end{equation*}
$$

where the theoretical fair value under the Black-Scholes model in given by

$$
\begin{equation*}
V_{0}^{\mathrm{BS}}=e^{-r T} \int_{\mathbb{R}} H\left(S_{0} e^{\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma \sqrt{T} x}\right) e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}} \tag{9}
\end{equation*}
$$

Proof: As in the proof of Theorem 5.1, we have

$$
\begin{equation*}
\left(1+\operatorname{ret}_{\mathrm{up}}\right)^{k}\left(1+\operatorname{ret}_{\mathrm{down}}\right)^{N-k}=e^{\sigma \sqrt{\Delta t}(2 k-N)} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) T} e^{O(\sqrt{\Delta t})} \tag{10}
\end{equation*}
$$

Abbreviating

$$
\begin{equation*}
\alpha:=\frac{r-\mu}{\sigma} \tag{11}
\end{equation*}
$$

the risk neutral probability (5) is written as

$$
\begin{equation*}
p_{\mathrm{rn}}=\frac{1+\alpha \sqrt{\Delta t}}{2} \tag{12}
\end{equation*}
$$

Using the Taylor expansion for $\log (1+x)$ again,

$$
\begin{align*}
p_{\mathrm{rn}}^{k}\left(1-p_{\mathrm{rn}}\right)^{N-k} & =\frac{1}{2^{N}} e^{k \log (1+\alpha \sqrt{\Delta t})+(N-k) \log (1-\alpha \sqrt{\Delta t})} \\
& =\frac{1}{2^{N}} e^{k\left(\alpha \sqrt{\Delta t}-\frac{\alpha^{2}}{2} \Delta t\right)+(N-k)\left(-\alpha \sqrt{\Delta t}-\frac{\alpha^{2}}{2} \Delta t\right)+O(\sqrt{\Delta t})} \\
& =\frac{1}{2^{N}} e^{-(N-2 k) \alpha \sqrt{\Delta t}} e^{-\frac{\alpha^{2}}{2} T} e^{O(\sqrt{\Delta t})} \tag{13}
\end{align*}
$$

Thus, the theoretical fair value (3) in the Binomial model becomes, again ignoring the last exponential $e^{O(\sqrt{\Delta t})}$ in (13),

$$
\begin{aligned}
V_{0} & =e^{-r T} \sum_{k=0}^{N} H\left(S_{0}\left(1+\operatorname{ret}_{\mathrm{up}}\right)^{k}\left(1+\operatorname{ret}_{\mathrm{down}}\right)^{N-k}\right)\binom{N}{k} p_{\mathrm{rn}}^{k}\left(1-p_{\mathrm{rn}}\right)^{N-k} \\
& =e^{-r T} \sum_{k=0}^{N} H\left(S_{0} e^{\sigma \sqrt{\Delta t}(2 k-N)} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) T}\right)\binom{N}{k} \frac{1}{2^{N}} e^{-(N-2 k) \alpha \sqrt{\Delta t}} e^{-\frac{\alpha^{2}}{2} T} \\
& =e^{-r T} e^{-\frac{\alpha^{2}}{2} T} \sum_{k=0}^{N} \underbrace{H\left(S_{0} e^{\sigma \sqrt{\Delta t}(2 k-N)} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) T}\right) e^{\alpha \sqrt{\Delta t}(2 k-N)}}_{=: f[\sqrt{\Delta t}(2 k-N)] \text { for Lemma } 5.1} \frac{1}{2^{N}}\binom{N}{k} \\
& \xrightarrow{\Delta t \rightarrow 0} e^{-r T} e^{-\frac{\alpha^{2}}{2} T} \int_{\mathbb{R}} H\left(S_{0} e^{\sigma x} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) T}\right) e^{\alpha x} \frac{1}{\sqrt{2 \pi T}} e^{-\frac{x^{2}}{2 T}} d x \\
& =e^{-r T} \int_{\mathbb{R}} H\left(S_{0} e^{\sigma x} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) T}\right) \frac{1}{\sqrt{2 \pi T}} e^{-\frac{1}{2}\left(\frac{x}{\sqrt{T}}-\sqrt{T} \alpha\right)^{2}} d x
\end{aligned}
$$

Making the substitution of variables

$$
y=\frac{x}{\sqrt{T}}-\sqrt{T} \alpha \Leftrightarrow x=\sqrt{T} y+T \alpha
$$

we arrive at

$$
\begin{aligned}
V_{0}= & e^{-r T} \int_{\mathbb{R}} H\left(S_{0} e^{\sigma x} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) T}\right) \frac{1}{\sqrt{2 \pi T}} e^{-\frac{1}{2}\left(\frac{x}{\sqrt{T}}-\sqrt{T} \alpha\right)^{2}} d x \\
& e^{-r T} \int_{\mathbb{R}} H\left(S_{0} e^{\sigma(\sqrt{T} y+T \alpha)} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) T}\right) \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} d y \\
= & e^{-r T} \int_{\mathbb{R}} H\left(S_{0} e^{\sigma \sqrt{T} y+T(r-\mu)} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) T}\right) \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} d y \\
= & e^{-r T} \int_{\mathbb{R}} H\left(S_{0} e^{\sigma \sqrt{T} y} e^{\left(r-\frac{\sigma^{2}}{2}\right) T}\right) \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} d y
\end{aligned}
$$

which coincides with (9).

In the next chapter we apply the basic pricing formula (9),

$$
\begin{equation*}
V_{0}^{\mathrm{BS}}=e^{-r T} \int_{\mathbb{R}} H\left(S_{0} e^{\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma \sqrt{T} x}\right) e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}} \tag{9}
\end{equation*}
$$

to standard call and put options and obtain in this way the famous Black-Scholes formulae, for which Robert Merton and Myron Scholes received the Economics Nobel Prize in 1997 ("for a new method to determine the value of derivatives"). Fischer Black died in 1995.

