Lösungen Übungsblatt 8 Finanzmathematik I

Aufgabe 1+2: We use theorem 4.1 from the lecture notes which was the following statement:

Theorem 4.1: Let $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be some function and let $0=: t_{0}<t_{1}<\cdots<t_{m} \leq T$. Then

$$
\begin{equation*}
\int F\left(x_{t_{1}}, \ldots, x_{t_{m}}\right) d W\left(\left\{x_{t}\right\}_{0<t \leq T}\right)=\int_{\mathbb{R}^{m}} F\left(x_{t_{1}}, \ldots, x_{t_{m}}\right) \prod_{\ell=1}^{m} p_{t_{\ell}-t_{\ell-1}}\left(x_{t_{\ell-1}}, x_{t_{\ell}}\right) d x_{t_{\ell}} \tag{1}
\end{equation*}
$$

where the p-functions on the right hand side of (1) are given by

$$
p_{\tau}(x, y):=\frac{1}{\sqrt{2 \pi \tau}} e^{-\frac{(x-y)^{2}}{2 \tau}}
$$

Since all expectations and variances to be calculated depend on the Brownian motion observed at two times s and t with $s<t$, we have $m=2$ for all integrals and

$$
\begin{equation*}
\mathrm{E}\left[F\left(x_{s}, x_{t}\right)\right]=\int_{\mathbb{R}^{2}} F\left(x_{s}, x_{t}\right) p_{t}\left(0, x_{s}\right) p_{t}\left(x_{s}, x_{t}\right) d x_{s} d x_{t} \tag{2}
\end{equation*}
$$

If the quantities to be calculated depend only on the difference $x_{t}-x_{s}$, that is, $F\left(x_{s}, x_{t}\right)=$ $f\left(x_{t}-x_{s}\right)$ with some function f, we have furthermore

$$
\begin{align*}
\mathrm{E}\left[F\left(x_{s}, x_{t}\right)\right] & =\int_{\mathbb{R}^{2}} F\left(x_{s}, x_{t}\right) p_{t}\left(0, x_{s}\right) p_{t}\left(x_{s}, x_{t}\right) d x_{s} d x_{t} \\
& =\int_{\mathbb{R}^{2}} f\left(x_{t}-x_{s}\right) p_{t}\left(0, x_{s}\right) p_{t}\left(x_{s}, x_{t}\right) d x_{s} d x_{t} \\
& =\int_{\mathbb{R}^{2}} f\left(x_{t}-x_{s}\right) \frac{1}{\sqrt{2 \pi s}} e^{-\frac{x^{2}}{2 s}} \frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{\left(x_{t}-x_{s}\right)^{2}}{2(t-s)}} d x_{s} d x_{t} \\
& =\int_{\mathbb{R}^{2}} f(y) \frac{1}{\sqrt{2 \pi s}} e^{-\frac{x_{s}^{2}}{2 s}} \frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{y^{2}}{2(t-s)}} d x_{s} d y \\
& =\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi s}} e^{-\frac{x_{s}^{2}}{2 s}} d x_{s} \times \int_{\mathbb{R}} f(y) \frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{y^{2}}{2(t-s)}} d y \\
& =1 \times \int_{\mathbb{R}} f(\sqrt{t-s} v) e^{-\frac{v^{2}}{2}} \frac{d v}{\sqrt{2 \pi}}=\int_{\mathbb{R}} f(\sqrt{t-s} v) e^{-\frac{v^{2}}{2}} \frac{d v}{\sqrt{2 \pi}} \tag{3}
\end{align*}
$$

Thus, with the formulae from Übungsblatt6, we obtain:
1a)

$$
\begin{aligned}
\mathrm{E}\left[x_{t}-x_{s}\right] & \stackrel{\substack{\text { Definiton } \\
\text { of } \mathrm{El} \cdot \cdot]}}{=} \int\left(x_{t}-x_{s}\right) d W\left(\left\{x_{t}\right\}_{0<t \leq T}\right) \\
& \stackrel{(3)}{=} \int_{\mathbb{R}} \sqrt{t-s} v e^{-\frac{v^{2}}{2}} \frac{d v}{\sqrt{2 \pi}}=0
\end{aligned}
$$

1b)

$$
\begin{aligned}
\mathrm{E}\left[\left(x_{t}-x_{s}\right)^{2}\right] & \stackrel{\substack{\text { Deffinton } \\
\text { of } \mathrm{E}[-]}}{=} \int\left(x_{t}-x_{s}\right)^{2} d W\left(\left\{x_{t}\right\}_{0<t \leq T}\right) \\
& \stackrel{(3)}{=} \int_{\mathbb{R}}(\sqrt{t-s} v)^{2} e^{-\frac{v^{2}}{2}} \frac{d v}{\sqrt{2 \pi}} \\
& =(t-s) \int_{\mathbb{R}} v^{2} e^{-\frac{v^{2}}{2}} \frac{d v}{\sqrt{2 \pi}}=t-s
\end{aligned}
$$

which gives

$$
\begin{aligned}
\mathrm{V}\left[x_{t}-x_{s}\right] & =\mathrm{E}\left[\left(x_{t}-x_{s}\right)^{2}\right]-\left(\mathrm{E}\left[x_{t}-x_{s}\right]\right)^{2} \\
& =t-s
\end{aligned}
$$

2a)

$$
\begin{aligned}
\mathrm{E}\left[\left|x_{t}-x_{s}\right|\right] & =\int\left|x_{t}-x_{s}\right| d W\left(\left\{x_{t}\right\}_{0<t \leq T}\right) \\
& \stackrel{(3)}{=} \int_{\mathbb{R}} \sqrt{t-s}|v| e^{-\frac{v^{2}}{2}} \frac{d v}{\sqrt{2 \pi}} \\
& =2 \sqrt{t-s} \int_{0}^{\infty} v e^{-\frac{v^{2}}{2}} \frac{d v}{\sqrt{2 \pi}} \\
& =2 \sqrt{t-s} \times \frac{1}{\sqrt{2 \pi}}=\sqrt{\frac{2}{\pi}(t-s)}
\end{aligned}
$$

2b)

$$
\begin{aligned}
& \mathrm{E}\left[\left|x_{t}-x_{s}\right|^{2}\right] \stackrel{\text { Aufg.1b }}{=} \\
& \mathrm{E}\left[\left(x_{t}-x_{s}\right)^{2}\right] \\
& t-s
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\mathrm{V}\left[\left|x_{t}-x_{s}\right|\right] & =\mathrm{E}\left[\left(x_{t}-x_{s}\right)^{2}\right]-\left(\mathrm{E}\left[\left|x_{t}-x_{s}\right|\right]\right)^{2} \\
& =t-s-\frac{2}{\pi}(t-s)=\left(1-\frac{2}{\pi}\right)(t-s)
\end{aligned}
$$

1c) Finally,

$$
\begin{aligned}
\operatorname{Cov}\left[x_{s}, x_{t}\right] & =\mathrm{E}\left[\left(x_{s}-\mathrm{E}\left[x_{s}\right]\right)\left(x_{t}-\mathrm{E}\left[x_{t}\right]\right)\right] \\
& =\mathrm{E}\left[\left(x_{s}-0\right)\left(x_{t}-0\right)\right] \\
& =\mathrm{E}\left[x_{s}\left(x_{t}-x_{s}+x_{s}\right)\right] \\
& =\mathrm{E}\left[x_{s}\left(x_{t}-x_{s}\right)\right]+\mathrm{E}\left[x_{s}^{2}\right] \\
& =0+s=s
\end{aligned}
$$

since

$$
\begin{aligned}
\mathrm{E}\left[x_{s}\left(x_{t}-x_{s}\right)\right] & \stackrel{(2)}{=} \int_{\mathbb{R}^{2}} x_{s}\left(x_{t}-x_{s}\right) p_{t}\left(0, x_{s}\right) p_{t}\left(x_{s}, x_{t}\right) d x_{s} d x_{t} \\
& =\int_{\mathbb{R}^{2}} x_{s}\left(x_{t}-x_{s}\right) \frac{1}{\sqrt{2 \pi s}} e^{-\frac{x_{s}^{2}}{2 s}} \frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{\left(x_{t}-x_{s}\right)^{2}}{2(t-s)}} d x_{s} d x_{t} \\
& =\int_{\mathbb{R}^{2}} x_{s} y \frac{1}{\sqrt{2 \pi s}} e^{-\frac{x_{s}^{2}}{2 s}} \frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{y^{2}}{2(t-s)}} d x_{s} d y \\
& =\int_{\mathbb{R}} x_{s} \frac{1}{\sqrt{2 \pi s}} e^{-\frac{x_{s}^{2}}{2 s}} d x_{s} \times \int_{\mathbb{R}} y \frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{y^{2}}{2(t-s)}} d y \\
& =0 \times 0=0
\end{aligned}
$$

and $\mathrm{E}\left[x_{s}^{2}\right]=s$ has been calculated in 1 b .

