Lösungen 5. Übungsblatt
 Finanzmathematik I

Aufgabe 1: a) We have

$$
S_{N}=S_{0} \prod_{k=1}^{N}\left(1+\operatorname{ret}_{k}\right)
$$

and, since all the returns are independent,

$$
\begin{aligned}
\mathrm{E}\left[S_{N}\right] & =\mathrm{E}\left[S_{0} \prod_{k=1}^{N}\left(1+\operatorname{ret}_{k}\right)\right] \\
& =S_{0} \prod_{k=1}^{N}\left(1+\mathrm{E}\left[\operatorname{ret}_{k}\right]\right)
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\mathrm{E}\left[\mathrm{ret}_{k}\right] & =+q \times p_{\mathrm{up}}+(-q) \times p_{\mathrm{down}} \\
& =q / 2-q / 2=0
\end{aligned}
$$

Thus,

$$
\mathrm{E}\left[S_{N}\right]=S_{0} \prod_{k=1}^{N}(1+0)=S_{0}
$$

b) The notation $\mathrm{E}\left[\cdots \mid\left\{S_{j}\right\}_{j=0}^{k}\right]$ means that the prices $S_{1}, S_{2}, \ldots, S_{k}$ are no longer stochastic, but they are given numbers, they have already realized. Thus, the expectation has to be taken only with respect to the returns $\operatorname{ret}_{k+1}, \operatorname{ret}_{k+2}, \ldots, \operatorname{ret}_{N}$. Therefore we write

$$
\begin{aligned}
S_{N} & =S_{0} \prod_{j=1}^{N}\left(1+\operatorname{ret}_{j}\right) \\
& =S_{0} \prod_{j=1}^{k}\left(1+\operatorname{ret}_{j}\right) \prod_{j=k+1}^{N}\left(1+\operatorname{ret}_{j}\right) \\
& =S_{k} \prod_{j=k+1}^{N}\left(1+\operatorname{ret}_{j}\right)
\end{aligned}
$$

and obtain

$$
\begin{aligned}
\mathrm{E}\left[S_{N} \mid\left\{S_{j}\right\}_{j=0}^{k}\right] & =\mathrm{E}\left[S_{k} \prod_{j=k+1}^{N}\left(1+\operatorname{ret}_{j}\right) \mid\left\{S_{j}\right\}_{j=0}^{k}\right] \\
& =S_{k} \prod_{j=k+1}^{N}\left(1+\mathrm{E}\left[\operatorname{ret}_{j}\right]\right) \\
& =S_{k} \prod_{j=k+1}^{N}(1+0)=S_{k} .
\end{aligned}
$$

c) Becaue of part (a), we have

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{N} \sum_{m=1}^{N} S_{m}\right] & =\frac{1}{N} \sum_{m=1}^{N} \mathrm{E}\left[S_{m}\right] \\
& =\frac{1}{N} \sum_{m=1}^{N} S_{0}=S_{0}
\end{aligned}
$$

d) Becaue of part (b), we obtain

$$
\begin{aligned}
\mathrm{E}\left[\left.\frac{1}{N} \sum_{m=1}^{N} S_{m} \right\rvert\,\left\{S_{j}\right\}_{j=0}^{k}\right] & =\frac{1}{N} \sum_{m=1}^{N} \mathrm{E}\left[S_{m} \mid\left\{S_{j}\right\}_{j=0}^{k}\right] \\
& =\frac{1}{N}\left\{\sum_{m=1}^{k} \mathrm{E}\left[S_{m} \mid\left\{S_{j}\right\}_{j=0}^{k}\right]+\sum_{m=k+1}^{N} \mathrm{E}\left[S_{m} \mid\left\{S_{j}\right\}_{j=0}^{k}\right]\right\} \\
& =\frac{1}{N}\left\{\sum_{m=1}^{k} S_{m}+\sum_{m=k+1}^{N} S_{k}\right\} \\
& =\frac{k}{N} \times \frac{1}{k} \sum_{m=1}^{k} S_{m}+\frac{N-k}{N} \times S_{k}
\end{aligned}
$$

e) This can be done in a similar way as part (a): Since

$$
S_{N}=S_{0} \prod_{k=1}^{N}\left(1+\operatorname{ret}_{k}\right)
$$

we have

$$
\frac{S_{0}}{S_{N}}=\prod_{k=1}^{N} \frac{1}{1+\operatorname{ret}_{k}} .
$$

Since all the returns are independent,

$$
\begin{aligned}
\mathrm{E}\left[S_{0} / S_{N}\right] & =\mathrm{E}\left[\prod_{k=1}^{N} \frac{1}{1+\operatorname{ret}_{k}}\right] \\
& =\prod_{k=1}^{N} \mathrm{E}\left[\frac{1}{1+\mathrm{ret}_{k}}\right] \\
& =\prod_{k=1}^{N}\left\{\frac{1}{1+q} \times \frac{1}{2}+\frac{1}{1-q} \times \frac{1}{2}\right\} \\
& =\prod_{k=1}^{N}\left\{\frac{1}{1-q^{2}}\right\} \\
& =\frac{1}{\left(1-q^{2}\right)^{N}} .
\end{aligned}
$$

f) Again, the notation $\mathrm{E}\left[\cdots \mid\left\{S_{j}\right\}_{j=0}^{k}\right]$ means that the prices $S_{1}, S_{2}, \ldots, S_{k}$ are no longer stochastic, but they are given numbers, they have already realized. Thus, the expectation
has to be taken only with respect to the returns $\operatorname{ret}_{k+1}, \operatorname{ret}_{k+2}, \ldots, \operatorname{ret}_{N}$. Therefore we write as in part (b)

$$
S_{0} / S_{N}=S_{0} /\left\{S_{k} \prod_{j=k+1}^{N}\left(1+\operatorname{ret}_{j}\right)\right\}
$$

and obtain

$$
\begin{aligned}
\mathrm{E}\left[S_{0} / S_{N} \mid\left\{S_{j}\right\}_{j=0}^{k}\right] & =S_{0} / S_{k} \mathrm{E}\left[\left.\prod_{m=k+1}^{N} \frac{1}{1+\operatorname{ret}_{m}} \right\rvert\,\left\{S_{j}\right\}_{j=0}^{k}\right] \\
& =S_{0} / S_{k} \prod_{m=k+1}^{N} \mathrm{E}\left[\frac{1}{1+\operatorname{ret}_{m}}\right] \\
& =S_{0} / S_{k} \prod_{m=k+1}^{N}\left\{\frac{1}{1+q} \times \frac{1}{2}+\frac{1}{1-q} \times \frac{1}{2}\right\} \\
& =S_{0} / S_{k} \prod_{m=k+1}^{N}\left\{\frac{1}{1-q^{2}}\right\} \\
& =S_{0} / S_{k} \frac{1}{\left(1-q^{2}\right)^{N-k}} .
\end{aligned}
$$

Aufgabe 2: a) If the price process $\left\{S_{k}\right\}_{k=0}^{N}$ should be a martingale, we must have

$$
\mathrm{E}\left[S_{k} \mid\left\{S_{j}\right\}_{j=0}^{k-1}\right]=S_{k-1}
$$

for all k. Now we have

$$
\begin{aligned}
\mathrm{E}\left[S_{k} \mid\left\{S_{j}\right\}_{j=0}^{k-1}\right] & =\mathrm{E}\left[S_{k-1}\left(1+\operatorname{ret}_{k}\right) \mid\left\{S_{j}\right\}_{j=0}^{k-1}\right] \\
& =S_{k-1}\left(1+\mathrm{E}\left[\operatorname{ret}_{k}\right]\right) \\
& \stackrel{!}{=} S_{k-1}
\end{aligned}
$$

which is the case if

$$
\begin{aligned}
0 & \stackrel{!}{=} \mathrm{E}\left[\mathrm{ret}_{k}\right] \\
& =q \times p+\operatorname{ret}_{\mathrm{down}} \times(1-p)
\end{aligned}
$$

which gives

$$
\operatorname{ret}_{\text {down }}=-\frac{p}{1-p} q
$$

Thus, for $p=3 / 4$ we get $\operatorname{ret}_{\text {down }}=-\frac{3 / 4}{1 / 4} q=-3 q$.
b) Since the price process is a martingale by assumption, we can immediately say:

1a) $\mathrm{E}\left[S_{N}\right]=S_{0}$
1b) $\mathrm{E}\left[S_{N} \mid\left\{S_{j}\right\}_{j=0}^{k}\right]=S_{k}$
1c) $\mathrm{E}\left[\frac{1}{N} \sum_{m=1}^{N} S_{m}\right]=S_{0}$

1d) $\mathrm{E}\left[\left.\frac{1}{N} \sum_{m=1}^{N} S_{m} \right\rvert\,\left\{S_{j}\right\}_{j=0}^{k}\right]=\frac{k}{N} \times \frac{1}{k} \sum_{m=1}^{k} S_{m}+\frac{N-k}{N} \times S_{k}$.
Furthermore, for the expectation of (1e) we obtain

$$
\begin{aligned}
\mathrm{E}\left[S_{0} / S_{N}\right] & =\mathrm{E}\left[\prod_{k=1}^{N} \frac{1}{1+\mathrm{ret}_{k}}\right] \\
& =\prod_{k=1}^{N} \mathrm{E}\left[\frac{1}{1+\mathrm{ret}_{k}}\right] \\
& =\prod_{k=1}^{N}\left\{\frac{1}{1+q} \times \frac{3}{4}+\frac{1}{1-3 q} \times \frac{1}{4}\right\} \\
& =\prod_{k=1}^{N}\left\{\frac{3(1-3 q)+1+q}{4(1+q)(1-3 q)}\right\} \\
& =\left(\frac{1-2 q}{1-2 q-3 q^{2}}\right)^{N}
\end{aligned}
$$

and, in a similar way, for (1f)

$$
\begin{aligned}
\mathrm{E}\left[S_{0} / S_{N} \mid\left\{S_{j}\right\}_{j=0}^{k}\right] & =S_{0} / S_{k} \prod_{m=k+1}^{N} \mathrm{E}\left[\frac{1}{1+\mathrm{ret}_{m}}\right] \\
& =S_{0} / S_{k}\left(\frac{1-2 q}{1-2 q-3 q^{2}}\right)^{N-k} .
\end{aligned}
$$

