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6. Abstract Manifolds

Up to this point we considered only embedded submanifolds of R", i.e., manifolds
which are a priori given as subsets of some Euclidean space R™. The concept of manifold
can be generalized, however, to include abstractly given topological spaces with special
properties (most importantly the property of being locally Euclidean). Even though al-
most all examples we will occupy ourselves with are, in fact, embedded submanifolds, the
more general definition will give us more flexibility and enhance conceptual clarity.

(6.1) Definition. A topological space M is called locally Euclidean of dimension
d if for each point p € M there are an open neighborhood U C M of p, an open subset
Q C RY and a homeomorphism  : U — Q. In this case we call (U,v) a chart around
p; the mapping v will be called a coordinate map, and its inverse ' : Q — U will be
called a local parametrization of M around p. If ¥(q) = (xl(q), .. .,xd(q)) forqe U,
then the mappings x; : U — R are called local coordinates around p.
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Fig. 6.1: Coordinate map 1 and local parametrization ¢ = 1~! of a locally Euclidean
space.

We would like to define the concept of “differentiability” or “smoothness” for functions
f + M — R defined on a locally Euclidean space. Since we know what differentiability
means for functions R™ — R™ | it is tempting to call a function f : M — R smooth of class
C*, if for each chart (U,) the mapping f o 1~! is of class C*. However, this is only a
valid definition if it does not depend on the choice on the chart (U,). This leads to the
following definition.

(6.2) Definition. Let M be a locally Euclidean space of dimension d. Two charts
(U1, 1) and (Uz,v3) are called C*-compatible if the transition map

Yoo py 1 h1 (U NUz) = h2(Ur N U>)
is a OF-diffeomorphism. (This is meant to include the case Uy NUs = 0).)
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Clearly, C*-compatibility is an equivalence relation on the set of all charts of M.

Fig. 6.2: Compatibility of coordinate charts.

Just like in everyday language an atlas is a collection of maps such that each point on
the earth’s surface is covered by at least one map in the atlas, we now define an atlas of a

locally Euclidean space M as a collection of compatible charts such that each point of M
is covered by at last one chart.

(6.3) Definition. Let M be a locally Euclidean space of dimension d. A C*-atlas
for M is a collection of charts (Ui, v;)ier such that |J,c; Us = M and such that any two
charts (U, ;) and (Uj, ;) with i,j € I are C*-compatible. Two such atlases are called
C*-compatible if each chart of one atlas is C*-compatible with each chart of the other
atlas. A differentiable structure of class C* (or simply a C*-structure) on M is an

equivalence of atlases under C*-compatibility.
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It is clear that the union of any family of C*-compatible atlases is again an atlas
compatible with each of the atlases in the family. Hence once a C*-atlas 2 has been
specified for a locally Euclidean space M we can immediately enlarge 2 by forming the
union of 2 with all other possible atlases which are C*-compatible with 2( (which is then
clearly the maximal atlas C*-compatible with 2. Hence a differentiable structure on M
can be identified with a maximal atlas for M.

(6.4) Definition. A d-dimensional manifold of class C* is a locally Buclidean Haus-
dorff space of dimension d which is equipped with a C*-structure.

Many authors require in addition the existence of a countable basis for the topology on
M, which is helpful for certain constructions (and is automatically satisfied for embedded
submanifolds of some space R™), but for the purposes of our text this condition will play
no role. The Hausdorff property is included in the definition for convenience; it rules out
certain pathological locally Euclidean spaces.

(6.5) Example. The sphere S*~! can be covered with two charts using stereographic
projection. Writing elements of S"~! in the form (Z,z,) where Z € R""! such that
|Z||? + 22 = 1, we consider the northpole N = (0,1) and the south pole S = (0, —1). Then
S"~1 is covered by the charts (Uy, 1) and (Us,12) where

Uy :=S" 1\ {N}, (3, x,) = B Yr(©) 1 {Hﬁllig—l}

IREEE

and

. aqn—1 -~ e 1 > —1 —# 26
U= S NS) e = et O = e e

We have 1 (Uy NUs) = (U NU) = R*1\ {0}, and 9o 097" : R*1\ {0} — R*~1\ {0}
is given by (¢ 0 b7 1)(€) = £/]/€]|? and hence is of class O (even C*). Thus the atlas
consisting of the two charts (Uy, 1) and (Us,42) equips S*~1 with a C°°- and even a
C“-structure.

(6.6) Example. Let M C R” be a d-dimensional embedded submanifold of R™ of
class C*. By the very definition of an embedded submanifold, each point p € M possesses
an open neighborhood U which can be parametrized by a C*-mapping ¢ : Q — R” such
that €2 is an open subset of R? and ¢(€2) = U. The open sets U on M defined in this way
clearly provide a C*-atlas for M. Hence every embedded submanifold as defined in (1.6)
is also a manifold in the abstract sense of (6.4).

(6.7) Example. We define an equivalence relation ~ on R™*!\ {0} by declaring
v and w equivalent if and only if there is a positive number A > 0 such that w = Av;
the equivalence class of a vector v € R"™1\ {0} is denoted by [v]. If v = (v, v1,...,v,)
is given in coordinates, we usually write [vg : vy : --- : v,] instead of [v]. The quotient
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space R"™!/ ~, equipped with the quotient topology, is denoted by P"(R) := {[v] | v €
R™*\ {0}}. (This is called the n-dimensional real projective space. Note that P"(R)
is not given as a subset of some Euclidean space, but rather as an abstract topological

space.) We claim that P"(R) is covered by the charts (Uy, ), (Ur,v1), .., (Un,¥n)
where U; := {[xo : -+ : x,] | ©; # 0} and where t; : U; — R™ is given by
x Ti1 I In
billo: 21 wal) = (— ' +—)

Note that U; and ); are well-defined and that the inverse map ¢; = ;" LR 5 U s
given by
Gi(ur, . oo upy) = Jur oo tuimg L iug e Uy

The transition maps 1; o w;l = (pj_l o ; are given for j > i by

U1 Ui—1 1 s Un
_‘ g ey ) 9 _ 9 _ g ey ]. g o ooy _
Uj Uj  Uj Uy Uj

(07 o) (U, sy = (

and by an analogous formula for j < i; they are clearly of class C°° and even of class
C“. Hence P"(R) is an n-dimensional manifold of class C*. For clarity’s sake, we write
down all transition maps in the special case n = 3 in which we have po(u,v) = [1: u : v],
v1(u,v) =[u:1:v], pa(u,v) =[u:v:1] and

wnllosys )= (L2), wlesysad = (52). wallesys o = (£2)
and hence
itoenwn) = (1.0), (et ownun) = (3.2).
wrtoenn) = (L1). (etorun = (5.2).
witoewn) = (L3]Gt ownun = (4.1).

(6.8) Example. Every open subset  of a d-dimensional manifold M of class C¥
inherits from M a manifold structure. Namely, if 2 is a C*-atlas for M then 2y :=
{({UNQY|lune) | (U, ) € A} is a Ck-atlas for Q. With the differential structure given
by this atlas (and with the subspace topology inherited from M) we call 2 an open
submanifold of M.

(6.9) Example. Let M; and M, be C*-manifolds of dimensions d; and do, respec-
tively. Given a C*-atlas 1, for M; and a C*-atlas s for My, a C*-atlas for M is given by
A= {(Uy x Uz, th1 X ha2) | (Uy,1) € A1, (U, 1) € As}. Equipped with the differentiable
structure defined by this atlas and with the product topology, we call M the product
manifold of M; and M,. This is a C*-manifold of dimension d; + ds.
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We are now in a position to define what it means for a mapping between locally
Euclidean spaces to be smooth.

(6.10) Definition. Let M and N be locally Euclidean spaces of dimensions m and
n, respectively, both equipped with a C*-structure. A mapping f : M — N is said to be
of class C* if it is continuous and if for all charts (U,a) in M and (V, ) in N such that
f(U) CV the mapping Bo foa™t :a(U) — B(V) is of class C*. (We call Bo foa™? the
coordinate representation of f with respect to the chosen charts U and V).

The continuity of f ensures that, given a point p € M and a coordinate chart V' around
f(p) € N, there is a coordinate chart U around p satisfying f(U) C V.

N
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Fig. 6.3: Smoothness of a mapping between locally Euclidean spaces.

We now proceed to define the tangent space at a point of an abstractly defined man-
ifold. For an embedded submanifold of M of R™ we defined a tangent vector at a point
p € M as the velocity vector o/(0) of a curve in M satisfying a(0) = p. Since taking the
derivative o/(0) takes place in the ambient space R™, this definition does not make sense
for an abstract manifold M for which something like an “ambient space” does not exist.
However, for an embedded submanifold we can clearly say when two curves a; and as
through p are equivalent in the sense that they yield the same tangent vector at p, and the
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condition of equivalence can be expressed in a way which makes sense for abstract man-
ifolds. This leads to the idea of simply identifying a tangent vector with an equivalence
class of curves.

(6.11) Definition. Let M be a C*-manifold of dimension d and let p € M be a point
in M. Two curves ay,as : (—e,€) = M with a1(0) = a2(0) = p are called equivalent if
(oaq)'(0) = (o) (0) for each chart (U,v) around p. The tangent space T,M of M
at p is the set of the equivalence classes of curves through p under this equivalence relation.
The tangent bundle TM of M is the set of all pairs (p,v) where p € M and v € T,M.

Fig. 6.4: Definition of tangent vectors as equivalence classes of curves.

If [a] denotes the equivalence class of a curve a through p and if ¢ is any coordinate
map around p, the mapping

T,M  — R?
[a] = (¥oa)(0)
is well-defined and bijective. Then T}, M becomes a vector space by declaring this mapping

to be an isomorphism of vector spaces, i.e., by defining addition and scalar multiplication
on T, M by

o] @ [8] =27 (2([e]) + 2([]))  and  AOa] =271 (AD([o])).

(It is readily checked that this definition is independent of the particular choice of the
coordinate map v.) Hence T, M is a d-dimensional vector space. A (coordinate-dependent)
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basis of T}, M is given by the tangent vectors

0

6:51 p

= @ '(e;) = equivalence class of the curve a(t) :== ¥~ (¢(p) + te;)

where 1 <17 <d.

(6.12) Remark. If Q C R™ is an open subset of R™ and if p € 2, then the mapping
1,2 — R™ given by [a] — o/(0) is well-defined and an isomorphism; hence we can (and
shall) always identify 7,2 with R™.

Let M and N be C*-manifolds and let f : M — N be a mapping of class C*. Given
a point p € M, let us consider the above equivalence relation ~ of curves in M through
p and the corresponding equivalence relation = of curves in N through f(p). It is readily
checked that oy ~ ag implies f o ay = f o aip; hence the following definition is possible.

(6.13) Definition. Let f : M — N be a C*-mapping between two C*-manifolds and
let p € M. Then the mapping

oy LM — Ty N
PP o [fodl

is well-defined and is called the derivative of f at p.

It is readily checked that f’(p) is a linear mapping. The special case f: M — R is of
particular interest. In this case f'(p) : T,M — R is a linear form on T, M, i.e., an element
of the dual space (T,M)*.

(6.14) Remark. Let (U,¢) be a coordinate chart of a manifold M, say ¢ (p) =
(z1(p), -, z4(p)) € R forp € U. Then (x}(p),...,x,(p)) is the basis of (T,M)* which
is dual to (8/8x1|p,...,6/6xd|p). Moreover, if f : U — R is of class C* and if f =
Fovy =F(x1,...,x24) then

d
fp) = ng (v(p)) =} (p)-

Proof. We have z; = p; o ¢ where p; : R — R is the projection onto the i-th
component. Hence

0

/ —_—

z;(p) <8a:j
1, ifi=y;

= [pi(v(p) +tej)] = [2i(p) +tpiley)] = 6 = {o, if i £ 5.

) = i(p) [P (V) +tey)] = [2i097 (L(p) +tey)]

p
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If f=Fo andif a: (—e¢e) — M is any C'-curve with a(0) = p then

F(p)e] = [foa] = [F(zi(at)),...,za(a(?))] = % . F(z1(a(?)),...,za(at)))
d d
= Y T w@)rioal = Y o (vl
i=1 " i=1 "
Since o was arbitrarily chosen this means f/(p) = Z?Zl(ﬁF/Ba:i) (v(p))zi(p). n

As in Chapter 2, we can form the tangent bundle TM = Upe v LpyM. We want to
equip T'M with both a topology and a differentiable structure.

(6.15) Theorem and Definition. Let M be a d-dimensional manifold of class C*.

With each local parametrization ¢ : & — M we associate the set Q= Q xR and the
mapping p : @ — TM given by

whose inverse is given by o~ (p,v) = (gp‘l(p),go’(@_l(p))_lv). If A is an atlas of class
C* for M and if B is the family of local parametrizations associated with this atlas, then
{Q x R | (Q, @) € B} is the basis of a topology on TM, and

~

B = {(Q29)](Qp) € B}

gives rise to an atlas of class C*~1 for TM. Consequently, TM carries the structure of
a 2d-dimensional manifold of class C*~'. With this manifold structure we call TM the
tangent bundle of M.

Proof. We only need to check the smoothness of the transition maps. Given u € )
and w € R? we have

= 952_1( 1(u), ¢ (w)w)

) =
= (95" (#1(w), eh (5 (p1(w)) ™ ot (w)w)
= ((3" 0 @1)(u), 90’2(( Lo p1)(u) ) (ww)
= ((p3 " o 1) (u), (93 ") (1(u)) ) (u)w)
= ((p3" o @1)(u), (93! 0 p1) (ww),

where we used the fact that (p;') (z) = ) (gpz_l(x))_l in the step from the third to
the fourth line. (This fact follows by taking derivatives on both sides of the identity
(2 0 5 *)(x) = z using the chain rule, which yields ) (4,02_1(1')) (p31)(x) = 1.) This
shows that if 4,02_1 o ¢y is of class C* then 4,52_1 o @ is of class C*~1. [ |

8



@Karlheinz Spindler, Studiengang Angewandte Mathematik, Hochschule RheinMain, Studienort Wiesbaden

It is now readily seen that a C*-mapping f : M — N between C*-manifolds induces
a C*¥Lmapping f, : TM — TN via f.(p,v) := (f(p),f’(p)v). As a straightforward
consequence of the chain rule we see that if f : M; — My and g : My — M;s then
(go f)x = g« © fx. In a way completely analogous to (6.15), we now equip the cotangent
bundle T*M = {J ¢ (T, M)* with a manifold structure.

(6.16) Theorem and Definition. Let M be a d-dimensional manifold of class C*.
With each local parametrization ¢ : Q0 — M we associate the set  := Q x (R?)* and the
mapping @ : @ — T* given by

Pu,a) = (p(u),a0¢ (u)™)

whose inverse is given by 3~ (p,N) = (¢ (p), Ao ¢ (¢ (p)) ). If A is an atlas of class
C* for M and if B is the family of local parametrizations associated with this atlas, then
{Q x (RY)* | (Q, @) € B} is the basis of a topology on TM, and

~

B = {(Q0)](Qy)€B)

gives rise to an atlas of class C*~1 for T*M. Consequently, T*M carries the structure of
a 2d-dimensional manifold of class C*=1. With this manifold structure we call T*M the
cotangent bundle of M.

Proof. Again, we only need to check the smoothness of the transition maps. Given
u € Q and a € (R%)* we have

(3

o@1)(u,a) = &5 (p1(u), aoi(u)™)

B)

= (3 (p1(w)), aopi(u)~" o @h(py (p1(u))))
= ((p3' 0 p1)(w), ao(u)” 0902(( Yo 1) (u)))
! go'1<> ( (u) ‘1)

where, as in the proof of (6.15), we used the fact that (o5 ) (z) = ¢b ((pgl(x))_l in the
step from the third to the fourth line. This shows that if o, ' o ¢ is of class C* then
@2_1 oy is of class CF~ 1. [ |

Each Ck-mapping f : M — N between CF-manifolds induces a C*~'-mapping
f*:T*M — T*N via f*(p,\) := (f(p),)\ o f’(p)_l). The chain rule shows that if
f: My — My and g : My — Ms then (go f)* = g* o f*.

We conclude that this chapter with a theorem which allows in many cases to establish
that a given set is, in fact, a manifold. We start with the following preliminary result.

9



@Karlheinz Spindler, Studiengang Angewandte Mathematik, Hochschule RheinMain, Studienort Wiesbaden

(6.17) Rank Theorem. Let U C R™ and V C R™ be open sets and let f : U — V
be a mapping of class C* such that f'(x) has the constant rank r for all x € U. Then,
given a point p € U, there exist an open neighborhood Uy C U of p, an open neighborhood
Vo CV of f(p) and C*-diffeomorphisms ¢ : Uy C ¢©(Uy) € R™ and 1 : Vo — (V) C R”
such that

(Yofou VNwy,...,2m) = (21,...,2,,0,...,0)

for all x = (x1,...,2m) € ©(Uy). This means that f locally looks like the mapping R™ —
R" x {0}.)

Proof. Write f(z) = (fi(z),..., fu(z)). After renumbering coordinates if necessary,
we may assume without loss of generality that det((9; fi)(@)f j:l) # 0 in an open neigh-

borhood U of p. Define Y U — R™ by o(@1,...,xm) = (f1(@), ..., [r(T), Trg1, o, )

Then
o () = |:(ajfi)%x>zr,j_1 ﬂ

is invertible. The Inverse Function Theorem implies that there is an open neihborhood
Uy C U of p such that ¢ : Uy — ¢(Up) is a C*-diffeomorphism. From the way ¢ is defined

we see that g := fop ™! has the form g(&) = g(&1,...,&n) = (51, ey & grr1(6), --,gn(f))
so that

) O

Up to this point we only used the fact that rkf’(x) > r in a neighborhood of p. Now we
use the fact that the rank of f’(z) (and hence that of ¢’(£)) is, in fact, equal to r; this
fact implies that A(£) = 0 in (%), which means that g,1+1(§), ..., g.(§) do not depend on
Ertly--oyEm, but only on &y, ..., &.. Consequently,

¢(§17---:§n) = (51: R 57": gr—i—l _gr—i—l(gl,---:gr), SRR gn _gn(§17---7§r>)

is invertible, hence a C*-diffeomorphism, and obviously ¢y o g = 1o f o ™! has the desired
form. [ ]

(6.18) Corollary. Let f: M — N be a C*-mapping between C*-manifolds and let
y € N be a given point. Assume that f'(x) has constant rank r on an open neighborhood of
(). Then f~Y(y) = {x € M | f(z) =y} is a C*-manifold of dimension dim(M) — r.

Proof. By hypothesis, there are neighborhoods U of 0 in R™ and V of 0 in R™ and
local parametrizations ¢ : U — M and ¢ : V — N with ¢(0) = p and ¥(0) = ¢ such
that F := ¢~ ! o f o ¢ satisfies tk F'(u) = r for all w € U. Invoking Theorem (6.17),
we may assume (after suitable coordinate changes and after making the neighborhoods
U and V smaller if necessary) that F' is in local coordinates given by F(z1,...,Zm) =
(x1,...,2,,0,...,0) so that f~!(g) cooresponds to F~1(0) = {0} x R™~". Then ¢ maps
({0} x R™~") N U diffeomorphically of class C* onto f~1(q) N o(U), which shows that
f~(q) sits locally inside M just as {0} x R™~" sits inside R™. This gives the claim. =
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Note that necessarily r < min(dim(M),dim(N)). The case that the rank is maximal
is of particular importance.

(6.19) Definition. Let f : M — N be a C'-map between manifolds. We call f a
submersion if f'(x) is surjective for all x € M and an immersion if f'(x) is injective
for all x € M. An immersion which is also a homeomorphism onto its image is called an
embedding.

(6.20) Example. We claim that M = {4 € R™*" | ATA = 1} is a manifold
of dimension n(n — 1)/2. (We know this fact already, with M being nothing but the
orthogonal group on R™, but we want to give a new proof of this fact.) Let X be the

real vector space of all symmetric (n x n)-matrices (which has dimension n(n+1)/2), and
define f: R™*™ — X by f(A) := AT A so that M = f~1(1). Now

flAX = di fA+tX) = di (AT +1XT)(A+tX) = XTA+ ATX.
t t=0 t t=0

We claim that if A € f~1(1) (i.e., if ATA = 1)) then f/(A) is surjective. In fact, if
C € X is an arbitrary symmetric matrix and if we let X := (1/2)AC then f'(A)X =
(1/2)(CTATA + ATAC) = (1/2)(CT + C) = C. Consequently, rk F'(A) = n(n +1)/2
for all A € f~1(1), so that f~1(1) is a manifold of dimension n? —n(n+1)/2 = (n?—n)/2.

In Corollary (6.18), the set f~1(q) is a submanifold of M in the sense of the following
definitin.

(6.21) Definition. A subset S C M of an m-dimensional C*-manifold M is called
a d-dimensional submanifold of M (more precisely: a d-dimensional embedded sub-
manifold of M), if each point p € S possesses a local chart (U, ) (with respect to M)
such that ¢ mapsto SNU to (R? x {0})Ny(U) (i.e., if S sits locally in M just as R x {0}
sits in R™.

If S is an abstractly given manifold and if ¢ : S — M is an embedding into some
manifold M then we sometimes identify S with i(.S), which is a submanifold of M. If
1:S — M is only an immersion, then, by the Implicit Function Theorem, 7 is locally an
embedding (which means that each point s € S possesses a neighborhood Sy such that i|g,
is an embedding). Now if 7 is an injective immersion, some authors call i(S) an immersed
submanifold, but this is somewhat misleading, as i(S) need not be a submanifold in the
sense of Definition (6.21).

(6.22) Examples. (a) Define g : R — R by g(¢) := 2arctan (¢ — arctan(r/2)) + (7/2)
and i : R — R? by i(t) := <2 cos(g(t)), sin(2g(t))). Then ¢ is an injective immersnion, but

not an embedding. (The image of i looks like a figure eight in which no neighborhood of
(0,0) is homeomorphic to an open interval I C R. The image of i is, however, a manifold
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diffeomorphic to R if we do not equip it with the subspace topology from R? but with an
intrinsic topology which makes it homeomorphic to the real line.)

10/
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Fig. 6.5: Immersed submanifold which is not an embedded submanifold.

(b) Consider the mapping i : R — S' x S! given by i(t) := (e, e**) where a € R\ Q
is an irrational number. Then ¢ is an injective immersion, but not an embedding, because
the image of i is dense in the torus S! x S! so that the intrinsic topology of the image of
i (when considered as a one-dimensional manifold diffeomorphic to R) does not coincide
with the subspace topology inherited from S' x S!.

Fig. 6.6: Dense curve winding around a torus.
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