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6. Abstract Manifolds

Up to this point we considered only embedded submanifolds of Rn, i.e., manifolds
which are a priori given as subsets of some Euclidean space Rn. The concept of manifold
can be generalized, however, to include abstractly given topological spaces with special
properties (most importantly the property of being locally Euclidean). Even though al-
most all examples we will occupy ourselves with are, in fact, embedded submanifolds, the
more general definition will give us more flexibility and enhance conceptual clarity.

(6.1) Definition. A topological space M is called locally Euclidean of dimension
d if for each point p ∈ M there are an open neighborhood U ⊆ M of p, an open subset
Ω ⊆ Rd and a homeomorphism ψ : U → Ω. In this case we call (U, ψ) a chart around
p; the mapping ψ will be called a coordinate map, and its inverse ψ−1 : Ω → U will be
called a local parametrization of M around p. If ψ(q) =

(
x1(q), . . . , xd(q)

)
for q ∈ U ,

then the mappings xi : U → R are called local coordinates around p.
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Fig. 6.1: Coordinate map ψ and local parametrization ϕ = ψ−1 of a locally Euclidean
space.

We would like to define the concept of “differentiability” or “smoothness” for functions
f : M → R defined on a locally Euclidean space. Since we know what differentiability
means for functions Rn → Rm, it is tempting to call a function f :M → R smooth of class
Ck, if for each chart (U, ψ) the mapping f ◦ ψ−1 is of class Ck. However, this is only a
valid definition if it does not depend on the choice on the chart (U, ψ). This leads to the
following definition.

(6.2) Definition. Let M be a locally Euclidean space of dimension d. Two charts
(U1, ψ1) and (U2, ψ2) are called Ck-compatible if the transition map

ψ2 ◦ ψ
−1
1 : ψ1(U1 ∩ U2) → ψ2(U1 ∩ U2)

is a Ck-diffeomorphism. (This is meant to include the case U1 ∩ U2 = ∅.)
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Clearly, Ck-compatibility is an equivalence relation on the set of all charts of M .
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Fig. 6.2: Compatibility of coordinate charts.

Just like in everyday language an atlas is a collection of maps such that each point on
the earth’s surface is covered by at least one map in the atlas, we now define an atlas of a
locally Euclidean space M as a collection of compatible charts such that each point of M
is covered by at last one chart.

(6.3) Definition. Let M be a locally Euclidean space of dimension d. A Ck-atlas
for M is a collection of charts (Ui, ψi)i∈I such that

⋃
i∈I Ui = M and such that any two

charts (Ui, ψi) and (Uj, ψj) with i, j ∈ I are Ck-compatible. Two such atlases are called
Ck-compatible if each chart of one atlas is Ck-compatible with each chart of the other
atlas. A differentiable structure of class Ck (or simply a Ck-structure) on M is an
equivalence of atlases under Ck-compatibility.
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It is clear that the union of any family of Ck-compatible atlases is again an atlas
compatible with each of the atlases in the family. Hence once a Ck-atlas A has been
specified for a locally Euclidean space M we can immediately enlarge A by forming the
union of A with all other possible atlases which are Ck-compatible with A (which is then
clearly the maximal atlas Ck-compatible with A. Hence a differentiable structure on M
can be identified with a maximal atlas for M .

(6.4) Definition. A d-dimensional manifold of class Ck is a locally Euclidean Haus-
dorff space of dimension d which is equipped with a Ck-structure.

Many authors require in addition the existence of a countable basis for the topology on
M , which is helpful for certain constructions (and is automatically satisfied for embedded
submanifolds of some space Rn), but for the purposes of our text this condition will play
no role. The Hausdorff property is included in the definition for convenience; it rules out
certain pathological locally Euclidean spaces.

(6.5) Example. The sphere Sn−1 can be covered with two charts using stereographic
projection. Writing elements of Sn−1 in the form (x̂, xn) where x̂ ∈ Rn−1 such that
‖x̂‖2+x2n = 1, we consider the northpole N = (0, 1) and the south pole S = (0,−1). Then
Sn−1 is covered by the charts (U1, ψ1) and (U2, ψ2) where

U1 := Sn−1 \ {N}, ψ1(x̂, xn) :=
1

1−xn
x̂, ψ−1

1 (ξ) =
1

1 + ‖ξ‖2

[
2ξ

‖ξ‖2 − 1

]

and

U2 := Sn−1 \ {S}, ψ2(x̂, xn) :=
1

1+xn
x̂, ψ−1

2 (ξ) =
1

1 + ‖ξ‖2

[
2ξ

1− ‖ξ‖2

]
.

We have ψ1(U1∩U2) = ψ2(U1 ∩U2) = Rn−1 \ {0}, and ψ2 ◦ψ
−1
1 : Rn−1 \ {0} → Rn−1 \ {0}

is given by (ψ2 ◦ ψ
−1
1 )(ξ) = ξ/‖ξ‖2 and hence is of class C∞ (even Cω). Thus the atlas

consisting of the two charts (U1, ψ1) and (U2, ψ2) equips Sn−1 with a C∞- and even a
Cω-structure.

(6.6) Example. Let M ⊆ Rn be a d-dimensional embedded submanifold of Rn of
class Ck. By the very definition of an embedded submanifold, each point p ∈M possesses
an open neighborhood U which can be parametrized by a Ck-mapping ϕ : Ω → Rn such
that Ω is an open subset of Rd and ϕ(Ω) = U . The open sets U on M defined in this way
clearly provide a Ck-atlas for M . Hence every embedded submanifold as defined in (1.6)
is also a manifold in the abstract sense of (6.4).

(6.7) Example. We define an equivalence relation ∼ on Rn+1 \ {0} by declaring
v and w equivalent if and only if there is a positive number λ > 0 such that w = λv;
the equivalence class of a vector v ∈ Rn+1 \ {0} is denoted by [v]. If v = (v0, v1, . . . , vn)
is given in coordinates, we usually write [v0 : v1 : · · · : vn] instead of [v]. The quotient
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space Rn+1/ ∼, equipped with the quotient topology, is denoted by Pn(R) :=
{
[v] | v ∈

Rn+1 \ {0}
}
. (This is called the n-dimensional real projective space. Note that Pn(R)

is not given as a subset of some Euclidean space, but rather as an abstract topological
space.) We claim that Pn(R) is covered by the charts (U0, ψ0), (U1, ψ1), . . ., (Un, ψn)
where Ui := {[x0 : · · · : xn] | xi 6= 0} and where ψi : Ui → Rn is given by

ψi([x0 : x1 : · · · : xn]) :=

(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

Note that Ui and ψi are well-defined and that the inverse map ϕi := ψ−1
i : Rn → Ui is

given by
ϕi(u1, . . . , un) = [u1 : . . . : ui−1 : 1 : ui : · · · : un].

The transition maps ψj ◦ ψ
−1
i = ϕ−1

j ◦ ϕi are given for j > i by

(ϕ−1
j ◦ ϕi)(u1, . . . , un) =

(
u1
uj
, . . . ,

ui−1

uj
,
1

uj
,
ui
uj
, . . . , 1, . . . ,

un
uj

)

and by an analogous formula for j < i; they are clearly of class C∞ and even of class
Cω. Hence Pn(R) is an n-dimensional manifold of class Cω. For clarity’s sake, we write
down all transition maps in the special case n = 3 in which we have ϕ0(u, v) = [1 : u : v],
ϕ1(u, v) = [u : 1 : v], ϕ2(u, v) = [u : v : 1] and

ψ0([x : y : z]) =
(y
x
,
z

x

)
, ψ1([x : y : z]) =

(
x

y
,
z

y

)
, ψ2([x : y : z]) =

(x
z
,
y

z

)

and hence

(ϕ−1
1 ◦ ϕ0)(u, v) =

(
1

u
,
v

u

)
, (ϕ−1

2 ◦ ϕ0)(u, v) =

(
1

v
,
u

v

)
,

(ϕ−1
2 ◦ ϕ1)(u, v) =

(
u

v
,
1

v

)
, (ϕ−1

0 ◦ ϕ1)(u, v) =

(
1

u
,
v

u

)
,

(ϕ−1
0 ◦ ϕ2)(u, v) =

(
v

u
,
1

u

)
, (ϕ−1

1 ◦ ϕ2)(u, v) =

(
u

v
,
1

v

)
.

(6.8) Example. Every open subset Ω of a d-dimensional manifold M of class Ck

inherits from M a manifold structure. Namely, if A is a Ck-atlas for M then A0 :=
{(U ∩ Ω, ψ|U∩Ω) | (U, ψ) ∈ A} is a Ck-atlas for Ω. With the differential structure given
by this atlas (and with the subspace topology inherited from M) we call Ω an open
submanifold of M .

(6.9) Example. Let M1 and M2 be Ck-manifolds of dimensions d1 and d2, respec-
tively. Given a Ck-atlas A1 for M1 and a Ck-atlas A2 for M2, a C

k-atlas for M is given by
A := {(U1×U2, ψ1×ψ2) | (U1, ψ1) ∈ A1, (U2, ψ2) ∈ A2}. Equipped with the differentiable
structure defined by this atlas and with the product topology, we call M the product
manifold of M1 and M2. This is a C

k-manifold of dimension d1 + d2.
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We are now in a position to define what it means for a mapping between locally
Euclidean spaces to be smooth.

(6.10) Definition. Let M and N be locally Euclidean spaces of dimensions m and
n, respectively, both equipped with a Ck-structure. A mapping f : M → N is said to be
of class Ck if it is continuous and if for all charts (U, α) in M and (V, β) in N such that
f(U) ⊆ V the mapping β ◦ f ◦α−1 : α(U) → β(V ) is of class Ck. (We call β ◦ f ◦α−1 the
coordinate representation of f with respect to the chosen charts U and V ).

The continuity of f ensures that, given a point p ∈ M and a coordinate chart V around
f(p) ∈ N , there is a coordinate chart U around p satisfying f(U) ⊆ V .
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Fig. 6.3: Smoothness of a mapping between locally Euclidean spaces.

We now proceed to define the tangent space at a point of an abstractly defined man-
ifold. For an embedded submanifold of M of Rn we defined a tangent vector at a point
p ∈ M as the velocity vector α′(0) of a curve in M satisfying α(0) = p. Since taking the
derivative α′(0) takes place in the ambient space Rn, this definition does not make sense
for an abstract manifold M for which something like an “ambient space” does not exist.
However, for an embedded submanifold we can clearly say when two curves α1 and α2

through p are equivalent in the sense that they yield the same tangent vector at p, and the
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condition of equivalence can be expressed in a way which makes sense for abstract man-
ifolds. This leads to the idea of simply identifying a tangent vector with an equivalence
class of curves.

(6.11) Definition. Let M be a Ck-manifold of dimension d and let p ∈M be a point
in M . Two curves α1, α2 : (−ε, ε) → M with α1(0) = α2(0) = p are called equivalent if
(ψ ◦α1)

′(0) = (ψ ◦α2)
′(0) for each chart (U, ψ) around p. The tangent space TpM of M

at p is the set of the equivalence classes of curves through p under this equivalence relation.
The tangent bundle TM of M is the set of all pairs (p, v) where p ∈M and v ∈ TpM .
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Fig. 6.4: Definition of tangent vectors as equivalence classes of curves.

If [α] denotes the equivalence class of a curve α through p and if ψ is any coordinate
map around p, the mapping

Φ :
TpM → Rd

[α] 7→ (ψ ◦ α)′(0)

is well-defined and bijective. Then TpM becomes a vector space by declaring this mapping
to be an isomorphism of vector spaces, i.e., by defining addition and scalar multiplication
on TpM by

[α]⊕ [β] := Φ−1
(
Φ([α]) + Φ([β])

)
and λ⊙ [α] := Φ−1

(
λΦ([α])

)
.

(It is readily checked that this definition is independent of the particular choice of the
coordinate map ψ.) Hence TpM is a d-dimensional vector space. A (coordinate-dependent)
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basis of TpM is given by the tangent vectors

∂

∂xi

∣∣∣∣
p

:= Φ−1(ei) = equivalence class of the curve α(t) := ψ−1
(
ψ(p) + tei

)

where 1 ≤ i ≤ d.

(6.12) Remark. If Ω ⊆ Rm is an open subset of Rm and if p ∈ Ω, then the mapping
TpΩ → Rm given by [α] 7→ α′(0) is well-defined and an isomorphism; hence we can (and
shall) always identify TpΩ with Rm.

Let M and N be Ck-manifolds and let f : M → N be a mapping of class Ck. Given
a point p ∈ M , let us consider the above equivalence relation ∼ of curves in M through
p and the corresponding equivalence relation ≈ of curves in N through f(p). It is readily
checked that α1 ∼ α2 implies f ◦ α1 ≈ f ◦ α2; hence the following definition is possible.

(6.13) Definition. Let f :M → N be a Ck-mapping between two Ck-manifolds and
let p ∈M . Then the mapping

f ′(p) :
TpM → Tf(p)N
[α] 7→ [f ◦ α]

is well-defined and is called the derivative of f at p.

It is readily checked that f ′(p) is a linear mapping. The special case f :M → R is of
particular interest. In this case f ′(p) : TpM → R is a linear form on TpM , i.e., an element
of the dual space (TpM)⋆.

(6.14) Remark. Let (U, ψ) be a coordinate chart of a manifold M , say ψ(p) =(
x1(p), · · · , xd(p)

)
∈ Rd for p ∈ U . Then

(
x′1(p), . . . , x

′

d(p)
)
is the basis of (TpM)⋆ which

is dual to
(
∂/∂x1|p, . . . , ∂/∂xd|p

)
. Moreover, if f : U → R is of class C1 and if f =

F ◦ ψ = F (x1, . . . , xd) then

f ′(p) =
d∑

i=1

∂F

∂xi

(
ψ(p)

)
x′i(p).

Proof. We have xi = pi ◦ ψ where pi : Rd → R is the projection onto the i-th
component. Hence

x′i(p)

(
∂

∂xj

∣∣∣∣
p

)
= x′i(p)

[
ψ−1

(
ψ(p) + tej

)]
=
[
xi ◦ ψ

−1
(
ψ(p) + tej

)]

=
[
pi
(
ψ(p) + tej

)]
= [xi(p) + t pi(ej)] = δij =

{
1, if i = j;
0, if i 6= j.
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If f = F ◦ ψ and if α : (−ε, ε) →M is any C1-curve with α(0) = p then

f ′(p)[α] = [f ◦ α] =
[
F
(
x1
(
α(t)

)
, . . . , xd

(
α(t)

))]
=

d

dt

∣∣∣∣
t=0

F
(
x1
(
α(t)

)
, . . . , xd

(
α(t)

))

=

d∑

i=1

∂F

∂xi

(
ψ(p)

)
[xi ◦ α] =

d∑

i=1

∂F

∂xi

(
ψ(p)

)
x′i(p)[α].

Since α was arbitrarily chosen this means f ′(p) =
∑d

i=1(∂F/∂xi)
(
ψ(p)

)
x′i(p).

As in Chapter 2, we can form the tangent bundle TM =
⋃

p∈M TpM . We want to
equip TM with both a topology and a differentiable structure.

(6.15) Theorem and Definition. Let M be a d-dimensional manifold of class Ck.

With each local parametrization ϕ : Ω → M we associate the set Ω̂ := Ω × Rd and the
mapping ϕ̂ : Ω̂ → TM given by

ϕ̂(u, w) :=
(
ϕ(u), ϕ′(u)w

)

whose inverse is given by ϕ̂−1(p, v) =
(
ϕ−1(p), ϕ′

(
ϕ−1(p)

)−1
v
)
. If A is an atlas of class

Ck for M and if B is the family of local parametrizations associated with this atlas, then
{Ω× Rd | (Ω, ϕ) ∈ B} is the basis of a topology on TM , and

B̂ := {(Ω̂, ϕ̂) | (Ω, ϕ) ∈ B}

gives rise to an atlas of class Ck−1 for TM . Consequently, TM carries the structure of
a 2d-dimensional manifold of class Ck−1. With this manifold structure we call TM the
tangent bundle of M .

Proof. We only need to check the smoothness of the transition maps. Given u ∈ Ω
and w ∈ Rd we have

(
ϕ̂−1
2 ◦ ϕ̂1)(u, w) = ϕ̂−1

2

(
ϕ1(u), ϕ

′

1(u)w
)

=
(
ϕ−1
2

(
ϕ1(u)

)
, ϕ′

2

(
ϕ−1
2 (ϕ1(u))

)−1
ϕ′

1(u)w
)

=
(
(ϕ−1

2 ◦ ϕ1

)
(u), ϕ′

2

(
(ϕ−1

2 ◦ ϕ1)(u)
)−1

ϕ′

1(u)w
)

=
(
(ϕ−1

2 ◦ ϕ1

)
(u), (ϕ−1

2 )′
(
ϕ1(u)

)
ϕ′

1(u)w
)

=
(
(ϕ−1

2 ◦ ϕ1

)
(u), (ϕ−1

2 ◦ ϕ1)
′(u)w

)
,

where we used the fact that (ϕ−1
2 )′(x) = ϕ′

2

(
ϕ−1
2 (x)

)−1
in the step from the third to

the fourth line. (This fact follows by taking derivatives on both sides of the identity
(ϕ2 ◦ ϕ−1

2 )(x) = x using the chain rule, which yields ϕ′

2

(
ϕ−1
2 (x)

)
(ϕ−1

2 )′(x) = 1.) This

shows that if ϕ−1
2 ◦ ϕ1 is of class Ck then ϕ̂−1

2 ◦ ϕ̂1 is of class Ck−1.
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It is now readily seen that a Ck-mapping f : M → N between Ck-manifolds induces
a Ck−1-mapping f⋆ : TM → TN via f⋆(p, v) :=

(
f(p), f ′(p)v

)
. As a straightforward

consequence of the chain rule we see that if f : M1 → M2 and g : M2 → M3 then
(g ◦ f)⋆ = g⋆ ◦ f⋆. In a way completely analogous to (6.15), we now equip the cotangent
bundle T ⋆M =

⋃
p∈M (TpM)⋆ with a manifold structure.

(6.16) Theorem and Definition. Let M be a d-dimensional manifold of class Ck.

With each local parametrization ϕ : Ω → M we associate the set Ω̂ := Ω × (Rd)⋆ and the

mapping ϕ̂ : Ω̂ → T ⋆ given by

ϕ̂(u, a) :=
(
ϕ(u), a ◦ ϕ′(u)−1

)

whose inverse is given by ϕ̂−1(p, λ) =
(
ϕ−1(p), λ ◦ ϕ′

(
ϕ−1(p)

) )
. If A is an atlas of class

Ck for M and if B is the family of local parametrizations associated with this atlas, then
{Ω× (Rd)⋆ | (Ω, ϕ) ∈ B} is the basis of a topology on TM , and

B̂ := {(Ω̂, ϕ̂) | (Ω, ϕ) ∈ B}

gives rise to an atlas of class Ck−1 for T ⋆M . Consequently, T ⋆M carries the structure of
a 2d-dimensional manifold of class Ck−1. With this manifold structure we call T ⋆M the
cotangent bundle of M .

Proof. Again, we only need to check the smoothness of the transition maps. Given
u ∈ Ω and a ∈ (Rd)⋆ we have

(
ϕ̂−1
2 ◦ ϕ̂1)(u, a) = ϕ̂−1

2

(
ϕ1(u), a ◦ ϕ

′

1(u)
−1
)

=
(
ϕ−1
2

(
ϕ1(u)

)
, a ◦ ϕ′

1(u)
−1 ◦ ϕ′

2

(
ϕ−1
2 (ϕ1(u))

) )

=
(
(ϕ−1

2 ◦ ϕ1

)
(u), a ◦ ϕ′

1(u)
−1 ◦ ϕ′

2

(
(ϕ−1

2 ◦ ϕ1)(u)
) )

=
(
(ϕ−1

2 ◦ ϕ1

)
(u), a ◦ ϕ′

1(u)
−1 ◦ (ϕ−1

2 )′
(
ϕ1(u)

)−1)

=
(
(ϕ−1

2 ◦ ϕ1

)
(u), a ◦

(
(ϕ−1

2 )′
(
ϕ1(u)

)
◦ ϕ′

1(u)
)−1)

=
(
(ϕ−1

2 ◦ ϕ1

)
(u), a ◦ (ϕ−1

2 ◦ ϕ1)
′(u)−1

)
,

where, as in the proof of (6.15), we used the fact that (ϕ−1
2 )′(x) = ϕ′

2

(
ϕ−1
2 (x)

)−1
in the

step from the third to the fourth line. This shows that if ϕ−1
2 ◦ ϕ1 is of class Ck then

ϕ̂−1
2 ◦ ϕ̂1 is of class Ck−1.

Each Ck-mapping f : M → N between Ck-manifolds induces a Ck−1-mapping
f⋆ : T ⋆M → T ⋆N via f⋆(p, λ) :=

(
f(p), λ ◦ f ′(p)−1

)
. The chain rule shows that if

f :M1 →M2 and g :M2 →M3 then (g ◦ f)⋆ = g⋆ ◦ f⋆.

We conclude that this chapter with a theorem which allows in many cases to establish
that a given set is, in fact, a manifold. We start with the following preliminary result.
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(6.17) Rank Theorem. Let U ⊆ Rm and V ⊆ Rn be open sets and let f : U → V
be a mapping of class Ck such that f ′(x) has the constant rank r for all x ∈ U . Then,
given a point p ∈ U , there exist an open neighborhood U0 ⊆ U of p, an open neighborhood
V0 ⊆ V of f(p) and Ck-diffeomorphisms ϕ : U0 ⊆ ϕ(U0) ⊆ Rm and ψ : V0 → ψ(V0) ⊆ Rn

such that
(ψ ◦ f ◦ ϕ−1)(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0)

for all x = (x1, . . . , xm) ∈ ϕ(U0). This means that f locally looks like the mapping Rm →
Rr × {0}.)

Proof. Write f(x) =
(
f1(x), . . . , fn(x)

)
. After renumbering coordinates if necessary,

we may assume without loss of generality that det
(
(∂jfi)(x)

r
i,j=1

)
6= 0 in an open neigh-

borhood Û of p. Define ϕ : Û → Rm by ϕ(x1, . . . , xm) :=
(
f1(x), . . . , fr(x), xr+1, . . . , xm

)
.

Then

ϕ′(x) =

[
(∂jfi)(x)

r
i,j=1 ⋆

0 1

]

is invertible. The Inverse Function Theorem implies that there is an open neihborhood
U0 ⊆ Û of p such that ϕ : U0 → ϕ(U0) is a C

k-diffeomorphism. From the way ϕ is defined
we see that g := f ◦ϕ−1 has the form g(ξ) = g(ξ1, . . . , ξm) =

(
ξ1, . . . , ξr, gr+1(ξ), . . . , gn(ξ)

)

so that

(⋆) g′(ξ) =

[
1r 0
⋆ A(ξ)

]
.

Up to this point we only used the fact that rkf ′(x) ≥ r in a neighborhood of p. Now we
use the fact that the rank of f ′(x) (and hence that of g′(ξ)) is, in fact, equal to r; this
fact implies that A(ξ) = 0 in (⋆), which means that gr+1(ξ), . . . , gn(ξ) do not depend on
ξr+1, . . . , ξm, but only on ξ1, . . . , ξr. Consequently,

ψ(ξ1, . . . , ξn) :=
(
ξ1, . . . , ξr, ξr+1 − gr+1(ξ1, . . . , ξr), . . . , ξn − gn(ξ1, . . . , ξr)

)

is invertible, hence a Ck-diffeomorphism, and obviously ψ ◦ g = ψ ◦ f ◦ϕ−1 has the desired
form.

(6.18) Corollary. Let f : M → N be a Ck-mapping between Ck-manifolds and let
y ∈ N be a given point. Assume that f ′(x) has constant rank r on an open neighborhood of
f−1(y). Then f−1(y) = {x ∈M | f(x) = y} is a Ck-manifold of dimension dim(M)− r.

Proof. By hypothesis, there are neighborhoods U of 0 in Rm and V of 0 in Rn and
local parametrizations ϕ : U → M and ψ : V → N with ϕ(0) = p and ψ(0) = q such
that F := ψ−1 ◦ f ◦ ϕ satisfies rkF ′(u) = r for all u ∈ U . Invoking Theorem (6.17),
we may assume (after suitable coordinate changes and after making the neighborhoods
U and V smaller if necessary) that F is in local coordinates given by F (x1, . . . , xm) =
(x1, . . . , xr, 0, . . . , 0) so that f−1(q) cooresponds to F−1(0) = {0} × Rm−r. Then ϕ maps
({0} × Rm−r) ∩ U diffeomorphically of class Ck onto f−1(q) ∩ ϕ(U), which shows that
f−1(q) sits locally inside M just as {0} × Rm−r sits inside Rm. This gives the claim.

10
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Note that necessarily r ≤ min
(
dim(M), dim(N)

)
. The case that the rank is maximal

is of particular importance.

(6.19) Definition. Let f : M → N be a C1-map between manifolds. We call f a
submersion if f ′(x) is surjective for all x ∈ M and an immersion if f ′(x) is injective
for all x ∈ M . An immersion which is also a homeomorphism onto its image is called an
embedding.

(6.20) Example. We claim that M := {A ∈ Rn×n | ATA = 1} is a manifold
of dimension n(n − 1)/2. (We know this fact already, with M being nothing but the
orthogonal group on Rn, but we want to give a new proof of this fact.) Let Σ be the
real vector space of all symmetric (n×n)-matrices (which has dimension n(n+1)/2), and
define f : Rn×n → Σ by f(A) := ATA so that M = f−1(1). Now

f ′(A)X =
d

dt

∣∣∣∣
t=0

f(A+ tX) =
d

dt

∣∣∣∣
t=0

(AT + tXT )(A+ tX) = XTA+ ATX.

We claim that if A ∈ f−1(1) (i.e., if ATA = 1)) then f ′(A) is surjective. In fact, if
C ∈ Σ is an arbitrary symmetric matrix and if we let X := (1/2)AC then f ′(A)X =
(1/2)

(
CTATA + ATAC) = (1/2)

(
CT + C) = C. Consequently, rkF ′(A) = n(n + 1)/2

for all A ∈ f−1(1), so that f−1(1) is a manifold of dimension n2−n(n+1)/2 = (n2−n)/2.

In Corollary (6.18), the set f−1(q) is a submanifold of M in the sense of the following
definitin.

(6.21) Definition. A subset S ⊆ M of an m-dimensional Ck-manifold M is called
a d-dimensional submanifold of M (more precisely: a d-dimensional embedded sub-
manifold of M), if each point p ∈ S possesses a local chart (U, ψ) (with respect to M)
such that ϕ mapsto S∩U to (Rd×{0})∩ψ(U) (i.e., if S sits locally in M just as Rd×{0}
sits in Rm.

If S is an abstractly given manifold and if i : S → M is an embedding into some
manifold M then we sometimes identify S with i(S), which is a submanifold of M . If
i : S → M is only an immersion, then, by the Implicit Function Theorem, i is locally an
embedding (which means that each point s ∈ S possesses a neighborhood S0 such that i|S0

is an embedding). Now if i is an injective immersion, some authors call i(S) an immersed
submanifold, but this is somewhat misleading, as i(S) need not be a submanifold in the
sense of Definition (6.21).

(6.22) Examples. (a) Define g : R → R by g(t) := 2 arctan
(
t−arctan(π/2)

)
+(π/2)

and i : R → R2 by i(t) :=

(
2 cos

(
g(t)

)
, sin

(
2g(t)

))
. Then i is an injective immersnion, but

not an embedding. (The image of i looks like a figure eight in which no neighborhood of
(0, 0) is homeomorphic to an open interval I ⊆ R. The image of i is, however, a manifold

11
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diffeomorphic to R if we do not equip it with the subspace topology from R2 but with an
intrinsic topology which makes it homeomorphic to the real line.)

-2 -1 1 2

-1.0

-0.5

0.5

1.0

Fig. 6.5: Immersed submanifold which is not an embedded submanifold.

(b) Consider the mapping i : R → S1 × S1 given by i(t) :=
(
eit, eiαt

)
where α ∈ R \Q

is an irrational number. Then i is an injective immersion, but not an embedding, because
the image of i is dense in the torus S1 × S1 so that the intrinsic topology of the image of
i (when considered as a one-dimensional manifold diffeomorphic to R) does not coincide
with the subspace topology inherited from S1 × S1.

Fig. 6.6: Dense curve winding around a torus.
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