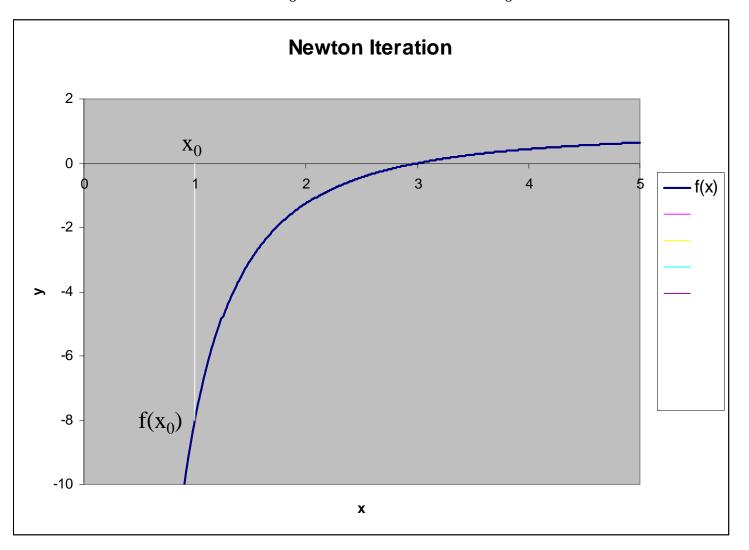
Das Newtonverfahren zur Nullstellenbestimmung

- 1. Die Idee des Newtonverfahrens
- 2. Herleitung der allgemeinen Iterationsformel
- 3. Beispiele
- 4. Analyse der Konvergenzgeschwindigkeit

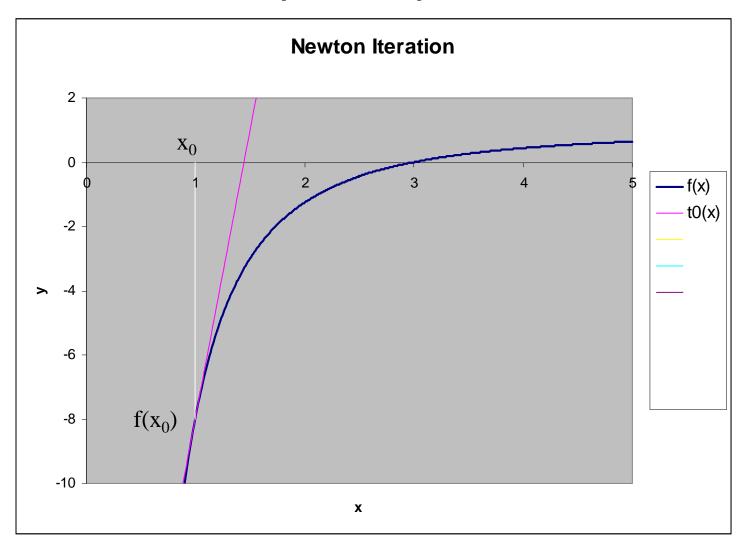
- 1. Die Idee des Newtonverfahrens
- 2. Herleitung der allgemeinen Iterationsformel
- 3. Beispiele
- 4. Analyse der Konvergenzgeschwindigkeit

- Das Newtonverfahren ist ein numerisches Verfahren zur Bestimmung von Nullstellen von Funktionen.
- Es ist einfach zu implementieren und konvergiert in der Regel sehr schnell.
- Die Idee ist die folgende:

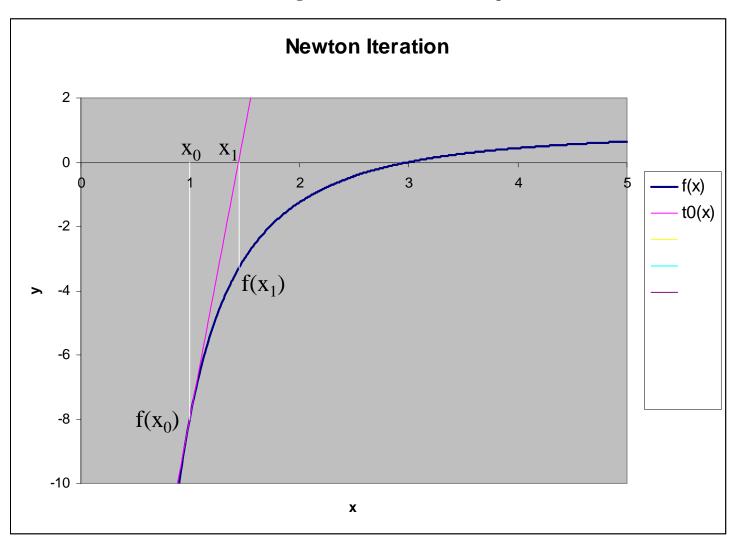
■ Waehle einen Startwert x_0 und berechne $f(x_0)$:



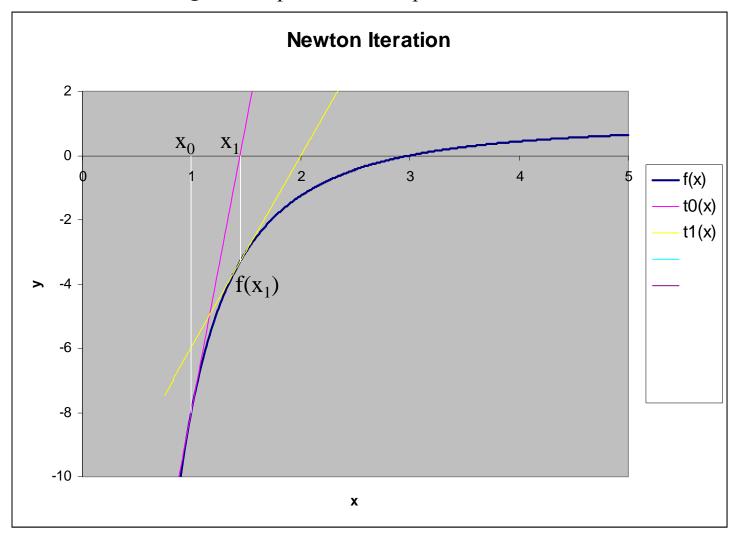
■ Berechne die Tangente $t_0(x)$ an $f(x_0)$:



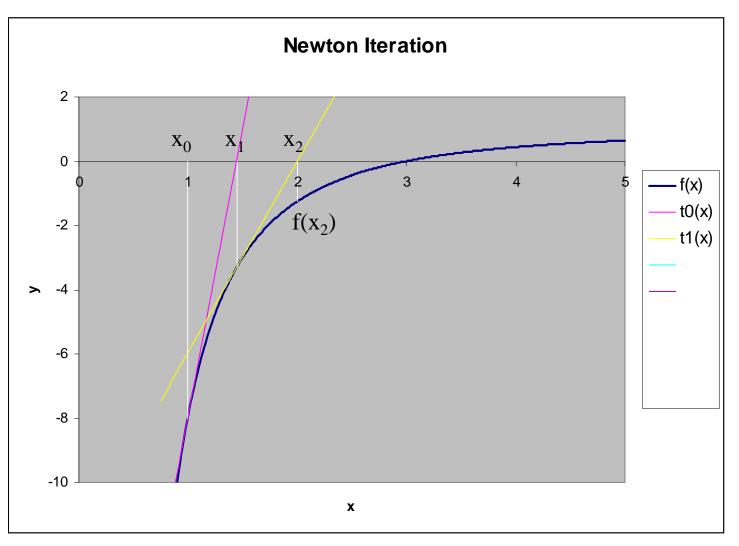
■ Berechne die Nullstelle x_1 der Tangente $t_0(x)$ und berechne $f(x_1)$:



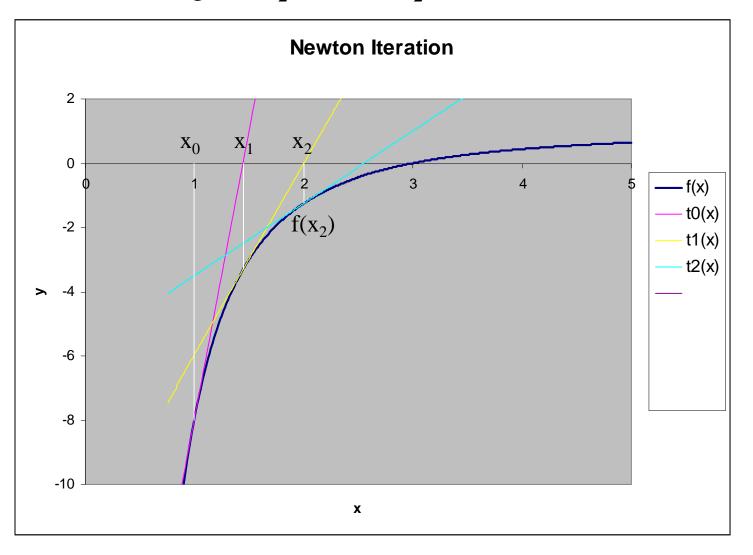
■ Berechne die Tangente $t_1(x)$ an $f(x_1)$:



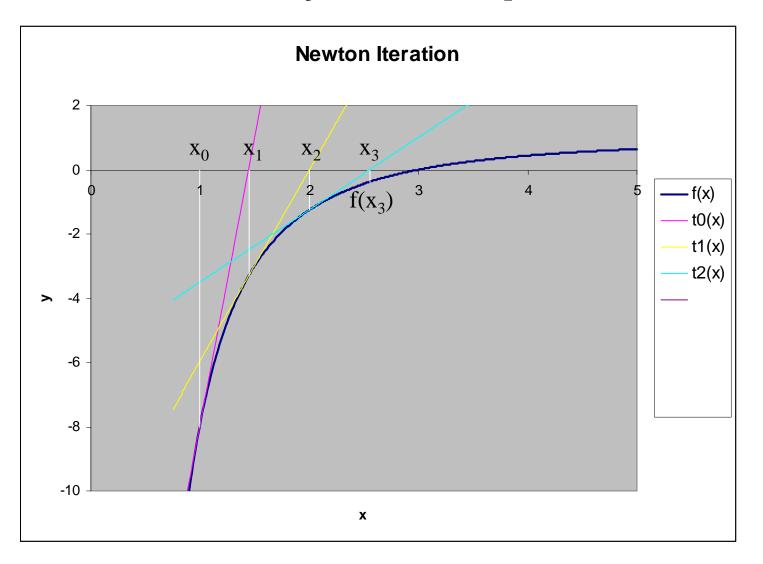
■ Berechne die Nullstelle x_2 der Tangente $t_1(x)$ und berechne $f(x_2)$:



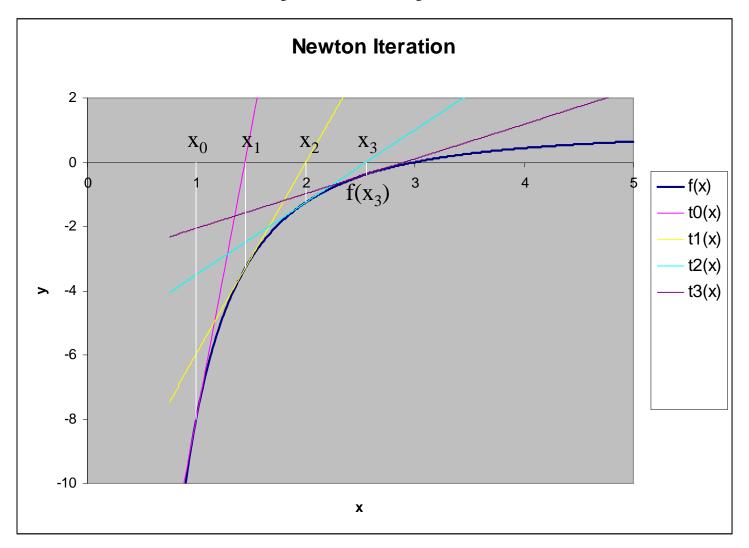
■ Berechne die Tangente $t_2(x)$ an $f(x_2)$:



■ Berechne die Nullstelle x_3 der Tangente $t_2(x)$ und berechne $f(x_3)$:



■ Berechne die Tangente $t_3(x)$ an $f(x_3)$ und so weiter...



- 1. Die Idee des Newtonverfahrens
- 2. Herleitung der allgemeinen Iterationsformel
- 3. Beispiele
- 4. Analyse der Konvergenzgeschwindigkeit

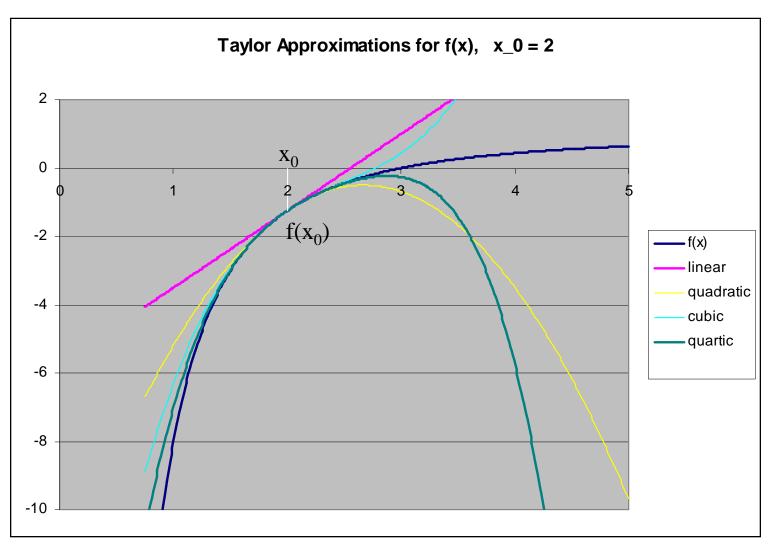
- Waehle einen Startwert x_0 und berechne $f(x_0)$.
- Berechne die Tangente $t_0(x)$ an $f(x_0)$: die Tangente ist der lineare Teil der Taylorentwicklung:

$$f(x) = f(x_0) + f'(x_0)(x-x_0) + 1/2 f''(x_0)(x-x_0)^2 + 1/6 f'''(x_0)(x-x_0)^3 + \dots$$

Tangentengleichung:

$$t(x) = t_0(x) = f(x_0) + f'(x_0) (x-x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x-x_0) + 1/2 f''(x_0)(x-x_0)^2 + 1/6 f'''(x_0)(x-x_0)^3 + \dots$$



■ Bestimme die Nullstelle der Tangente:

$$t_{0}(x) = f(x_{0}) + f'(x_{0})(x - x_{0}) \stackrel{!}{=} 0$$

$$\Leftrightarrow f'(x_{0})(x - x_{0}) = -f(x_{0})$$

$$\Leftrightarrow x - x_{0} = -\frac{f(x_{0})}{f'(x_{0})}$$

$$\Leftrightarrow x = x_{0} - \frac{f(x_{0})}{f'(x_{0})} =: x_{1}$$

■ Berechne jetzt die Tangente an $f(x_1)$

$$t_1(x) = f(x_1) + f'(x_1)(x - x_1)$$

und bestimme die Nullstelle dieser Tangente:

$$t_1(x) = f(x_1) + f'(x_1)(x - x_1) \stackrel{!}{=} 0$$

$$\Leftrightarrow x = x_1 - \frac{f(x_1)}{f'(x_1)} =: x_2$$

Nach n Iterationen: Berechne die Tangente an $f(x_n)$ und bestimme die Nullstelle dieser Tangente:

$$t_n(x) = f(x_n) + f'(x_n)(x - x_n) \stackrel{!}{=} 0$$

$$\Leftrightarrow x = x_n - \frac{f(x_n)}{f'(x_n)} =: x_{n+1}$$

■ Also lautet die allgemeine Iterationsformel:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- 1. Die Idee des Newtonverfahrens
- 2. Herleitung der allgemeinen Iterationsformel
- 3. Beispiele
- 4. Analyse der Konvergenzgeschwindigkeit

3. Beispiele

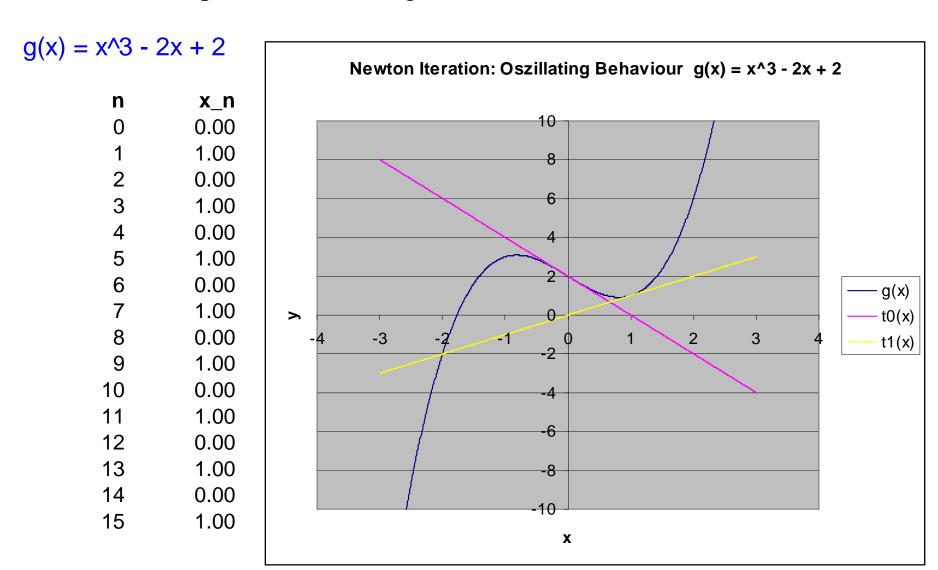
■ Beispiele mit schneller Konvergenz (das ist der Standard-Fall):

$$f_a(x) = 1 - a / x^2$$

а	2	3	4	9	16
sqrt(a)	1.4142135624	1.7320508076	2.0000000000	3.0000000000	4.0000000000
n	x_n	x_n	x_n	x_n	x_n
0	1.0000000000	1.0000000000	1.0000000000	1.0000000000	1.0000000000
1	1.2500000000	1.3333333333	1.3750000000	1.4444444444	1.4687500000
2	1.3867187500	1.6049382716	1.7375488281	1.9992379210	2.1041116714
3	1.4134169370	1.7184002238	1.9505992616	2.5549202962	2.8650580075
4	1.4142128894	1.7318898577	1.9981847452	2.9058502777	3.5626497278
5	1.4142135624	1.7320507851	1.9999975294	2.9956142793	3.9308859738
6	1.4142135624	1.7320508076	2.0000000000	2.9999903874	3.9982190362
7	1.4142135624	1.7320508076	2.0000000000	3.0000000000	3.9999988107
8	1.4142135624	1.7320508076	2.0000000000	3.0000000000	4.0000000000
9	1.4142135624	1.7320508076	2.0000000000	3.0000000000	4.0000000000
10	1.4142135624	1.7320508076	2.0000000000	3.0000000000	4.0000000000
11	1.4142135624	1.7320508076	2.0000000000	3.0000000000	4.0000000000
12	1.4142135624	1.7320508076	2.0000000000	3.0000000000	4.0000000000
13	1.4142135624	1.7320508076	2.0000000000	3.0000000000	4.0000000000
14	1.4142135624	1.7320508076	2.0000000000	3.0000000000	4.0000000000
15	1.4142135624	1.7320508076	2.0000000000	3.0000000000	4.0000000000

3. Beispiele

■ Ein Beispiel ohne Konvergenz (das ist die Ausnahme):



- 1. Die Idee des Newtonverfahrens
- 2. Herleitung der allgemeinen Iterationsformel
- 3. Beispiele
- 4. Analyse der Konvergenzgeschwindigkeit

4. Analyse der Konvergenzgeschwindigkeit

■ Das Newtonverfahren konvergiert sehr schnell (wenn es konvergiert), es hat eine "quadratische Konvergenz":

$$|x_{n+1} - x_{\text{Nullstelle}}| \le K |x_{\text{Nullstelle}} - x_n|^2$$

mit einer Konstanten
$$K = \frac{1}{2} \frac{\max_{\xi} f''(\xi)}{\min_{x} f'(x)}$$

■ BEWEIS: Mit Taylorentwicklung 2. Ordnung:

$$f(x) = f(x_n) + f'(x_n)(x - x_n) + \frac{1}{2}f''(x_n)(x - x_n)^2 + \frac{1}{6}f'''(x_n)(x - x_n)^3 + \cdots$$

$$\approx f(x_n) + f'(x_n)(x - x_n) + \frac{1}{2}f''(x_n)(x - x_n)^2$$

$$= f(x_n) + f'(x_n)(x - x_n) + \frac{1}{2}f''(\xi)(x - x_n)^2 \quad \text{mit } \xi \in [x_n, x] \text{ oder } [x, x_n]$$

4. Analyse der Konvergenzgeschwindigkeit

Fortsetzung BEWEIS: Sei $x_{Nullstelle}$ eine Nullstelle, $f(x_{Nullstelle}) = 0$. Dann:

$$0 = f(x_{\text{Nullstelle}}) = f(x_n) + f'(x_n)(x_{\text{Nullstelle}} - x_n) + \frac{1}{2}f''(\xi)(x_{\text{Nullstelle}} - x_n)^2$$

$$\Leftrightarrow -f(x_n) = f'(x_n)(x_{\text{Nullstelle}} - x_n) + \frac{1}{2}f''(\xi)(x_{\text{Nullstelle}} - x_n)^2$$

$$\Leftrightarrow -\frac{f(x_n)}{f'(x_n)} = x_{\text{Nullstelle}} - x_n + \frac{1}{2}\frac{f''(\xi)}{f'(x_n)}(x_{\text{Nullstelle}} - x_n)^2$$

$$\Leftrightarrow x_n - \frac{f(x_n)}{f'(x_n)} = x_{\text{Nullstelle}} + \frac{1}{2}\frac{f''(\xi)}{f'(x_n)}(x_{\text{Nullstelle}} - x_n)^2$$

$$\Leftrightarrow x_{n+1} = x_{\text{Nullstelle}} + \frac{1}{2}\frac{f''(\xi)}{f'(x_n)}(x_{\text{Nullstelle}} - x_n)^2$$

$$x_{n+1} - x_{\text{Nullstelle}} = \frac{1}{2}\frac{f''(\xi)}{f'(x_n)}(x_{\text{Nullstelle}} - x_n)^2$$

Also:
$$|x_{n+1} - x_{\text{Nullstelle}}| \le K |x_{\text{Nullstelle}} - x_n|^2$$

mit einer Konstanten
$$K = \frac{1}{2} \frac{\max_{\xi} f''(\xi)}{\min_{x} f'(x)}$$

BEWEISENDE