
Chapter 13

The Time-Dependent Black-Scholes Model

and Calibration to Market

The time-dependent Black-Scholes model is given by the following stochastic differen-

tial equation (SDE) for an underlying asset price process:

dSt
St

= µt dt + σt dxt (13.1)

where µt and σt are deterministic (that is, non-stochastic) functions of time t. Let us

first convince ourselfs that exact payoff replication in this model is still possible. For

the time-independent Black-Scholes model introduced in Chapter 4 and 5 we did that

by approximating the model through a suitable Binomial model and using the fact the

arbitrary payoffs can be replicated in the Binomial model. Here we will follow a different

path and show this directly in continuous time by using the continuous time formalism

introduced in Chapter 8.

Let us start by proving again that exact payoff replication is possible for the time-

independent Black-Scholes model given by

dSt
St

= µ dt + σ dxt (13.2)

The time-dependent case (13.1) will then be a straightforward generalization. Our stan-

dard equation of Chapter 1 for the value of a replicating portfolio,

vtk = vt0 +
k∑
j=1

δtj−1
(stj − stj−1

)

reads in continuous time

vt = vt0 +
∫ t
t0
δu dsu (13.3)
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96 Chapter 13

where the stochastic integral on the right hand side of (13.3) is an Ito-integral. From the

analysis of Chapter 7 we know that the number of stocks δt to be hold at time t must be

equal to

δt =
∂V (St, t)

∂St
(13.4)

where the undiscounted value V = V (St, t) of the replicating portfolio at time t, or equiv-

alently, the option price at time t, is a solution of the Black-Scholes partial differential

equation (PDE)

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (13.5)

with final condition

V (ST , t = T ) = H(ST ) (13.6)

Thus the statement “exact payoff replication is possible in the Black-Scholes model” is

equivalent (actually at this point only for non path-dependent payoffs) to the following

mathematical statement:

Theorem 13.1: Let V = V (St, t) be the solution to (13.5,13.6) and let δt = δt(St) be

given by (13.4). Now let S
(µ)
t be any stochastic path realization of the time-independent

Black-Scholes model given by (13.2) and let s
(µ)
t = e−rtS

(µ)
t denote the discounted realized

price path (we assume t0 = 0). Then we have for any such stochastic path realization:

e−rT H(S
(µ)
T ) = V0 +

∫ T

0

δt(S
(µ)
t ) ds

(µ)
t (13.7)

with V0 = V (S
(µ)
0 , t = 0) being the option price for the payoff H.

Proof: Let V = V (St, t) be the solution to (13.5,13.6). Because of

V (S0, 0) = V0 (13.8)

V (ST , T ) = H(ST )

v(ST , T ) = e−rTV (ST , T ) = e−rTH(ST ) =: h(ST ) (13.9)

we can write

e−rTH(ST )− V0 = e−rTV (ST , T )− e−r0V (S0, 0)

= v(ST , T )− v(S0, 0)

=
∫ T

0
dv(St, t) (13.10)
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with

dv(St, t) = v(St+dt, t+ dt)− v(St, t) (13.11)

The function v = e−rtV is given by a product of a deterministic function e−rt and a

stochastic function V (because the S which is put into V is stochastic). In that case, the

usual product rule of differentiation from ordinary calculus can be used (or more precisely,

the covariation d(e−rt) · dV = 0 vanishes) to obtain

dv = d(e−rtV )

= d(e−rt)V + e−rt dV

= −r e−rt dt V + e−rt dV

= −r v dt+ e−rt dV (13.12)

The quantity

dV = dV (St, t) = V (St+dt, t+ dt)− V (St, t)

on the right hand side of (13.12) has to be calculated with the Ito-Formula from Chapter

8, Theorem 8.1 (or the slight generalization (8.36), because of the extra t-dependence of

V ): We have

dV (St, t) = ∂V
∂St
dSt + 1

2
∂2V
∂S2

t
(dSt)

2 + ∂V
∂t
dt

(13.4)
= δt dSt + 1

2
∂2V
∂S2

t
(dSt)

2 + ∂V
∂t
dt (13.13)

or

e−rt dV = δt e
−rt dSt + e−rt 1

2
∂2V
∂S2

t
(dSt)

2 + e−rt ∂V
∂t
dt

= δt
[
e−rt dSt + d(e−rt)St

]
− δt d(e−rt)St + e−rt 1

2
∂2V
∂S2

t
(dSt)

2 + e−rt ∂V
∂t
dt

= δt dst − δt d(e−rt)St + e−rt 1
2
∂2V
∂S2

t
(dSt)

2 + e−rt ∂V
∂t
dt

such that from (13.12) we get

dv = d(e−rt)V + e−rt dV

= δt dst − δt d(e−rt)St + e−rt 1
2
∂2V
∂S2

t
(dSt)

2 +
[
∂e−rt

∂t
V + e−rt ∂V

∂t

]
dt

= δt dst − ∂V
∂St

(−r)e−rt St dt+ 1
2
∂2v
∂S2

t
(dSt)

2 + ∂v
∂t
dt

= δt dst + 1
2
∂2v
∂S2

t
(dSt)

2 +
[
∂v
∂t

+ rSt
∂v
∂St

]
dt (13.14)

Observe that equation (13.14) holds for any stochastic process St and any function v =

e−rtV , so far we have not used the Black-Scholes dynamics (13.2) or the Black-Scholes

PDE (13.5).
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Now suppose that St is given by the Black-Scholes dynamics (13.2). Then we have(
dSt
St

)2
= σ2 (dxt)

2 = σ2 dt (13.15)

and (13.14) becomes

dv = δt dst +
[
σ2

2
S2
t
∂2v
∂S2

t
+ ∂v

∂t
+ rSt

∂v
∂St

]
dt (13.16)

The square bracket in (13.16) is identical to

e−rt
[σ2

2
S2
t

∂2V

∂S2
t

+
∂V

∂t
− rV + rSt

∂V

∂St

] (13.5)
= 0 (13.17)

and thus we end up with

e−rTH(ST )− V0
(13.10)

=
∫ T

0
dv(St, t)

(13.16)
=

∫ T
0
δt dst +

∫ T
0

[
σ2

2
S2
t
∂2v
∂S2

t
+ ∂v

∂t
+ rSt

∂v
∂St

]
dt

(13.17)
=

∫ T
0
δt dst (13.18)

which proves the theorem. �

By going through the above proof, the following statement follows immediately:

Corollary 13.2: Let V = V (St, t) be the solution of the time-dependent Black-Scholes

PDE given by

∂V

∂t
+
σ2
t

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (13.19)

with some time dependent volatility function σt, with final condition

V (ST , t = T ) = H(ST ) (13.20)

and let δt = δt(St) be given by (13.4). Now let S
(µ)
t be any stochastic path realization of

the time-dependent Black-Scholes model given by (13.1) and let s
(µ)
t = e−rtS

(µ)
t denote the

discounted realized price path (we assume t0 = 0). Then we have for any such stochastic

path realization:

e−rT H(S
(µ)
T ) = V0 +

∫ T

0

δt(S
(µ)
t ) ds

(µ)
t (13.21)

with V0 = V (S
(µ)
0 , t = 0) being the option price for the payoff H.
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In the time-independent Black-Scholes model, the asset price process St has an explicit

representation:

St = eσxt+(µ−σ
2

2
)t (13.22)

In the time-dependent case, it is still possible to write down an explicit formula, although

it looks slightly more complicated:

Lemma 13.3: Let {xt}t≥0 be a Brownian motion and let {St}t≥0 be given by

St = e
∫ t
0 σu dxu+

∫ t
0 (µu−

σ2
u
2

)du (13.23)

with some deterministic drift function µt and volatility function σt. Then St is a solution

of the SDE (13.1),

dSt
St

= µt dt + σt dxt .

Proof: Let It denote the stochastic integral

It :=
∫ t

0
σu dxu (13.24)

and let Ft abbreviate the deterministic function

Ft :=
∫ t

0
(µu − σ2

u

2
)du (13.25)

such that

St = eIt+Ft (13.26)

We have

dIt = σt dxt (13.27)

(dIt)
2 = (σt dxt)

2 = σ2
t dt (13.28)

and, since Ft is deterministic,

dFt =
(
µt − σ2

t

2

)
dt (13.29)

(dFt)
2 = 0

(dIt + dFt)
2 = (dIt)

2 = σ2
t dt (13.30)
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such that

dSt = d
(
eIt+Ft

)
= eIt+Ft d(It + Ft) + 1

2
eIt+Ft d(It + Ft)

2

= St
[
σt dxt + (µt − σ2

t

2
)dt
]

+ 1
2
St σ

2
t dt

= St
[
σt dxt + µt dt

]
(13.31)

which proves the lemma. �

Our next task is to determine a general pricing formula for options with underlyings

which have a time-dependent Black-Scholes dynamics. There is the following analog of

Theorem 9.2:

Theorem 13.4: Let {xt}0<t≤T be a Brownian motion and let

S
(µ)
t := S0 e

∫ t
0 σu dxu+

∫ t
0 (µu−

σ2
u
2

)du (13.32)

be an underlying with time-dependent Black-Scholes price dynamics. Let

0 ≤ t1 < · · · < tm ≤ T

be some observation times and let H : Rm → R be some option payoff which pays the

amount

H
(
S

(µ)
t1 , · · · , S

(µ)
tm

)
at maturity T to the option buyer. Then the fair price V0 at time t = 0 of this option is

given by the following formula:

V0 = e−rTEW
[
H(S

(r)
t1 , ..., S

(r)
tm )
]

(13.33)

Here EW [ · ] denotes the expectation value with respect to the standard Wiener measure

and S
(r)
t is the risk neutral price process given by

S
(r)
t := S0 e

∫ t
0 σu dxu+

∫ t
0 (r−σ

2
u
2

)du (13.34)

Sketch of Proof: The proof of this theorem is similar to the reasoning of Chapter 9: an

equivalent martingale measure dW̃ is constructed such that the discounted price process

st = s
(µ)
t = e−rtS

(µ)
t = e

∫ t
0 σu dxu+

∫ t
0 (µu−r−

σ2
u
2

)du (13.35)
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is a martingale with respect to dW̃ . That is, the following equation should hold for all

t1 < t2:

EW̃
[
s

(µ)
t2 |xt1

]
= s

(µ)
t1 (13.36)

If this is the case, one has

EW̃
[
ds

(µ)
t |xt

]
= EW̃

[
s

(µ)
t+dt − s

(µ)
t |xt

]
= EW̃

[
s

(µ)
t+dt |xt

]
− s

(µ)
t

(13.36)
= s

(µ)
t − s

(µ)
t = 0 (13.37)

and furthermore

EW̃
[
δt(S

(µ)
t ) ds

(µ)
t

]
= EW̃

[
δt(S

(µ)
t ) ds

(µ)
t |x0

]
= EW̃

[
EW̃
[
δt(S

(µ)
t ) ds

(µ)
t |xt

] ∣∣ x0

]
= EW̃

[
δt(S

(µ)
t ) EW̃

[
ds

(µ)
t |xt

]︸ ︷︷ ︸
=0 (13.37)

∣∣ x0

]
= 0 (13.38)

such that, if we take the expectation value of the equation (13.21) of Corollary 13.2:

EW̃

[
e−rT H(S

(µ)
T )

]
= EW̃

[
V0 +

∫ T

0

δt(S
(µ)
t ) ds

(µ)
t

]
⇔ e−rTEW̃

[
H(S

(µ)
T )

]
= V0 +

∫ T

0

EW̃
[
δt(S

(µ)
t ) ds

(µ)
t

]︸ ︷︷ ︸
=0 (13.38)

⇔ V0 = e−rTEW̃
[
H(S

(µ)
T )

]
(13.39)

A similar calculation as those in the proof of Theorem 9.2 then shows that

EW̃
[
H(S

(µ)
T )

]
= EW

[
H(S

(r)
T )
]

(13.40)

with S
(r)
t being the risk neutral price process given by (13.34). Since the actual construction

of dW̃ needs the material of Chapter 16 and because we do not need dW̃ in the following,

we postpone the construction of dW̃ to a later time. �

Let us now specialize our general pricing formula (13.33) to the case of a non path-

dependent european option with payoff H = H(ST ). Then we obtain the following

theorem, which is the analog of the pricing formula (5.25) of Theorem 5.2 for the time-

independent Black-Scholes model:
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Theorem 13.5: a) Let {xt}t≥0 be a Brownian motion, letW be the Wiener measure and

let σt be some deterministic function. Let F be some function. Then

EW
[
F
(∫ T

0
σt dxt

) ]
=

∫
F
(∫ T

0
σt dxt

)
dW ({xt}0<t≤T )

=

∫
R
F
(
σimp,T

√
T x
)

1√
2π
e−

x2

2 dx (13.41)

where the implied volatility σimp,T is given by

T σ2
imp,T :=

∫ T
0
σ2
t dt (13.42)

b) Let H = H(ST ) be the payoff of some non path-dependent option. Then its fair value

V0 = V BSTD
0 in the time-dependent Black-Scholes model is given by

V BSTD
0 = e−rT

∫
R
H
(
S0 e

σimp,T

√
T x+ (r−

σ2
imp,T

2
)T
)

1√
2π
e−

x2

2 dx (13.43)

with an implied volatility σimp,T is given by (13.42).

Proof: a) We have

EW
[
F
(∫ T

0
σt dxt

) ]
=

∫
F
(∫ T

0
σt dxt

)
dW ({xt}0<t≤T )

= lim
∆t→0

∫
F
(√

∆t

NT∑
j=1

σtj φj
) NT

Π
j=1

e−
φ2
j
2
dφj√

2π

= lim
∆t→0

∫
F
(√

∆t

NT∑
j=1

φj
) NT

Π
j=1

e
−

φ2
j

2σ2
tj

dφj√
2πσ2

tj

(4.11)
= lim

∆t→0

∫
F (yT )

NT
Π
j=1

e
−

(ytj
−ytj−1

)2

2∆tσ2
tj

dytj√
2π∆tσ2

tj

(13.44)

Because of (4.15)

∫
R

1√
2π∆tσ2

tj

e
−

(ytj
−ytj−1

)2

2∆tσ2
tj 1√

2π∆tσ2
tj+1

e
−

(ytj+1
−ytj )2

2∆tσ2
tj+1 dytj

=

∫
R
p∆tσ2

tj
(ytj−1

, ytj) p∆tσ2
tj+1

(ytj , ytj+1
) dytj

= p∆tσ2
tj

+ ∆tσ2
tj+1

(ytj−1
, ytj+1

)

= 1√
2π∆t(σ2

tj
+σ2

tj+1
)
e
−

(ytj+1
−ytj−1

)2

2∆t(σ2
tj

+σ2
tj+1

)
(13.45)
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Thus, in (13.44) we can integrate out all ytj with the exception of yT to obtain (s2 :=∑NT
j=1 σ

2
tj

)

EW
[
F
(∫ T

0
σt dxt

) ]
= lim

∆t→0

∫
R
F (yT ) 1√

2π∆t s2
e−

(yT−yt0 )2

2∆t s2 dyT

=

∫
R
F (yT ) 1√

2πTσ2
imp,T

e
− y2

T
2Tσ2

imp,T dyT

=

∫
R
F
(
σimp,T

√
T x
)

1√
2π
e−

x2

2 dx (13.46)

since

∆t s2 = ∆t
∑NT

j=1 σ
2
tj

∆t→0→
∫ T

0
σ2
t dt = T σ2

imp,T

This proves part (a). For part (b), we use formulae (13.33) and (13.34) of Theorem 13.4

to obtain

V0 = e−rTEW
[
H(S

(r)
T )
]

= e−rT
∫
H
(
S0 e

∫ T
0 σt dxt+

∫ T
0 (r−σ

2
t
2

)dt
)
dW ({xt}0<t≤T ) (13.47)

such that part (b) is an immediate consequence of (13.41) of part (a). �

As an immediate consequence of Theorem 13.5, we are in a position to write down the

Black-Scholes formulae for the fair value of call- and put-options in the time dependent

Black-Scholes model:

Corrolary 13.6: Consider standard european call- and put-options with strike K and

maturity T ,

Hcall(ST ) = max{ST −K, 0}
Hput(ST ) = max{K − ST , 0}

Suppose that the underlying asset price dynamics is given by the time-dependent Black-

Scholes model

dSt/St = µt dt+ σt dxt (13.48)

with some deterministic drift function µt and volatility function σt. Define the implied

volatility σimp,T at maturity T through the formula

σimp,T =
{

1
T

∫ T
0
σ2
t dt
}1/2

(13.49)
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Then the time zero fair values of calls and puts are given by

V BSTD
call,0 = S0N(d+) − K e−rT N(d−) (13.50)

V BSTD
put,0 = −S0N(−d+) + K e−rT N(−d−) (13.51)

where

d± :=
log S0

K
+ (r ± σ2

imp,T

2
)T

σimp,T

√
T

(13.52)

Proof: Follows immediately from (13.43) of Theorem 13.5 and the calculations in the

proof of Theorem 6.1 �

Calibration to Market

Let V market
call,K,T be an observed market price for a call option with strike K and maturity

T . Let V BS
call,K,T (σ) be the theoretical fair value when this option is priced in the time-

independent Black-Scholes model with volatility parameter σ. Then the implied volatility

σimp of this option is defined to be that constant volatility number which has to be put

into the time-independent Black-Scholes model in order to reproduce the market price.

That is,

V BS
call,K,T

(
σimp

) !
= V market

call,K,T (13.53)

If one looks at concrete market prices, one finds that σimp is in fact a function of K and

T ,

σimp = σimp(K,T ) (13.54)

With a time-dependent Black-Scholes model, we can take care of the T -dependence of the

volatilities, but not of the K-dependence. From Corollary 13.6, we have

V BS
call,K,T

(
σimp,T

)
= V BSTD

call,K,T

(
{σt}0≤t≤T

)
(13.55)

if the implied volatility for maturity T and the volatility function {σt}0≤t≤T are related

through the equation

T σ2
imp,T =

∫ T
0
σ2
t dt . (13.56)

Now let

V market
call,K,T1

, V market
call,K,T2

, · · · , V market
call,K,Tm (13.57)
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be a set of observed market prices (say, for strike K = S0, for ‘at the money’ calls) and let

σimp,T1 , σimp,T2 , · · · , σimp,Tm (13.58)

be the corresponding implied volatilities. Now, calibrating the time-dependent Black-

Scholes model to these market quotes means that we have to determine the volatility

function σt of the time-dependent Black-Scholes model in such a way that the equation

Tk σ
2
imp,Tk

=
∫ Tk

0
σ2
t dt (13.59)

is fulfilled for all observed maturities T1, · · · , Tm. From (13.59) we get

Tk σ
2
imp,Tk

− Tk−1 σ
2
imp,Tk−1

=
∫ Tk
Tk−1

σ2
t dt (13.60)

Thus, if we let σt be a piecewise constant function, being equal to a constant σk on the

intervalls (Tk−1, Tk), then we get from (13.60)

σ2
k =

Tk σ
2
imp,Tk

− Tk−1 σ
2
imp,Tk−1

Tk − Tk−1

(13.61)

The process of choosing the σk according to (13.61) when the σimp,Tk are given by market

quotes is called ‘calibrating the time-dependent Black-Scholes model to the market’.


