Chapter 18

Pricing and Hedging in the Presence of
Stochastic Volatility and Stochastic Interest Rates

The main objective of this chapter is to prove the Theorem 18.1 on page 149 below.

Suppose that the real, physical processes for the stock price S;, for the variance v; and
for the short rates r; are given by the SDE’s

d
% — pdi+ 7 dBS (18.1)
t
th = Oé(Vt,t)dt—‘-ﬂ(Vt,t)dB: (182)
dry = m(ry,t)dt+ odB] (18.3)

where the interest rate volatility does not necessarily have to be a constant but may also
depend on time and the short rate, o = o(t,7;). The Brownian motions dB*,dB" and
dB" may have some correlations

dB%-dB" = pgs,dt
dB®-dB" = pg,dt (18.4)
dB"-dB" = p,,dt

Suppose we want to price some derivative with payoff H = H(Sr). Since our stochastic
model has 3 independent random factors, we need 3 linear independent instruments in
order to replicate the payoftf H. Besides the stock S;, we choose some plain vanilla option
C = C(S,v,r,t) and some zero bond P = P(r,t). We suppress the maturities of the plain
vanilla option C' and the zero bond P in the notation, they should be larger than T'. Also,
instead of H just depending on St, it could also depend on r and vy, but for notational
simplicity, we omit ry and vr. The exotic case H = H ({St, Tt}ogth) is covered by part
(c) of Theorem 18.1 on page 149 below.
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Consider a self financing strategy which holds at time ¢; d;, stocks, 7, plain vanilla
options and p;, zero bonds. Let V{ be the initial investment, the costs to set up the
self financing strategy which is the option price. The discounted portfolio value at time
ty =T, v, = DF, Vi, is given by (by an argument very similar to that given in the
proof of Theorem 1.1 in the very first chapter)

N N N
Uty = Vot Z 5tk—1(8tk - Stk—l) + Z Tty (Ctk - Ctk—l) + Z ptk—l(ptk - ptk—l) (18'5)
k=1 k=1 k=1
where the small letters denote discounted quantities. That is,
v, = DFV,
St — DFt St
¢ = DF,C(Se,v,m,t)
pr = DF;P(r,t) (18.6)
with the discount factor
DF, = ¢ Jorudu (18.7)

Let us first determine the quantities ,7 and p which are needed to replicate the payoft.
As a by-product, we will find that, if C' and P are consistently priced within the model
(18.1,18.2,18.3), the functions (18.30) and (18.35) below have to be some universal func-
tions independent of the particular choice of P and C'. This is of relevance since these
functions will also show up in the equivalent martingale measure, the risk neutral pricing
measure.

From equation (18.5), we obtain in continuous time

dv = dds+ndc+ pdp (18.8)

which is equivalent to

dV —rVdt = §(dS —rSdt)+n(dC —rCdt)+ p(dP —rPdt) (18.9)
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Since C'= C(S,v,r,t), we have

dC = CsdS+C,dv+ Cpdr+ L(Css (dS)? + C,, (dv)? + Cpe(dr)?)

+ Cg,dSdv + Cs, dS dr + C,,,. dv dr + C, dt
= Cs\/vSdB° +C,3dB" + C,o dB"

+ (BSCs +aCy +mC, + §(S%Css + F*C, + 0°Ciy)

+ ﬁ\/;SPS,uCSu + \/;O-SPS,T‘CST' + BO-IOZ/,T‘CVT + Ct)dt

dBS
= LCdt+ (vvSCs, BC,,aC,) | dBY
dB"

= LCdt+ (XVC, AdX)
= LOdt + (ATSVC,dX)

where we defined the differential operator

LC = pSCs+ aC, +mC, + %(521/055 + 320, + 0207«7«)
+ BvVvSpsCsy + 0vSps,Csr + 08pu,Cor + C,

and the diagonal matrix

VS 00
Y= 0 g 0
0 0 o
Furthermore A is a Cholesky root of the correlation matrix,
1 Psy  PSr
AAT - Pv,S 1 Pu,r
Pr.s  Pryv 1

and VC' denotes the vector

YO = (5,50.5) = (05,0, C)
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(18.10)

(18.11)

(18.12)

(18.13)

(18.14)

Finally for vectors v = (vy,vq,v3) and w = (wy, wa, w3), (v, w) = Viw; + Vaws + vzws de-
notes the scalar product and dX = (dX;,dXs,dX3) are 3 independent Brownian motions.

In the same way we obtain
dP = LPdt+ (ATSVP,dX)
where, since P = P(r,t) does not depend on S and v,

LP = mP,+%P, +P

(18.15)

(18.16)
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and

dS = pSdt+/vSdB®
= LSdt+ (ATYVS,dX) (18.17)

Substituting this in (18.9) and abbreviating
L,C:=LC—-rC (18.18)
we get

LVdt+ (ATEW,dX) = 6(L,.5dt + (A"SVS,dX)) + n(L,Cdt + (ATSVC, dX))
+ p(L,Pdt + (ATSVP,dX)) (18.19)

This equation can only be fulfilled if the coefficients of dt, dX;,dX, and dX3 coincide.
Thus we obtain:

LV = 6L.5+nL,C+pL,P (18.20)
ATEW = SATEVS +nATENVC + pATEVP (18.21)

Equation (18.21) is equivalent to
W = 6VS +nVC + pVP (18.22)

This equation simply means that the whole portfolio consisting of the sold derivative plus
the hedge position should be delta, vega and rho neutral. More explicitly,

Vo = 0+ 7705
V, = nC, (18.23)
V. = nC, + pP,
which gives
n o= & (18.24)
o = VS — 7705 (18.25)
p = % — 77%: (18.26)

Substituting these values in equation (18.20), we obtain

LV = (Vs =nCs)LS +nL,C+ V.55 —nC 5F (18.27)

or, using £,.5 = (u—r)S,

LV = (u—r)SVs — V&l = (ETC (- 1r)SCs — Oﬁ;f’) (18.28)
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Now we have
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where we defined the function

L, P (18.16) mP, + %QPTT + P —rP
P, P,
&P+ P — 1P
- 5
= m-—m (18.29)
m(r,t) = — Zlwt ol (18.30)

P,

Furthermore, using (18.11) and (18.18), the left hand side of (18.28) can be rewritten as

LV — (u—1)SVs —V,

Ly P

LV —(u—1r)SVs—(m—m)V,

1SVs + aV, +mV, + 1(S%wVss + B2V, + 0%V,
+B8vVvSps, Vs, + o vSps. Vs, + oBpu, Vi + Vi — 1V
—(p=7)5Vs = (m —m)V,

rSVs 4+ aV, +mV, + 3 (S*vVss + BV, + 0*V,,)
+BvVVSpsyVsy + oV VSps Ve + 0Bpy,Vir + Vi =1V

Py

= LV (18.31)
Observe that £, differs from £, only through the substitutions
W o= r
m — m (18.32)
Thus, from (18.28) and (18.31) we obtain, using n = g_Z’
LV L.C
= 18.33
V) C (18.33)
where we write, in analogy to (18.29),
L£,C  (s31) rSCs + mC, + %(SQVCSS + 82C,, + UZCW)
- — o _|_
C, C,
+ B\/;SPS,VCSV + U\/;SPS,TCST + O-Bpl/,rol/r + C115 —rC

Cy

o — G (18.34)
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with the definition

rSCs +mC, + (S*vCss + f*Cy + 0°C,)
— c.
o ﬁ\/;SPS,uCSu + O-\/;SpS,TCSr + Uﬁpy,rCI/r + C(t —rC
Cy

a =

(18.35)

Now, since the price V' of the derivative cannot depend on a particular hedging instrument,
the functions m and & have to be some universal functions independent of the particular
choice of P and C. We will check this later for m in case of the Vasicek model. The PDE
which has to be satisfied by V' =V (S, v, r, t), with payoft V(Sp,vr,rr,T) = H(Sr), then
reads

Vi —rV +rSVs + mV, + aV, + 1 (S?vVss + B2V, + 0%V,,)
+ B\/;SPS,VVSV + U\/;SPS,TVST + Uﬁpy,rvur =0 (1836)

In terms of the differential operator £, (18.11,18.18), this reads
LV —(u—r)SVs—(m—-m)V, —(a—a)V, = 0 (18.37)

Observe that all original drift terms from the real, physical processes for S, v and r, namely
1, a and m, have all disappeared. They are substituted by the new drift terms

r
7 (18.38)

o

o 3 =
Ll

where m and & are given by the universal functions (18.30) and (18.35). This substitution
(18.38) is also found in the equivalent martingale measure which we compute now.

The Equivalent Martingale Measure

From equation (18.5), we have in the continuous time limit
DFpH(Sp) = Vo+ [y 6ods+ [ nedey + [ pidp (18.39)

where Vj are the costs to set up the self financing strategy which replicates H, that is, the
price of the option H. If all processes s, ¢; and p; are martingales with respect to some
measure E| - |, we have E[ds;] = E[d¢;] = E[dp;] = 0 such that

Vo = E[DFrH(Sy)] (18.40)
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In the following we determine E[ - |.

The real, physical processes for S,v and r are given by (18.1,18.2,18.3),

%St = pdt+ /v, dB}
t

dl/t = Oé(Vt,t)dt—“ﬂ(Vt,t)dB:
dry = m(ry,t)dt + odBy

with correlated Brownian motions dB,dB" and dB". Let A be a Cholesky root of the
correlation matrix (18.13) and let dX = (dX;,dX5,dX3) be 3 independent Brownian
motions such that, if dB := (dB°,dB",dB"),

dB = AdX (18.41)

Furthermore, let

E[-] = / AW ({ X1t Xog, X3t toc<r) (18.42)

denote the expectation with respect to the Wiener measure for the 3 independent Brownian
motions X; = (X1, Xoy, X34). In the following, we will make a Girsanov transformation
(us to be determined)

Y, = X,+ [, i,ds (18.43)
such that with respect to the new measure
AW ({Yi4, Yau, VasJocrer) = e Jo BXomalo Bds gy (X, Xoy, Xaiboarer)  (18.44)
the processes s;, ¢; and p; are all martingales.

We have ¢, = DF; C(Sy, vy, 14, t) where the values Sy, v, and r; which are substituted in
C are the real, physical processes since the quantities which are relevant for the replicating
strategy are of course the real, physical quantities. Thus, from (18.10,18.11,18.18), we get

de, = DEF, (dC’ —rC dt)
= DF,(L,Cdt + (VC,SAdX)) (18.45)

with similar equations for dp; and ds;. Collecting all 3 equations, this can be rewritten as

ds (u—r)S 1 0 0
de| = pr| £, |dt+Dr|Cs ¢ ¢ | sAdx (18.46)
dp L.P 0 0 P
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If we make the transformation (18.43) with the vector @ given by
1

1 0 0\ [(u—nr)S
iy = AU Cs C, G, L,C (18.47)
0O 0 P L, P
then in terms of the new Brownian motions Y; = (Y14, Yoy, Ya,),
ds NI 0 0
dec| = DF |+\vSCs pC, oC,| AdY (18.48)
dp 0 0 oP.

Thus, s, ¢; and p; are martingales with respect to the Wiener measure dW ({Y; }o<i<7) for
the Y Brownian motions. Finally, we have to determine the SDE’s for S, v and r in terms
of the Y Brownian motions. In terms of X,

as wS VS 00
dv | = a ldt+| 0 B 0] AdX (18.49)
dr m 0 0 o
Substituting dX = dY — @ dt in (18.49), we get
as VS 00
dv| = newdrift xdt+| 0 38 0 | AdY (18.50)
dr 0 0 o
where the new drift is given by
wS 1 0 o0\ ' (p—r)S
new drift = a | =xAA's MO0 C, C, L,.C
m 0O 0 P L.P
wS 1 0 0 (uw—r1)S
= a | —|-Cs/C, 1/C, —C,/(C,P,) L.C
m 0 0 1/P, L.P
rS
- oz—ciu(—(u—r)SC’g—i—ErO—C’Tﬁ]gf)
L.P
m — P
. rS
U2 o - A(L,C — (u—1)SCs — (m —m)C,)
m
(18.31) rs
18. 5
m
18.34 ro
S (18.51)
m
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We summarize our results in the following

Theorem 18.1: Suppose that the real world (not risk neutral) processes for some stock
S;, variance v; and short term interest rate r; are given by

B = pdt+ v dB}
th = ()C(Vt,t)dt—Fﬁ(Vt,t)dBél (1852)

dry = m(ry,t)dt + odBy
with correlations

dB®-dB" = pg,dt
dB®-dB" = pg,dt (18.53)
dB" -dB" = p,,dt
Let H = H(St) be the payoff of some derivative which is to be priced and let
v = vy + fot Oy dSy + f(f N dCy + f(f Pu APy, (18.54)

be the discounted time ¢ value of a self financing strategy which holds at time u d,, stocks,
7, plain vanilla options C(Sy, vy, 7y, w) and p, zero bonds P(r,,u). Then the following
statements hold:

a) If the hedge instruments P and C' are consistently priced in the model (18.52), then
the functions

o2
- o Py +Pi—rP

mirt) = A (18.55)
7 10g2 2 2
d(S’ v, t) _ _rSCs+mCr+2(S ,/C,CUSS+IB Cuu+02Chy)
6\/1759 ’VC u+0'\/175p H"C T+Uﬁpu,rcl/r+c —rC
B Yo : (18.56)

have to be some universal functions independent of the particular choice of P and

C.
b) Define the differential operator (for some function V=V (S,v,7,t) )

ﬁrisk neutralv = TSVS + &Vy + m‘/r + %(S2VVSS + BQVVV + 0'2‘/7«7«) (1857)
+ B\/;SPS,VVSV + U\/;SpS,TVSr + Uﬁpu,rvur + ‘/t —rV

Suppose that V is a solution of the PDE

‘Criskneutralv = 0 (1858)
V(S,v,r,T) = H(Sr)
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and define
n o= L (18.59)
0 = VS_nCS (1860)
p o= - (18.61)

Then (18.54) is in fact a replicating strategy for H. That is,
V(S,v,m,0) + [ 6dsy + [) medes+ [ prdpy = eI U H(Sy)  (18.62)
where
Sy = €~ Jo redt Sy
a6 = e I it O (Sy, vy, 1y, 1) (18.63)
e = e fOT”dtP(rt,t)

and (18.62) holds for all real world processes S;, 14 and r; which are given by (18.52)
(and which are to be substituted on the right hand side of (18.63)). In particular,
the option price

option price = V/(S,v,r,0) (18.64)

given by the solution of (18.58,18.57), is independent of 1, m and « but only depends
on m, & and the vol and correlation parameters.

Let
H = H({S:, 7 }o<i<7) (18.65)
be the payoff of some exotic option. Then the price of this option is given by
price(H) = E[e= I H({5,, i}osier) (18.660
where (S;, 7, 7) are given by the risk neutral SDE system
L= Fdt+ /i dB]
dv, = aliy,t)dt + B(i,t) dBY (18.67)
di, = m(F,t)dt +odB!
with correlated Brownian motions
dB% . dB" = pg, dt
dB%-dB" = pg,dt (18.68)
dBY-dB" = p,,dt

Here m and & are the universal functions (18.55,18.56).
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Proof: It remains to prove that with the definition (18.59,18.60,18.61) of d,7 and p, the
self financing strategy (18.54) in fact replicates H. That is, (18.62) holds. To this end,
define the differential operator

LrcalworldV = pSVs +aV, + mV, + %(SQVVSS + B2V, + 02‘/W)

+ 5\/;SpS,VVSV + U\/;SPS,T‘VST + Uﬂpu,rvw + ‘/t —rV
/Crisk neutralv + <([1’S - TS, o — 51, m — m), W> (1869)

such that, as in (18.10),

av = Aligno(v(st—&-AtaVt+AtaTt+At7t+ At) — V(Stal/tﬂ“t,t))
Stvesrt
real W'Osrels
o= (Lreal wordV + rV)dt + (VV, X dB) (18.70)

By assumption, V is a solution of the PDE (18.58), Lyisk neutralV = 0, which means
Ereal Worldv - <<,U/S - TS, o — 647 m — m), W> (1871)

Furthermore, because of (18.55,18.56) we also have

‘crisk neutralC = 0 (1872)
‘Crisk neutralP = 0 (1873)
and by direct computation
Lrisk neutralS = 0 (18.74)
Thus,
LrcalwornaS = {(uS —rS,a— &, m —m), VS) (18.75)
Lreal worldC' = <(uS —rS,a—a&,m—m), VC> (18.76)
‘Creal world? = <<,US - TS, o — 54, m — ﬁl), VP> (1877)

Since §,7n and p are determined such that equation (18.22) holds,
W = 6VS +nVC + pVP (18.78)
we also have
LrcalworldV' = 0 Lreal worldS + 1 Lreal worldC' + p Lyeal worla P (18.79)
which gives, using (18.70) and (18.78) again,

dV —rVdt = 6(dS —rSdt) +n(dC —rCdt) + p(dP — rPdt) (18.80)
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or
dv = dds+ndc+ pdp
Thus, if
v(Sy, v, 1, t) = e’fg”d“V(St,ut,rt,t)

then, abbreviating Vi = V(So, 19, 1o, 0), we have

e~ o rdepr(gyy — vy VY o K rduy (9 v e T <V
v(St,vr,rr, T) — v(Sy, Vo, 70, 0)
= fOT dv
(18.81

) f0T5d3+f0Tndc+f0Tpdp

which proves (18.62) B
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(18.81)

(18.82)

(18.83)



