
Chapter 23

The Heston Model

In the last chapter we considered general stochastic volatility models whose price pro-

cess is given by the solution of the SDE system

dSt = µt St dt+
√
νt St dB

1
t (23.1)

dνt = α(St, νt, t) dt+ β(St, νt, t)
√
νt dB

2
t (23.2)

where B1
t and B2

t are two Brownian motions with correlation ρ ∈ (−1, 1). The Heston

model is given by the choice

α(St, νt, t) = κ(ν̄ − νt) (23.3)

β(St, νt, t) = β (23.4)

where κ, ν̄ and β are constants. That is, the volatility is given by a Cox-Ingersoll-Ross

process. The Heston model has become popular because it is explicitely solvable, its

generating or characteristic function can be computed explicitely. As a consequence, also

the pricing PDE for european options with payoffs H(ST ) can be solved explicitely [8].

Recall the general pricing formula of the last chapter. If H is some (probably exotic)

european option with payoff H
(
{St}t0≤t≤T

)
, then the price at time t0 is given by

Vt0 = e−r(T−t0)

∫
H
(
{St}t0≤t≤T

)
dW(t0,T ](y

1, y2) (23.5)

where

St = St0 e
∫ t
t0

√
νsdy1

s+
∫ t
t0

(r− νs
2

)ds
(23.6)

and ν is a solution of the SDE

dν = −φ̃ dt+ β
√
ν
(
ρ dy1 +

√
1− ρ2 dy2

)
(23.7)
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where φ̃ is the universal function given by (22.51). Introduce the variable

xt := log
[
e−r(t−t0) St

St0

]
=
∫ t
t0

√
νs dy

1
s −

∫ t
t0

νs
2
ds (23.8)

such that

St = St0 e
xt+r(t−t0) (23.9)

and let

h
(
{xt}t0≤t≤T

)
:= e−r(T−t0)H

({
St0 e

xt+r(t−t0)
}
t0≤t≤T

)
(23.10)

Then we can write

Vt0 =

∫
h
(
{xt}t0≤t≤T

)
dW(t0,T ](y

1, y2) (23.11)

The integral (23.11) can be computed, at least in principle, if we know the finite dimen-

sional distributions (xt0 = 0)

P
(
xt1 ∈ [x1, x1 + dx1), ..., xtn ∈ [xn, xn + dxn)

)
=: (23.12)

p(t0, 0; t1, x1; ...; tn, xn) dx1 · · · dxn

These in turn can be computed from the generating functional

G
(
{λt}t0≤t≤T

)
:= E

[
e
i
∫ T
t0
λt dxt

]
(23.13)

where the pair (xt, νt) is a solution of the SDE system

dxt = −νt
2
dt+

√
νt dB

1
t (23.14)

dνt = −φ̃t dt+ βt
√
νt dB

2
t , dB1

t · dB2
t = ρ dt (23.15)

For example, if we choose λs = λχ(t0 ≤ s ≤ t), then

G
(
{λt}

)
≡ Gt(λ) = E

[
eiλ(xt−xt0 )

]
= E

[
eiλxt

]
=

∫
R e

iλy p(t0, 0; t, y) dy (23.16)

such that

p(t0, 0; t, y) =
∫
R e
−iλy Gt(λ) dλ

2π
(23.17)

is obtained as the Fourier transform of the generating function Gt(λ). Similarly the higher

dimensional distributions (23.12) are obtained as higher dimensional Fourier transforms.

For example the choice

λs := (λ1 + λ2)χ(t0 ≤ s < t1) + λ2 χ(t1 ≤ s < t2) (23.18)
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leads to

G
(
{λt}

)
≡ Gt1,t2(λ1, λ2)) = E

[
ei(λ1+λ2)(xt1−xt0 )+iλ2(xt2−xt1 )

]
= E

[
ei(λ1xt1+λ2xt2 )

]
=

∫
R2 e

i(λ1y1+λ2y2) p(t0, 0; t1, y1; t2y2) dy1dy2 (23.19)

such that

p(t0, 0; t1, y1; t2, y2) =
∫
R2 e

−i(λ1y1+λ2y2) Gt1,t2(λ1, λ2) dλ1

2π
dλ2

2π
(23.20)

Let us now turn to the evaluation of (23.13). There is the following

Theorem 23.1: Let (xt, νt) be a solution of the SDE system

dxt = −νt
2
dt+

√
νt dB

1
t (23.21)

dνt = ψt dt+ β
√
νt dB

2
t , dB1

t · dB2
t = ρ dt (23.22)

with initial conditions xt0 = 0, νt0 = ν0. Here β is a positive constant and ψt is some

function which does not depend on the Brownian motion B1
t . Consider the generating

functional

G
(
{λt}t0≤t≤T

)
:= E

[
e
i
∫ T
t0
λt dxt

]
(23.23)

Then

a) For general ψt, λt, the function G is given by

G
(
{λt}t0≤t≤T

)
= e−i

ρ
β
λt0νt0

∫
e
i ρ
β
λT νT−

∫ T
t0

[ 1
2

(iλs+(1−ρ2)λ2
s)+i

ρ
β
λ′s]νs dse

−i ρ
β

∫ T
t0
λsψsdsdW (y)

(23.24)

where dW (y) is the one dimensional Wiener measure and νt is a solution of

dνt = ψt dt+ β
√
νt dyt (23.25)

b) For constant λt ≡ λ and

ψt = κ(ν̄ − νt) (23.26)

with initial condition ν0 = νt0 , (23.24) becomes

G(λ) = e−i
ρ
β
λ[νt0+κν̄(T−t0)] e

κ+2f ′/f(t0)

β2 νt0+κ2

β2 ν̄(T−t0)
e

2κν̄
β2

{
log[

rf (t)

rf (0)
]+i(ϕf (t)−ϕf (0))

}

(23.27)
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where the function f is given by

f(s) =
√
ξ cosh[

√
ξ(T − s)]− γ sinh[

√
ξ(T − s)] (23.28)

=: rf (s) e
iϕf (s)

with a differentiable ϕf and constants

γ = −κ
2

+ iρβλ
2

(23.29)

ξ = (1−ρ2)λ2β2+κ2

4
+ iλβ

2−2βρκ
4

. (23.30)

and the square root can be choosen to be any complex square root since G depends

only on (
√
ξ)2 = ξ.

Proof: We rewrite the SDE system (23.14,23.15) in terms of two uncorrelated Brownian

motions y1
t and y2

t ,

dxt = −νt
2
dt+

√
νt
(√

1− ρ2 dy1
t + ρ dy2

t

)
(23.31)

dνt = ψt dt+ βt
√
νt dy

2
t (23.32)

We have to compute the integral∫
e
i
∫ T
t0
λs dxsdW (y1) dW (y2)

=

∫
e
−i
∫ T
t0
λs

νs
2
ds+i

∫ T
t0
λs
(√

1−ρ2√νs dy1
s+ρ
√
νs dy2

s

)
dW (y1) dW (y2)

=

∫
e
−i
∫ T
t0
λs

νs
2
ds+i

∫ T
t0
λsρ
√
νs dy2

s

{∫
e
i
∫ T
t0
λs
√

1−ρ2√νs dy1
sdW (y1)

}
dW (y2) (23.33)

Since by assumption ψ does not depend on y1, equation (23.32) determines ν as a function

of y2 only, ν does not depend on y1. Thus we can perform the y1-integral in the wavy

brackets of (23.33). Using Lemma..., we obtain∫
e
i
∫ T
t0
λs
√

1−ρ2√νs dy1
sdW (y1) =

∫
R
eiy 1√

2π(T−t0)σ̄2
e
− y2

2(T−t0)σ̄2 dy (23.34)

where

(T − t0)σ̄2 =
∫ T
t0
λ2
s(1− ρ2)νs ds (23.35)

Thus, ∫
e
i
∫ T
t0
λs
√

1−ρ2√νs dy1
sdW (y1) = e−

(T−t0)σ̄2

2

= e
− 1−ρ2

2

∫ T
t0
λ2
sνs ds (23.36)
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Substituting (23.36) into (23.33),we arrive at

E
[
e
i
∫ T
t0
λs dxs

]
=

∫
e
−i
∫ T
t0
λs

νs
2
ds+i

∫ T
t0
λsρ
√
νs dy2

se
− 1−ρ2

2

∫ T
t0
λ2
sνs ds dW (y2)

=

∫
e
− 1

2

∫ T
t0

[iλs+(1−ρ2)λ2
s]νs ds e

i
∫ T
t0
λsρ
√
νs dys dW (y) (23.37)

where we renamed y2
t → yt in the last line. Since νt is the solution of the SDE

dνt = ψt dt+ β
√
νt dyt (23.38)

we have

i
∫ T
t0
λsρ
√
νs dys = i ρ

β

∫ T
t0
λs[dνs − ψs ds]

= i ρ
β

(
λTνT − λt0νt0

)
− i ρ

β

∫ T
t0

[νsdλs + λsψs ds]

= i ρ
β

(
λTνT − λt0νt0

)
− i ρ

β

∫ T
t0

[νsλ
′
s + λsψs ] ds (23.39)

Substituting this in (23.37) gives

E
[
e
i
∫ T
t0
λs dxs

]
= e−i

ρ
β
λt0νt0

∫
e
i ρ
β
λT νT−

∫ T
t0

[ 1
2

(iλs+(1−ρ2)λ2
s)+i

ρ
β
λ′s]νs dse

−i ρ
β

∫ T
t0
λsψs dsdW (y)

(23.40)

This proves part (a). For ψt = κ(ν̄ − νt) and constant λs ≡ λ, this reads

G(λ) = E
[
e
iλ
∫ T
t0
dxs
]

= E
[
eiλxT

]
= e−i

ρ
β
λ[ν0+κν̄(T−t0)]

∫
e
ξνT (y)−µ

∫ T
t0
νs(y) ds

dW (y) (23.41)

where

ξ = i ρ
β
λ (23.42)

µ = 1−ρ2

2
λ2 + iλ

2

(
1− 2 ρ

β
κ
)

(23.43)

and now ν is the square root process given by dνt = κ(ν̄−νt)dt+β
√
νt dyt. This expectation

has been computed in Corollary 21.3 where we found

G(λ) = e−i
ρ
β
λ[νt0+κν̄(T−t0)] e

κ+2f ′/f(t0)

β2 ν0+κ2

β2 ν̄t e
2κν̄
β2

{
log[

rf (t)

rf (0)
]+i(ϕf (t)−ϕf (0))

}
(23.44)

where the function f is given by

f(s) =
√
ξ cosh[

√
ξ(T − s)]− γ sinh[

√
ξ(T − s)]
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with

γ = −κ
2

+ iρβλ
2

(23.45)

ξ = (1−ρ2)λ2β2+κ2

4
+ iλβ

2−2βρκ
4

. (23.46)

This proves the theorem. �

Now, having computed the generating function, we can compute the density p(t0, 0; t, y)

according to (23.17). Then the price of some plain vanilla european option is given by

Vt0 =
∫
h
(
xT
)
dW(t0,T ](y

1, y2)

=
∫
R h(y) p(t0, 0;T, y) dy

=
∫
R h(y)

∫
R e
−iλy G(λ) dλ

2π
dy (23.47)

If the payoff h(y) would have a finite Fourier transform ĥ(λ), we could interchange the

integrals to obtain

Vt0 =
∫
R ĥ(λ)G(λ) dλ

2π
(23.48)

However, for a european call H(ST ) = max{ST −K, 0} we have

h(x) = e−r(T−t0)H(St0e
x+r(T−t0)) = e−r(T−t0) max{St0ex+r(T−t0) −K, 0} (23.49)

which apparently does not decay for x→∞, thus ĥ(λ) does not exist.

This problem can be circumvented in the following way [2]. By (23.16), the generating

function G(λ) is the Fourier transform of the density p(y). If p(y) decays like e−cy
2

or at

least like

p(y) ∼ e−c|y|
1+δ

as y → ±∞ (23.50)

for positive constants c and δ, then the generating function G(λ) is not only defined on

the real axis, but on the whole complex plane since

Gt(λ± iα) =
∫
R e
−iλy±αyp(y) dy (23.51)

is finite if (23.50) holds. Thus we can write

Vt0 =
∫
R h(y) p(y) dy

=
∫
R e
−αyh(y) eαyp(y) dy

=
∫
R

[
e−α·h(·)

]̂
(λ)
[
eα·p(·)

]̂
(λ) dλ

2π

=
∫
R

[
e−α·h(·)

]̂
(λ)G(λ+ iα) dλ

2π
(23.52)
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where we used the unitarity of the Fourier transform in the third line of (23.52). For the

payoff (23.49), with τ = T − t0,

h(x) = e−rτ max{St0ex+rτ −K, 0} = St0
(
ex − K

St0
e−rτ

)
+

= St0
(
ex − ek

)
+
, k = log

[
K
St0
e−rτ

]
(23.53)

one obtains[
e−α·h(·)

]̂
(λ) =

∫
R
e−iλxe−αxh(x) dx

= St0

∫ ∞
k

e−(iλ+α)x(ex − ek) dx

= St0

{
1

−α+1−iλe
−(iλ+α−1)x

∣∣∞
k
− 1
−α−iλe

ke−(iλ+α)x
∣∣∞
k

}
α>1
= St0

{
− 1
−α+1−iλe

−(iλ+α−1)k + 1
−α−iλe

−(iλ+α−1)k
}

= St0
1

(α−1+iλ)(α+iλ)
e−(iλ+α−1)k (23.54)

such that the option price is given by

Vt = Ste
−(α−1)k

∫
R

1
(α−1+iλ)(α+iλ)

e−iλkG(λ+ iα) dλ
2π

(23.55)

where α has to be choosen bigger than 1. We summarize our results in the follwoing

Theorem 23.2: Let G(λ) be the generating function for the Heston model given by

(23.27) and let

k = log
[
K
St
e−r(T−t)

]
(23.56)

Then the price at time t ≤ T of the european call with payoff max{ST −K, 0} is given by

Vt = Ste
−(α−1)k

∫
R

1
(α−1+iλ)(α+iλ)

e−iλkG(λ+ iα) dλ
2π

(23.57)

where α can be choosen to be any real number bigger than 1 such that G(λ+ iα) exists.


