Chapter 23

The Heston Model

In the last chapter we considered general stochastic volatility models whose price process is given by the solution of the SDE system

$$
\begin{align*}
d S_{t} & =\mu_{t} S_{t} d t+\sqrt{\nu_{t}} S_{t} d B_{t}^{1} \tag{23.1}\\
d \nu_{t} & =\alpha\left(S_{t}, \nu_{t}, t\right) d t+\beta\left(S_{t}, \nu_{t}, t\right) \sqrt{\nu_{t}} d B_{t}^{2} \tag{23.2}
\end{align*}
$$

where B_{t}^{1} and B_{t}^{2} are two Brownian motions with correlation $\rho \in(-1,1)$. The Heston model is given by the choice

$$
\begin{align*}
\alpha\left(S_{t}, \nu_{t}, t\right) & =\kappa\left(\bar{\nu}-\nu_{t}\right) \tag{23.3}\\
\beta\left(S_{t}, \nu_{t}, t\right) & =\beta \tag{23.4}
\end{align*}
$$

where $\kappa, \bar{\nu}$ and β are constants. That is, the volatility is given by a Cox-Ingersoll-Ross process. The Heston model has become popular because it is explicitely solvable, its generating or characteristic function can be computed explicitely. As a consequence, also the pricing PDE for european options with payoffs $H\left(S_{T}\right)$ can be solved explicitely [8].

Recall the general pricing formula of the last chapter. If H is some (probably exotic) european option with payoff $H\left(\left\{S_{t}\right\}_{t_{0} \leq t \leq T}\right)$, then the price at time t_{0} is given by

$$
\begin{equation*}
V_{t_{0}}=e^{-r\left(T-t_{0}\right)} \int H\left(\left\{S_{t}\right\}_{t_{0} \leq t \leq T}\right) d W_{\left(t_{0}, T\right]}\left(y^{1}, y^{2}\right) \tag{23.5}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{t}=S_{t_{0}} e^{\int_{t_{0}}^{t} \sqrt{\nu_{s}} d y_{s}^{1}+\int_{t_{0}}^{t}\left(r-\frac{\nu_{s}}{2}\right) d s} \tag{23.6}
\end{equation*}
$$

and ν is a solution of the SDE

$$
\begin{equation*}
d \nu=-\tilde{\phi} d t+\beta \sqrt{\nu}\left(\rho d y^{1}+\sqrt{1-\rho^{2}} d y^{2}\right) \tag{23.7}
\end{equation*}
$$

where $\tilde{\phi}$ is the universal function given by (22.51). Introduce the variable

$$
\begin{equation*}
x_{t}:=\log \left[e^{-r\left(t-t_{0}\right)} \frac{S_{t}}{S_{t_{0}}}\right]=\int_{t_{0}}^{t} \sqrt{\nu_{s}} d y_{s}^{1}-\int_{t_{0}}^{t} \frac{\nu_{s}}{2} d s \tag{23.8}
\end{equation*}
$$

such that

$$
\begin{equation*}
S_{t}=S_{t_{0}} e^{x_{t}+r\left(t-t_{0}\right)} \tag{23.9}
\end{equation*}
$$

and let

$$
\begin{equation*}
h\left(\left\{x_{t}\right\}_{t_{0} \leq t \leq T}\right):=e^{-r\left(T-t_{0}\right)} H\left(\left\{S_{t_{0}} e^{x_{t}+r\left(t-t_{0}\right)}\right\}_{t_{0} \leq t \leq T}\right) \tag{23.10}
\end{equation*}
$$

Then we can write

$$
\begin{equation*}
V_{t_{0}}=\int h\left(\left\{x_{t}\right\}_{t_{0} \leq t \leq T}\right) d W_{\left(t_{0}, T\right]}\left(y^{1}, y^{2}\right) \tag{23.11}
\end{equation*}
$$

The integral (23.11) can be computed, at least in principle, if we know the finite dimensional distributions ($x_{t_{0}}=0$)

$$
\begin{align*}
\mathrm{P}\left(x_{t_{1}} \in\left[x_{1}, x_{1}+d x_{1}\right), \ldots, x_{t_{n}} \in\left[x_{n}, x_{n}+d x_{n}\right)\right)=: \tag{23.12}\\
p\left(t_{0}, 0 ; t_{1}, x_{1} ; \ldots ; t_{n}, x_{n}\right) d x_{1} \cdots d x_{n}
\end{align*}
$$

These in turn can be computed from the generating functional

$$
\begin{equation*}
G\left(\left\{\lambda_{t}\right\}_{t_{0} \leq t \leq T}\right):=\mathrm{E}\left[e^{i \int_{t_{0}}^{T} \lambda_{t} d x_{t}}\right] \tag{23.13}
\end{equation*}
$$

where the pair $\left(x_{t}, \nu_{t}\right)$ is a solution of the SDE system

$$
\begin{align*}
d x_{t} & =-\frac{\nu_{t}}{2} d t+\sqrt{\nu_{t}} d B_{t}^{1} \tag{23.14}\\
d \nu_{t} & =-\tilde{\phi}_{t} d t+\beta_{t} \sqrt{\nu_{t}} d B_{t}^{2}, \quad d B_{t}^{1} \cdot d B_{t}^{2}=\rho d t \tag{23.15}
\end{align*}
$$

For example, if we choose $\lambda_{s}=\lambda \chi\left(t_{0} \leq s \leq t\right)$, then

$$
\begin{align*}
G\left(\left\{\lambda_{t}\right\}\right) \equiv G_{t}(\lambda) & =\mathrm{E}\left[e^{i \lambda\left(x_{t}-x_{t_{0}}\right)}\right]=\mathrm{E}\left[e^{i \lambda x_{t}}\right] \\
& =\int_{\mathbb{R}} e^{i \lambda y} p\left(t_{0}, 0 ; t, y\right) d y \tag{23.16}
\end{align*}
$$

such that

$$
\begin{equation*}
p\left(t_{0}, 0 ; t, y\right)=\int_{\mathbb{R}} e^{-i \lambda y} G_{t}(\lambda) \frac{d \lambda}{2 \pi} \tag{23.17}
\end{equation*}
$$

is obtained as the Fourier transform of the generating function $G_{t}(\lambda)$. Similarly the higher dimensional distributions (23.12) are obtained as higher dimensional Fourier transforms. For example the choice

$$
\begin{equation*}
\lambda_{s}:=\left(\lambda_{1}+\lambda_{2}\right) \chi\left(t_{0} \leq s<t_{1}\right)+\lambda_{2} \chi\left(t_{1} \leq s<t_{2}\right) \tag{23.18}
\end{equation*}
$$

leads to

$$
\begin{align*}
\left.G\left(\left\{\lambda_{t}\right\}\right) \equiv G_{t_{1}, t_{2}}\left(\lambda_{1}, \lambda_{2}\right)\right) & =\mathrm{E}\left[e^{i\left(\lambda_{1}+\lambda_{2}\right)\left(x_{t_{1}}-x_{t_{0}}\right)+i \lambda_{2}\left(x_{t_{2}}-x_{t_{1}}\right)}\right]=\mathrm{E}\left[e^{i\left(\lambda_{1} x_{t_{1}}+\lambda_{2} x_{t_{2}}\right)}\right] \\
& =\int_{\mathbb{R}^{2}} e^{i\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}\right)} p\left(t_{0}, 0 ; t_{1}, y_{1} ; t_{2} y_{2}\right) d y_{1} d y_{2} \tag{23.19}
\end{align*}
$$

such that

$$
\begin{equation*}
p\left(t_{0}, 0 ; t_{1}, y_{1} ; t_{2}, y_{2}\right)=\int_{\mathbb{R}^{2}} e^{-i\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}\right)} G_{t_{1}, t_{2}}\left(\lambda_{1}, \lambda_{2}\right) \frac{d \lambda_{1}}{2 \pi} \frac{d \lambda_{2}}{2 \pi} \tag{23.20}
\end{equation*}
$$

Let us now turn to the evaluation of (23.13). There is the following

Theorem 23.1: Let $\left(x_{t}, \nu_{t}\right)$ be a solution of the SDE system

$$
\begin{align*}
d x_{t} & =-\frac{\nu_{t}}{2} d t+\sqrt{\nu_{t}} d B_{t}^{1} \tag{23.21}\\
d \nu_{t} & =\psi_{t} d t+\beta \sqrt{\nu_{t}} d B_{t}^{2}, \quad d B_{t}^{1} \cdot d B_{t}^{2}=\rho d t \tag{23.22}
\end{align*}
$$

with initial conditions $x_{t_{0}}=0, \nu_{t_{0}}=\nu_{0}$. Here β is a positive constant and ψ_{t} is some function which does not depend on the Brownian motion B_{t}^{1}. Consider the generating functional

$$
\begin{equation*}
G\left(\left\{\lambda_{t}\right\}_{t_{0} \leq t \leq T}\right):=\mathrm{E}\left[e^{i \int_{t_{0}}^{T} \lambda_{t} d x_{t}}\right] \tag{23.23}
\end{equation*}
$$

Then
a) For general ψ_{t}, λ_{t}, the function G is given by

$$
\begin{equation*}
G\left(\left\{\lambda_{t}\right\}_{t_{0} \leq t \leq T}\right)=e^{-i \frac{\rho}{\beta} \lambda_{t_{0}} \nu_{t_{0}}} \int e^{i \frac{\rho}{\beta} \lambda_{T} \nu_{T}-\int_{t_{0}}^{T}\left[\frac{1}{2}\left(i \lambda_{s}+\left(1-\rho^{2}\right) \lambda_{s}^{2}\right)+i \frac{\rho}{\beta} \lambda_{s}^{\prime}\right] \nu_{s} d s} e^{-i \frac{\rho}{\beta} \int_{t_{0}}^{T} \lambda_{s} \psi_{s} d s} d W(y) \tag{23.24}
\end{equation*}
$$

where $d W(y)$ is the one dimensional Wiener measure and ν_{t} is a solution of

$$
\begin{equation*}
d \nu_{t}=\psi_{t} d t+\beta \sqrt{\nu_{t}} d y_{t} \tag{23.25}
\end{equation*}
$$

b) For constant $\lambda_{t} \equiv \lambda$ and

$$
\begin{equation*}
\psi_{t}=\kappa\left(\bar{\nu}-\nu_{t}\right) \tag{23.26}
\end{equation*}
$$

with initial condition $\nu_{0}=\nu_{t_{0}}$, (23.24) becomes

$$
\begin{equation*}
G(\lambda)=e^{-i \frac{\rho}{\beta} \lambda\left[\nu_{t_{0}}+\kappa \bar{\nu}\left(T-t_{0}\right)\right]} e^{\frac{\kappa+2 f^{\prime} / f\left(t_{0}\right)}{\beta^{2}} \nu_{t_{0}}+\frac{\kappa^{2}}{\beta^{2}} \bar{\nu}\left(T-t_{0}\right)} e^{\frac{2 \kappa \bar{\nu}}{\beta^{2}}\left\{\log \left[\frac{r_{f}(t)}{r_{f}(0)}\right]+i\left(\varphi_{f}(t)-\varphi_{f}(0)\right)\right\}} \tag{23.27}
\end{equation*}
$$

where the function f is given by

$$
\begin{align*}
f(s) & =\sqrt{\xi} \cosh [\sqrt{\xi}(T-s)]-\gamma \sinh [\sqrt{\xi}(T-s)] \tag{23.28}\\
& =: r_{f}(s) e^{i \varphi_{f}(s)}
\end{align*}
$$

with a differentiable φ_{f} and constants

$$
\begin{align*}
& \gamma=-\frac{\kappa}{2}+i \frac{\rho \beta \lambda}{2} \tag{23.29}\\
& \xi=\frac{\left(1-\rho^{2}\right) \lambda^{2} \beta^{2}+\kappa^{2}}{4}+i \lambda \frac{\beta^{2}-2 \beta \rho \kappa}{4} . \tag{23.30}
\end{align*}
$$

and the square root can be choosen to be any complex square root since G depends only on $(\sqrt{\xi})^{2}=\xi$.

Proof: We rewrite the SDE system $(23.14,23.15)$ in terms of two uncorrelated Brownian motions y_{t}^{1} and y_{t}^{2},

$$
\begin{align*}
d x_{t} & =-\frac{\nu_{t}}{2} d t+\sqrt{\nu_{t}}\left(\sqrt{1-\rho^{2}} d y_{t}^{1}+\rho d y_{t}^{2}\right) \tag{23.31}\\
d \nu_{t} & =\psi_{t} d t+\beta_{t} \sqrt{\nu_{t}} d y_{t}^{2} \tag{23.32}
\end{align*}
$$

We have to compute the integral

$$
\begin{align*}
& \int e^{i \int_{t_{0}}^{T} \lambda_{s} d x_{s}} d W\left(y^{1}\right) d W\left(y^{2}\right) \\
& =\int e^{-i \int_{t_{0}}^{T} \lambda_{s} \frac{\nu_{s}}{2} d s+i \int_{t_{0}}^{T} \lambda_{s}\left(\sqrt{1-\rho^{2}} \sqrt{\nu_{s}} d y_{s}^{1}+\rho \sqrt{\nu_{s}} d y_{s}^{2}\right)} d W\left(y^{1}\right) d W\left(y^{2}\right) \\
& =\int e^{-i \int_{t_{0}}^{T} \lambda_{s} \frac{\nu_{s}}{2} d s+i \int_{t_{0}}^{T} \lambda_{s} \rho \sqrt{\nu_{s}} d y_{s}^{2}}\left\{\int e^{i \int_{t_{0}}^{T} \lambda_{s} \sqrt{1-\rho^{2}} \sqrt{\nu_{s}} d y_{s}^{1}} d W\left(y^{1}\right)\right\} d W\left(y^{2}\right) \tag{23.33}
\end{align*}
$$

Since by assumption ψ does not depend on y^{1}, equation (23.32) determines ν as a function of y^{2} only, ν does not depend on y^{1}. Thus we can perform the y^{1}-integral in the wavy brackets of (23.33). Using Lemma..., we obtain

$$
\begin{equation*}
\int e^{i \int_{t_{0}}^{T} \lambda_{s} \sqrt{1-\rho^{2}} \sqrt{\nu_{s}} d y_{s}^{1}} d W\left(y^{1}\right)=\int_{\mathbb{R}} e^{i y} \frac{1}{\sqrt{2 \pi\left(T-t_{0}\right) \bar{\sigma}^{2}}} e^{-\frac{y^{2}}{2\left(T-t_{0}\right) \bar{\sigma}^{2}}} d y \tag{23.34}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(T-t_{0}\right) \bar{\sigma}^{2}=\int_{t_{0}}^{T} \lambda_{s}^{2}\left(1-\rho^{2}\right) \nu_{s} d s \tag{23.35}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\int e^{i \int_{t_{0}}^{T} \lambda_{s} \sqrt{1-\rho^{2}} \sqrt{\nu_{s}} d y_{s}^{1}} d W\left(y^{1}\right) & =e^{-\frac{\left(T-t_{0}\right) \bar{\sigma}^{2}}{2}} \\
& =e^{-\frac{1-\rho^{2}}{2} \int_{t_{0}}^{T} \lambda_{s}^{2} \nu_{s} d s} \tag{23.36}
\end{align*}
$$

Substituting (23.36) into (23.33), we arrive at

$$
\begin{align*}
\mathrm{E}\left[e^{i \int_{t_{0}}^{T} \lambda_{s} d x_{s}}\right] & =\int e^{-i \int_{t_{0}}^{T} \lambda_{s} \frac{\nu_{s}}{2} d s+i \int_{t_{0}}^{T} \lambda_{s} \rho \sqrt{\nu_{s}} d y_{s}^{2}} e^{-\frac{1-\rho^{2}}{2} \int_{t_{0}}^{T} \lambda_{s}^{2} \nu_{s} d s} d W\left(y^{2}\right) \\
& =\int e^{-\frac{1}{2} \int_{t_{0}}^{T}\left[i \lambda_{s}+\left(1-\rho^{2}\right) \lambda_{s}^{2} \nu_{\nu_{s}} d s\right.} e^{i \int_{t_{0}}^{T} \lambda_{s} \rho \sqrt{\nu_{s}} d y_{s}} d W(y) \tag{23.37}
\end{align*}
$$

where we renamed $y_{t}^{2} \rightarrow y_{t}$ in the last line. Since ν_{t} is the solution of the SDE

$$
\begin{equation*}
d \nu_{t}=\psi_{t} d t+\beta \sqrt{\nu_{t}} d y_{t} \tag{23.38}
\end{equation*}
$$

we have

$$
\begin{align*}
i \int_{t_{0}}^{T} \lambda_{s} \rho \sqrt{\nu_{s}} d y_{s} & =i \frac{\rho}{\beta} \int_{t_{0}}^{T} \lambda_{s}\left[d \nu_{s}-\psi_{s} d s\right] \\
& =i \frac{\rho}{\beta}\left(\lambda_{T} \nu_{T}-\lambda_{t_{0}} \nu_{t_{0}}\right)-i \frac{\rho}{\beta} \int_{t_{0}}^{T}\left[\nu_{s} d \lambda_{s}+\lambda_{s} \psi_{s} d s\right] \\
& =i \frac{\rho}{\beta}\left(\lambda_{T} \nu_{T}-\lambda_{t_{0}} \nu_{t_{0}}\right)-i \frac{\rho}{\beta} \int_{t_{0}}^{T}\left[\nu_{s} \lambda_{s}^{\prime}+\lambda_{s} \psi_{s}\right] d s \tag{23.39}
\end{align*}
$$

Substituting this in (23.37) gives

$$
\begin{equation*}
\mathrm{E}\left[e^{i \int_{t_{0}}^{T} \lambda_{s} d x_{s}}\right]=e^{-i \frac{\rho}{\beta} \lambda_{t_{0}} \nu_{t_{0}}} \int e^{i \frac{\rho}{\beta} \lambda_{T} \nu_{T}-\int_{t_{0}}^{T}\left[\frac{1}{2}\left(i \lambda_{s}+\left(1-\rho^{2}\right) \lambda_{s}^{2}\right)+i \frac{\rho}{\beta} \lambda_{s} \nu_{s} d s\right.} e^{-i \frac{\rho}{\beta} \int_{t_{0}}^{T} \lambda_{s} \psi_{s} d s} d W(y) \tag{23.40}
\end{equation*}
$$

This proves part (a). For $\psi_{t}=\kappa\left(\bar{\nu}-\nu_{t}\right)$ and constant $\lambda_{s} \equiv \lambda$, this reads

$$
\begin{align*}
G(\lambda) & =\mathrm{E}\left[e^{i \lambda \int_{t_{0}}^{T} d x_{s}}\right]=\mathrm{E}\left[e^{i \lambda x_{T}}\right] \\
& =e^{-i \frac{\rho}{\beta} \lambda\left[\nu_{0}+\kappa \bar{\nu}\left(T-t_{0}\right)\right]} \int e^{\xi \nu_{T}(y)-\mu \int_{t_{0}}^{T} \nu_{s}(y) d s} d W(y) \tag{23.41}
\end{align*}
$$

where

$$
\begin{align*}
\xi & =i \frac{\rho}{\beta} \lambda \tag{23.42}\\
\mu & =\frac{1-\rho^{2}}{2} \lambda^{2}+i \frac{\lambda}{2}\left(1-2 \frac{\rho}{\beta} \kappa\right) \tag{23.43}
\end{align*}
$$

and now ν is the square root process given by $d \nu_{t}=\kappa\left(\bar{\nu}-\nu_{t}\right) d t+\beta \sqrt{\nu_{t}} d y_{t}$. This expectation has been computed in Corollary 21.3 where we found

$$
\begin{equation*}
G(\lambda)=e^{-i \frac{\rho}{\beta} \lambda\left[\nu_{t_{0}}+\kappa \bar{\nu}\left(T-t_{0}\right)\right]} e^{\frac{\kappa+2 f^{\prime} / f\left(t_{0}\right)}{\beta^{2}} \nu_{0}+\frac{\kappa^{2}}{\beta^{2}} \bar{\nu} t} e^{\frac{2 \kappa \bar{\nu}}{\beta^{2}}\left\{\log \left[\frac{r_{f}(t)}{r_{f}(0)}\right]+i\left(\varphi_{f}(t)-\varphi_{f}(0)\right)\right\}} \tag{23.44}
\end{equation*}
$$

where the function f is given by

$$
f(s)=\sqrt{\xi} \cosh [\sqrt{\xi}(T-s)]-\gamma \sinh [\sqrt{\xi}(T-s)]
$$

with

$$
\begin{align*}
\gamma & =-\frac{\kappa}{2}+i \frac{\rho \beta \lambda}{2} \tag{23.45}\\
\xi & =\frac{\left(1-\rho^{2}\right) \lambda^{2} \beta^{2}+\kappa^{2}}{4}+i \lambda \frac{\beta^{2}-2 \beta \rho \kappa}{4} . \tag{23.46}
\end{align*}
$$

This proves the theorem.

Now, having computed the generating function, we can compute the density $p\left(t_{0}, 0 ; t, y\right)$ according to (23.17). Then the price of some plain vanilla european option is given by

$$
\begin{align*}
V_{t_{0}} & =\int h\left(x_{T}\right) d W_{\left\langle t_{0}, T\right]}\left(y^{1}, y^{2}\right) \\
& =\int_{\mathbb{R}} h(y) p\left(t_{0}, 0 ; T, y\right) d y \\
& =\int_{\mathbb{R}} h(y) \int_{\mathbb{R}} e^{-i \lambda y} G(\lambda) \frac{d \lambda}{2 \pi} d y \tag{23.47}
\end{align*}
$$

If the payoff $h(y)$ would have a finite Fourier transform $\hat{h}(\lambda)$, we could interchange the integrals to obtain

$$
\begin{equation*}
V_{t_{0}}=\int_{\mathbb{R}} \hat{h}(\lambda) G(\lambda) \frac{d \lambda}{2 \pi} \tag{23.48}
\end{equation*}
$$

However, for a european call $H\left(S_{T}\right)=\max \left\{S_{T}-K, 0\right\}$ we have

$$
\begin{equation*}
h(x)=e^{-r\left(T-t_{0}\right)} H\left(S_{t_{0}} e^{x+r\left(T-t_{0}\right)}\right)=e^{-r\left(T-t_{0}\right)} \max \left\{S_{t_{0}} e^{x+r\left(T-t_{0}\right)}-K, 0\right\} \tag{23.49}
\end{equation*}
$$

which apparently does not decay for $x \rightarrow \infty$, thus $\hat{h}(\lambda)$ does not exist.
This problem can be circumvented in the following way [2]. By (23.16), the generating function $G(\lambda)$ is the Fourier transform of the density $p(y)$. If $p(y)$ decays like $e^{-c y^{2}}$ or at least like

$$
\begin{equation*}
p(y) \sim e^{-c|y|^{1+\delta}} \quad \text { as } y \rightarrow \pm \infty \tag{23.50}
\end{equation*}
$$

for positive constants c and δ, then the generating function $G(\lambda)$ is not only defined on the real axis, but on the whole complex plane since

$$
\begin{equation*}
G_{t}(\lambda \pm i \alpha)=\int_{\mathbb{R}} e^{-i \lambda y \pm \alpha y} p(y) d y \tag{23.51}
\end{equation*}
$$

is finite if (23.50) holds. Thus we can write

$$
\begin{align*}
V_{t_{0}} & =\int_{\mathbb{R}} h(y) p(y) d y \\
& =\int_{\mathbb{R}} e^{-\alpha y} h(y) e^{\alpha y} p(y) d y \\
& =\int_{\mathbb{R}}\left[e^{-\alpha \cdot} h(\cdot)\right] \hat{(}(\lambda)\left[e^{\alpha \cdot} p(\cdot)\right](\lambda) \frac{d \lambda}{2 \pi} \\
& =\int_{\mathbb{R}}\left[e^{-\alpha \cdot} h(\cdot)\right] \hat{(\lambda) G(\lambda+i \alpha) \frac{d \lambda}{2 \pi}} \tag{23.52}
\end{align*}
$$

where we used the unitarity of the Fourier transform in the third line of (23.52). For the payoff (23.49), with $\tau=T-t_{0}$,

$$
\begin{align*}
h(x) & =e^{-r \tau} \max \left\{S_{t_{0}} e^{x+r \tau}-K, 0\right\}=S_{t_{0}}\left(e^{x}-\frac{K}{S_{t_{0}}} e^{-r \tau}\right)_{+} \\
& =S_{t_{0}}\left(e^{x}-e^{k}\right)_{+}, \quad k=\log \left[\frac{K}{S_{t_{0}}} e^{-r \tau}\right] \tag{23.53}
\end{align*}
$$

one obtains

$$
\begin{align*}
{\left[e^{-\alpha \cdot} h(\cdot) \hat{]}(\lambda)\right.} & =\int_{\mathbb{R}} e^{-i \lambda x} e^{-\alpha x} h(x) d x \\
& =S_{t_{0}} \int_{k}^{\infty} e^{-(i \lambda+\alpha) x}\left(e^{x}-e^{k}\right) d x \\
& =S_{t_{0}}\left\{\left.\frac{1}{-\alpha+1-i \lambda} e^{-(i \lambda+\alpha-1) x}\right|_{k} ^{\infty}-\left.\frac{1}{-\alpha-i \lambda} e^{k} e^{-(i \lambda+\alpha) x}\right|_{k} ^{\infty}\right\} \\
& \stackrel{\alpha \geq 1}{=} S_{t_{0}}\left\{-\frac{1}{-\alpha+1-i \lambda} e^{-(i \lambda+\alpha-1) k}+\frac{1}{-\alpha-i \lambda} e^{-(i \lambda+\alpha-1) k}\right\} \\
& =S_{t_{0}} \frac{1}{(\alpha-1+i \lambda)(\alpha+i \lambda)} e^{-(i \lambda+\alpha-1) k} \tag{23.54}
\end{align*}
$$

such that the option price is given by

$$
\begin{equation*}
V_{t}=S_{t} e^{-(\alpha-1) k} \int_{\mathbb{R}} \frac{1}{(\alpha-1+i \lambda)(\alpha+i \lambda)} e^{-i \lambda k} G(\lambda+i \alpha) \frac{d \lambda}{2 \pi} \tag{23.55}
\end{equation*}
$$

where α has to be choosen bigger than 1 . We summarize our results in the follwoing

Theorem 23.2: Let $G(\lambda)$ be the generating function for the Heston model given by (23.27) and let

$$
\begin{equation*}
k=\log \left[\frac{K}{S_{t}} e^{-r(T-t)}\right] \tag{23.56}
\end{equation*}
$$

Then the price at time $t \leq T$ of the european call with payoff $\max \left\{S_{T}-K, 0\right\}$ is given by

$$
\begin{equation*}
V_{t}=S_{t} e^{-(\alpha-1) k} \int_{\mathbb{R}} \frac{1}{(\alpha-1+i \lambda)(\alpha+i \lambda)} e^{-i \lambda k} G(\lambda+i \alpha) \frac{d \lambda}{2 \pi} \tag{23.57}
\end{equation*}
$$

where α can be choosen to be any real number bigger than 1 such that $G(\lambda+i \alpha)$ exists.

