Chapter 23

The Heston Model

In the last chapter we considered general stochastic volatility models whose price pro-
cess is given by the solution of the SDE system

th = Oé(St, Vg, t) dt + B(St, Vg, t) \/FtdBtQ (232)

where B} and B? are two Brownian motions with correlation p € (—1,1). The Heston
model is given by the choice

a(Sy,v,t) = k(U —1) (23.3)
B(Siw,t) = B (23.4)

where k, 7 and [ are constants. That is, the volatility is given by a Cox-Ingersoll-Ross
process. The Heston model has become popular because it is explicitely solvable, its
generating or characteristic function can be computed explicitely. As a consequence, also
the pricing PDE for european options with payoffs H(Sr) can be solved explicitely [8].

Recall the general pricing formula of the last chapter. If H is some (probably exotic)
european option with payoff H ({St}tOStST)7 then the price at time ¢, is given by

Vie = G_T(T_tO)/H({St}to<t<T) AWty m)(y', v°) (23.5)
where
Sy = Sy efti)\/gdyi—i_f:o(r_%s)ds (23'6)

and v is a solution of the SDE
dv = —¢dt+ BVr(pdy' + /1 - p2dy?) (23.7)
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where gz~5 is the universal function given by (22.51). Introduce the variable

r; = log [e"’(t_tO)SSTﬂ = f;; Vs Ayt — fti Y ds (23.8)
such that
Sy = Sy, emrtrit=to) (23.9)
and let
h({zi}ig<icr) = e_T(T_tO)H<{StO emt+T(t_t0)}t0§t§T) (23.10)

Then we can write
Wo = /h({xt}to<t<T) dW(to,T](y17y2) (23'11)

The integral (23.11) can be computed, at least in principle, if we know the finite dimen-
sional distributions (z;, = 0)

P<$t1 S [x]_axl _|_ dl’]_), ...,.Ttn - [a’,‘n7l‘n + d.rn)) — (2312)
p(to, 0;t1,21; ... tn,xn) dxy - - - dx,

These in turn can be computed from the generating functional
. T
G({Mdusisr) = E|etari] (23.13)

where the pair (x4, 14) is a solution of the SDE system

dv, = —%dt+ /v;dB} (23.14)
dv, = —¢ydt + B/ dB?, dB} - dB? = pdt (23.15)

For example, if we choose A\; = A x(tg < s <'t), then
G({N}) = G = E[eik(xt*wto)] = E[eP]
= Ja € plto. 0:t,y) dy (23.16)
such that
plto, 0ity) = [re™Gi(N) 52 (23.17)

is obtained as the Fourier transform of the generating function G;(A). Similarly the higher
dimensional distributions (23.12) are obtained as higher dimensional Fourier transforms.
For example the choice

As = (A + A2) x(to < 5 <) + Mg x(ty < 5 < ty) (23.18)
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leads to

G({N}) = Guin(M,dy)) = E[emlnmotintinman) | — gt |
f i(My1+A292) p(to, 05 t1, y1; taya) dyidys (23.19)

such that

plto, 0sti,yista go) = [oo e TR Gy (M, Ng) G252 (23.20)
Let us now turn to the evaluation of (23.13). There is the following

Theorem 23.1: Let (z:,14) be a solution of the SDE system

dv, = —%dt+ /v;dB} (23.21)
dv, = ;dt+ B\/v;dBE, dB} - dB? = pdt (23.22)

with initial conditions z;, = 0, 14, = 1. Here [ is a positive constant and 1, is some
function which does not depend on the Brownian motion B!. Consider the generating
functional

G({Atsicr) = E[e"ftﬁ e | (23.23)
Then

a) For general ¢y, )\, the function G is given by

G({)\t}tOStST) = eigAtoytO/ff gATVT— ft [% Ast(1=p )AQ)“"”/]”*dS igftﬁ’\swsdsdw(y)

(23.24)
where dW (y) is the one dimensional Wiener measure and v; is a solution of
dvy, = i dt + B/ dy, (23.25)
b) For constant A\, = A\ and
v = k(U —1) (23.26)

with initial condition vy = 14, (23.24) becomes

G()\) — e—ig)\[l/to—l-liﬂ(T—to)] e%u +LZ/(T to) QHV {lOg[r (0)]+Z(<pf( )— gOf(O))}

(23.27)
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where the function f is given by

f(s) = \/€cosh[\/E(T — s)] — ysinh[\/E(T — s)] (23.28)

= rf(S) ei@f(s)
with a differentiable ¢ and constants

v o= —f5422 (23.29)
¢ = UnpPPbe 4 j\B 2 (23.30)

and the square root can be choosen to be any complex square root since G depends

only on (V/€)? =¢.

Proof: We rewrite the SDE system (23.14,23.15) in terms of two uncorrelated Brownian
motions y; and y?,

de, = —%dt+ v (V1 - p*dy} + pdy}) (23.31)
dv, = Wy dt + By/vr dy? (23.32)

We have to compute the integral
/ i 1 (1) dY (4)

B / o Jio Xst ds+i [ As (« /1fp2\/2dy;+p@dy2) dW(yl) dW(y2)
_ /e—i i A% dsi [if Xopy/is dy? {/ i dig sV 1—02\/Zdy§dw(y1)}dW(y2) (23.33)

Since by assumption ¢ does not depend on 3!, equation (23.32) determines v as a function
of y? only, v does not depend on y'. Thus we can perform the y'-integral in the wavy
brackets of (23.33). Using Lemma..., we obtain

/ei S Asv 1_pQ\/Z'dy;dVV(yl

2

) - /Reiy\/ﬁe_wdy (23.34)

where
(T —10)5* = [, M1 = p?)ds (23.35)
Thus,
/eiftzAsm\/ZdyidW(y1) _ 6_%

—p% (T 2
= o g Niveds (23.36)
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Substituting (23.36) into (23.33),we arrive at

E [ei ftz As dxs} _ / efift:g As % ds+i ftz /\sP\/ZdyEG, 1_2/)2 ftz Ny ds dW(yQ)
_ /6_;ft€[z’,\s+(1—p2)>\§]us ds eifti Aspy/Vs dys dW () (23.37)

where we renamed ytZ — y; in the last line. Since v; is the solution of the SDE

we have

i f Aepy/Tsdy, = 5 o AJdv, — 1, ds]
= @8 (Arvr — Nigvio) — 15 [ [vsd\s + Aty ds]
= 'é%()\TVT — AoVo) — i5 ftf [V, + Astbs ] ds (23.39)

Substituting this in (23.37) gives
i 7 \s das —i2 N v P8 Arvr— [ LA+ (1=p?)AD)+i BN, vs ds _—iL [ At ds
E[efar ] = omifdomo [ igimr—iglh RN o I Nev oy ()
(23.40)

This proves part (a). For 1, = k(7 — 1) and constant A\; = A, this reads

G(\) = E[eMn ] = E[eier]

_ iAo tn(T—t0)] esuT(y)fuftﬁVs(y)dsdw(y) (23.41)

where
€ = io (23.42)
po= SN <1_2§K) (23.43)

and now v is the square root process given by dv, = k(v—v;)dt+[5/v; dy,. This expectation
has been computed in Corollary 21.3 where we found

/ KD T (t) .
G(A) _ e—i%)\[VtO +:‘€I7(T—t0)} €§+2f6éf(t0) V0+%59t e%{lOg[%}+l(@f (t)*Lpf(O))} (2344>

where the function f is given by

f(s) = VEcosh[VE(T — s)] — ysinh[\/E(T — s)]
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with
v = —F+i2 (23.45)

1—p2IN232 4 k2 B2 o
¢ = =P Pon | j\B b (23.46)

This proves the theorem. W

Now, having computed the generating function, we can compute the density p(to, 0; ¢, y)
according to (23.17). Then the price of some plain vanilla european option is given by

Vie = fh(xT) dW(to,T}(yl,yQ)
= Jahy) plte,0; T, y) dy
= Joh(y) fpe™G\) S dy (23.47)

If the payoff h(y) would have a finite Fourier transform h()), we could interchange the
integrals to obtain

Vo = Joh(VGO) 2 (23.48)
However, for a european call H(S7) = max{Sr — K,0} we have
h(l’) _ e—r(T—to)H(Stoeac—i-r(T—to)) — e—r(T—to) maX{Stoeac—i-r(T—to) ~ K, 0} (2349)

which apparently does not decay for x — oo, thus il()\) does not exist.

This problem can be circumvented in the following way [2]. By (23.16), the generating
function G/()) is the Fourier transform of the density p(y). If p(y) decays like e=¥" or at
least like

ply) ~e W™ as y 5 too (23.50)

for positive constants ¢ and ¢, then the generating function G(A) is not only defined on
the real axis, but on the whole complex plane since

Gi(A tia) = [ e =p(y) dy (23.51)
is finite if (23.50) holds. Thus we can write

Vie = [z ply

) [ep()] (V) 2
A G + i) £ (23.52)
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where we used the unitarity of the Fourier transform in the third line of (23.52). For the
payoff (23.49), with 7 =T — t,,

M) = e man{S,e - K0} = S, o)

— 4 .
= S (e""” - ek)Jr , k= log[%e_”] (23.53)
one obtains
[en()][(\) = / e Me=0T] (1) da
R |
= S / e_(“\’LO‘)x(e“c - ek) dx
k

_ Sto{7a+117i)\6—(i)\+oc—1)x’zo _ 7a17i/\eke—(i/\+oa)x’2°}

a>1 Sto{__a+11_i)\67(ik+a71)k 4 _al_i)\ef(i)drafl)k}

_ 1 —(iIA+a—1)k

= S (a—1rin(arin © (iAta-1) (23.54)
such that the option price is given by

_ —(a—1)k 1 —iXk N dA

where « has to be choosen bigger than 1. We summarize our results in the follwoing

Theorem 23.2: Let G(A) be the generating function for the Heston model given by
(23.27) and let

k = log[&em(T1] (23.56)
Then the price at time ¢t < T of the european call with payoff max{Sy — K, 0} is given by

‘/t = Stei(ail)k /R; m e‘”‘k G()\ -+ ZC() % (2357)

where « can be choosen to be any real number bigger than 1 such that G(\ + i) exists.



