week5b: Kapitel 3.1: Von der Normalverteilung abgeleitete Verteilungen: Die t-, F- und die Chi-Quadrat Verteilung, Teil2

In diesem week5b wird noch der Teil (c) des Theorems 3.1.3 vom letzten Mal beweisen, die Beweise für die Teile (a) und (b) stehen in dem week5a.

Theorem 3.1.3: Es seien

$$\phi_0$$
, ϕ_1 , ϕ_2 , \cdots , ϕ_n

unabhängige, standard-normalverteilte Zufallszahlen. Dann gilt

a)

$$\phi_1^2 + \phi_2^2 + \dots + \phi_n^2 \in \chi_n^2$$
, ist χ_n^2 verteilt

b)

$$\frac{\phi_0}{\sqrt{\frac{\phi_1^2 + \dots + \phi_n^2}{n}}} \in t_n, \quad \text{ist } t_n \text{ verteilt}$$

c)

$$\frac{\frac{\phi_1^2 + \dots + \phi_k^2}{k}}{\frac{\phi_{k+1}^2 + \dots + \phi_{k+\ell}^2}{\ell}} \in F_{k,\ell} , \quad \text{ist } F_{k,\ell} \text{ verteilt}$$

Das heisst genauer: Für eine beliebige Funktion $f: \mathbb{R} \to \mathbb{R}$ gilt:

a)

$$\int_{\mathbb{R}^n} f(\phi_1^2 + \dots + \phi_n^2) \prod_{j=1}^n e^{-\frac{\phi_j^2}{2}} \frac{d\phi_j}{\sqrt{2\pi}} = \int_0^\infty f(y) \, p_{\chi_n^2}(y) \, dy$$

b)

$$\int_{\mathbb{R}^{n+1}} f\left(\frac{\phi_0}{\sqrt{\frac{\phi_1^2 + \dots + \phi_n^2}{n}}}\right) \prod_{j=0}^n e^{-\frac{\phi_j^2}{2}} \frac{d\phi_j}{\sqrt{2\pi}} = \int_{-\infty}^{\infty} f(y) \ p_{t_n}(y) \ dy$$

c)

$$\int_{\mathbb{R}^{k+\ell}} f\left(\frac{\frac{\phi_1^2 + \dots + \phi_k^2}{k}}{\frac{\phi_{k+1}^2 + \dots + \phi_{k+\ell}^2}{\ell}}\right) \prod_{j=1}^{k+\ell} e^{-\frac{\phi_j^2}{2}} \frac{d\phi_j}{\sqrt{2\pi}} = \int_0^\infty f(y) \ p_{F_{k,\ell}}(y) \ dy$$

mit den Dichten

a)

$$p_{\chi_n^2}(y) = c_n \times y^{\frac{n}{2}-1} e^{-\frac{y}{2}}$$

mit der Konstanten

$$c_n = \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}$$

b)

$$p_{t_n}(y) = c_n \times \frac{1}{\left(1 + \frac{y^2}{n}\right)^{\frac{n+1}{2}}}$$

mit der Konstanten

$$c_n = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})}$$

 $\mathbf{c})$

$$p_{F_{k,\ell}}(y) = c_{k,\ell} \times \frac{y^{\frac{k}{2}-1}}{\left(1 + \frac{k}{\ell}y\right)^{\frac{k+\ell}{2}}}$$

mit der Konstanten

$$c_{k,\ell} = \left(\frac{k}{\ell}\right)^{\frac{k}{2}} \frac{\Gamma(\frac{k+\ell}{2})}{\Gamma(\frac{k}{2})\Gamma(\frac{\ell}{2})}$$

Dabei sind k, ℓ und n natürliche Zahlen grösser oder gleich 1.

Beweis: Teil (c): Wir benötigen wieder die Formel für die Integration von rotationssymmetrischen Funktionen im \mathbb{R}^n , das war die folgende Sache:

Es sei $f: \mathbb{R}^n \to \mathbb{R}$ rotationssymmetrisch, das heisst, wir können das f schreiben als

$$f(x) = \tilde{f}(r) = \tilde{f}(\|x\|)$$

mit einem $\,\tilde{f}:\mathbb{R}\to\mathbb{R}$. Dann gilt:

$$\int_{\mathbb{R}^n} f(x) d^n x = \omega_n \int_0^\infty \tilde{f}(r) r^{n-1} dr$$
 (1)

wobei

$$\omega_n := \int_{S_{n-1}} d\Omega(x')$$

die Oberfläche der n-dimensionalen Einheitskugel ist.

Wir brauchen jetzt die folgende leichte Verallgemeinerung von (1): Wir haben eine Funktion

$$f: \mathbb{R}^{n+m} \to \mathbb{R}$$

mit

$$f = f(x) = f(x_1, x_2), \quad x_1 \in \mathbb{R}^n \quad x_2 \in \mathbb{R}^m$$

und wir nehmen an, dass das f rotationssymmetrisch ist bezüglich des $x_1 \in \mathbb{R}^n$ und bezüglich des $x_2 \in \mathbb{R}^m$. Das heiss genauer, wir nehmen an, dass sich das f schreiben lässt als

$$f(x) = f(x_1, x_2) = \tilde{f}(r_1, r_2) = \tilde{f}(\|x_1\|, \|x_2\|)$$

mit einem $\tilde{f}: \mathbb{R}^2 \to \mathbb{R}$. Zweimaliges Anwenden von Gleichung (1) liefert dann die folgende Formel:

$$\int_{\mathbb{R}^{n+m}} f(x) d^{n+m} x = \int_{\mathbb{R}^{n+m}} f(x_1, x_2) d^n x_1 d^m x_2$$

$$= \omega_n \omega_m \int_0^\infty \int_0^\infty \tilde{f}(r_1, r_2) r_1^{n-1} r_2^{m-1} dr_1 dr_2 \tag{2}$$

Damit können wir jetzt den Teil (c) beweisen: Wir schreiben

$$\operatorname{Int}(f) := \int_{\mathbb{R}^{k+\ell}} f\left(\frac{\frac{\phi_1^2 + \dots + \phi_k^2}{k}}{\frac{\phi_{k+1}^2 + \dots + \phi_{k+\ell}^2}{\ell}}\right) \prod_{j=1}^{k+\ell} e^{-\frac{\phi_j^2}{2}} \frac{d\phi_j}{\sqrt{2\pi}} \\
= \frac{1}{(2\pi)^{\frac{k+\ell}{2}}} \int_{\mathbb{R}^{k+\ell}} f\left(\frac{\frac{\phi_1^2 + \dots + \phi_k^2}{k}}{\frac{\phi_{k+1}^2 + \dots + \phi_{k+\ell}^2}{\ell}}\right) e^{-\frac{1}{2}\sum_{j=1}^k \phi_j^2} e^{-\frac{1}{2}\sum_{j=k+1}^{k+\ell} \phi_j^2} d^k \phi d^\ell \phi \\
\stackrel{(2)}{=} \frac{\omega_k \omega_\ell}{(2\pi)^{\frac{k+\ell}{2}}} \int_0^\infty \int_0^\infty f\left(\frac{\frac{r_1^2}{k}}{\frac{r_2^2}{\ell}}\right) e^{-\frac{1}{2}r_1^2} e^{-\frac{1}{2}r_2^2} r_1^{k-1} r_2^{\ell-1} dr_1 dr_2 \\
= \alpha_{k,\ell} \int_0^\infty \int_0^\infty f\left(\frac{\ell}{k} \frac{r_1^2}{r_2^2}\right) e^{-\frac{1}{2}r_1^2} e^{-\frac{1}{2}r_2^2} r_1^{k-1} r_2^{\ell-1} dr_1 dr_2$$

mit der Abkürzung

$$\alpha_{k,\ell} := \frac{\omega_k \, \omega_\ell}{(2\pi)^{\frac{k+\ell}{2}}}$$

Wir substituieren das r_1 durch ein $y \in [0, \infty)$ mit

$$\begin{array}{rcl} r_1 & \equiv & r_2 \, y \\ dr_1 & = & r_2 \, dy \end{array}$$

Wir bekommen

$$\operatorname{Int}(f) = \alpha_{k,\ell} \int_0^\infty \int_0^\infty f\left(\frac{\ell}{k} \frac{r_1^2}{r_2^2}\right) e^{-\frac{1}{2}r_1^2} e^{-\frac{1}{2}r_2^2} r_1^{k-1} r_2^{\ell-1} dr_1 dr_2
= \alpha_{k,\ell} \int_0^\infty \int_0^\infty f\left(\frac{\ell}{k} y^2\right) e^{-\frac{1}{2}r_2^2 y^2} e^{-\frac{1}{2}r_2^2} r_2^{k-1} y^{k-1} r_2^{\ell-1} r_2 dy dr_2
= \alpha_{k,\ell} \int_0^\infty \int_0^\infty f\left(\frac{\ell}{k} y^2\right) e^{-\frac{1}{2}r_2^2 (1+y^2)} r_2^{k+\ell-1} y^{k-1} dy dr_2
= \alpha_{k,\ell} \int_0^\infty f\left(\frac{\ell}{k} y^2\right) \left\{ \int_0^\infty e^{-\frac{1}{2}r_2^2 (1+y^2)} r_2^{k+\ell-1} dr_2 \right\} y^{k-1} dy$$

Das Integral in den geschweiften Klammern berechnen wir für festes y mit der Substitution

$$\rho^2 = r_2^2 (1 + y^2) d\rho = \sqrt{1 + y^2} dr_2$$

und bekommen

$$\begin{split} \int_0^\infty e^{-\frac{1}{2}\,r_2^2\,(1+y^2)}\,\,r_2^{k+\ell-1}\,\,dr_2 &= \int_0^\infty e^{-\frac{1}{2}\,\rho^2}\,\,\rho^{k+\ell-1}\,\,(1+y^2)^{-\frac{k+\ell-1}{2}}\,\,\frac{d\rho}{\sqrt{1+y^2}} \\ &= (1+y^2)^{-\frac{k+\ell}{2}}\,\int_0^\infty e^{-\frac{1}{2}\,\rho^2}\,\,\rho^{k+\ell-1}\,\,d\rho \\ &= (1+y^2)^{-\frac{k+\ell}{2}}\,\int_0^\infty e^{-\frac{1}{2}\,\rho^2}\,\,\rho^{k+\ell-2}\,\,\rho\,d\rho \\ v^{=\rho^2/2} &\stackrel{\Leftrightarrow}{=} \,^{\rho=\sqrt{2}v} & (1+y^2)^{-\frac{k+\ell}{2}}\,\int_0^\infty e^{-v}\,\,(2v)^{\frac{k+\ell-2}{2}}\,\,dv \\ &= 2^{\frac{k+\ell-2}{2}}\,\,(1+y^2)^{-\frac{k+\ell}{2}}\,\int_0^\infty e^{-v}\,v^{\frac{k+\ell}{2}-1}\,\,dv \\ &= \Gamma\left(\frac{k+\ell}{2}\right)\,2^{\frac{k+\ell-2}{2}}\,\,(1+y^2)^{-\frac{k+\ell}{2}} \end{split}$$

Das können wir in die Formel oben für das Int(f) einsetzen und bekommen

$$\operatorname{Int}(f) = \alpha_{k,\ell} \int_0^\infty f\left(\frac{\ell}{k} y^2\right) \left\{ \int_0^\infty e^{-\frac{1}{2}r_2^2(1+y^2)} r_2^{k+\ell-1} dr_2 \right\} y^{k-1} dy$$

$$= \Gamma\left(\frac{k+\ell}{2}\right) 2^{\frac{k+\ell-2}{2}} \alpha_{k,\ell} \int_0^\infty f\left(\frac{\ell}{k} y^2\right) (1+y^2)^{-\frac{k+\ell}{2}} y^{k-1} dy$$

$$= \Gamma\left(\frac{k+\ell}{2}\right) 2^{\frac{k+\ell-2}{2}} \alpha_{k,\ell} \int_0^\infty f\left(\frac{\ell}{k} y^2\right) (1+y^2)^{-\frac{k+\ell}{2}} y^{k-2} y dy$$

Schliesslich substituieren wir noch

$$x = \frac{\ell}{k} y^2$$

$$dx = \frac{\ell}{k} 2y \, dy$$

und erhalten

$$Int(f) = \Gamma\left(\frac{k+\ell}{2}\right) 2^{\frac{k+\ell-2}{2}} \alpha_{k,\ell} \int_0^\infty f\left(\frac{\ell}{k}y^2\right) (1+y^2)^{-\frac{k+\ell}{2}} y^{k-2} y \, dy$$

$$= \Gamma\left(\frac{k+\ell}{2}\right) 2^{\frac{k+\ell-2}{2}} \alpha_{k,\ell} \int_0^\infty f(x) \left(1 + \frac{k}{\ell}x\right)^{-\frac{k+\ell}{2}} \left(\frac{k}{\ell}x\right)^{\frac{k-2}{2}} \frac{1}{2} \frac{k}{\ell} \, dx$$

$$= c_{k,\ell} \int_0^\infty f(x) \frac{x^{\frac{k}{2}-1}}{\left(1 + \frac{k}{\ell}x\right)^{\frac{k+\ell}{2}}} \, dx$$

mit der Konstanten

$$c_{k,\ell} = \Gamma\left(\frac{k+\ell}{2}\right) 2^{\frac{k+\ell-2}{2}} \alpha_{k,\ell} \left(\frac{k}{\ell}\right)^{\frac{k-2}{2}} \frac{1}{2} \frac{k}{\ell}$$
$$= \Gamma\left(\frac{k+\ell}{2}\right) 2^{\frac{k+\ell}{2}-2} \alpha_{k,\ell} \left(\frac{k}{\ell}\right)^{\frac{k}{2}}$$

Wegen

$$\alpha_{k,\ell} = \frac{\omega_k \, \omega_\ell}{(2\pi)^{\frac{k+\ell}{2}}}$$

und, mit Lemma 3.1.2 vom letzten Mal,

$$\omega_n = \frac{n \pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2} + 1)} = \frac{n \pi^{\frac{n}{2}}}{\frac{n}{2} \Gamma(\frac{n}{2})} = 2 \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}$$

ist

$$\alpha_{k,\ell} = \frac{4}{2^{\frac{k+\ell}{2}}} \frac{1}{\Gamma(\frac{k}{2}) \Gamma(\frac{\ell}{2})} = \frac{1}{2^{\frac{k+\ell}{2}-2}} \frac{1}{\Gamma(\frac{k}{2}) \Gamma(\frac{\ell}{2})}$$

und damit

$$c_{k,\ell} = \Gamma\left(\frac{k+\ell}{2}\right) 2^{\frac{k+\ell}{2}-2} \alpha_{k,\ell} \left(\frac{k}{\ell}\right)^{\frac{k}{2}}$$
$$= \frac{\Gamma\left(\frac{k+\ell}{2}\right)}{\Gamma\left(\frac{k}{2}\right)\Gamma\left(\frac{\ell}{2}\right)} \left(\frac{k}{\ell}\right)^{\frac{k}{2}}$$

Damit ist das Theorem 3.1.3 vollständig bewiesen. ■