6. Übungsblatt zur Vorlesung Finanzmathematik mit Excel und VBA

1.Aufgabe: Lesen Sie sich in Urtis_ExcelVBA unter

http://hsrm-mathematik.de/SS2023/semester4/ExcelVBA/book.pdf

das kurze Kapitel 7 durch, das sind die Seiten 61-65. Dort werden die grundlegenden Excel-Objekte Cells, Range, Worksheet und Workbook vorgestellt. Lesen Sie sich vorher noch den kleinen Absatz 'Collections' auf Seite 46 unten durch. Schreiben Sie dann ein VBA-Makro, was folgendes macht: In der Spalte A eines Tabellenblattes mit dem Namen 'Main' befinde sich eine beliebige Anzahl von Worksheet-Namen, etwa:

1
J

Das Makro Generate Worksheets soll dann also neue Tabellenblätter mit den angegebenen Namen anlegen. Dabei sollen sämtliche schon vorhandenen Talellenblätter, bis auf das 'Main'-sheet, vorher gelöscht werden. Das sheet mit Namen 'January' soll gleich neben dem Mainsheet gelistet sein, das sheet mit Namen 'Employees, M-Z' soll an letzter Stelle stehen, also ganz rechts. Achten Sie darauf, dass Ihr Makro für eine beliebige, also variable, Anzahl von Einträgen in der Spalte A funktionieren soll. Dabei könnte etwa der While...Wend Loop hilfreich sein. Loops werden in Kapitel 9 in Urtis_ExcelVBA besprochen, der While...Wend Loop wird auf Seite 94 diskutiert.

2.Aufgabe: Zu gegebenen Zahlen x_1, x_2, \cdots, x_n ist die Vandermonde Matrix definiert durch

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

$$(1)$$

Ihre Determinante lässt sich durch folgende Formel berechnen:

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i) \tag{2}$$

In Ihrem Excel-Sheet seien die Zahlen x_1, x_2, \dots, x_n durch den zusammenhängenden Zellbereich mit variabler Länge A11,A12,A13,... gegeben. Schreiben Sie ein VBA-Makro, was folgendes macht:

- a) Der Zellbereich mit variabler Länge A11,A12,A13,... wird ausgelesen und einem dynamischen array x(1),x(2),x(3),... zugewiesen. Die Länge n dieses arrays wird in die Zelle B2 geschrieben.
- b) Die Vandermonde Matrix (1) wird in einem array V() angelegt und danach in den quadratischen Zellbereich, der bei Zelle C11 startet (also dort seine linke obere Ecke hat), reingeschrieben.
- c) Das Inverse der Vandermonde Matrix wird in einem array Vinv() angelegt und danach in den quadratischen Zellbereich, der bei Zelle Cells(10 + 1, 3 + n + 1) startet (also dort seine linke obere Ecke hat), reingeschrieben.
- d) Die Determinante von V wird mit Hilfe von Excel-Matrix-Funktionen in VBA berechnet und in Zelle B3 geschrieben.
- e) Die Determinante von V wird mit Hilfe der analytischen Formel (2) in VBA berechnet und in Zelle B4 geschrieben.

Nachdem Sie das VBA-Makro ausgeführt haben, überprüfen Sie durch direkte Rechnung auf dem Excel-Sheet (also ohne vba-code), dass das Matrix-Produkt von V mit Vinv tatsächlich die Einheitsmatrix ist (bis auf Rechengenauigkeit). Überprüfen Sie auch noch einmal die Determinante durch direktes Anwenden der entsprechenden Excel-Funktion auf dem Sheet in Zelle B5. Ihr Excel-Sheet könnte also in etwa folgendermassen aussehen:

1	А	В	С	D	Е	F	G	Н	1	J	K	L	M	N
1	Output:													
2	n	5												
3	det V, vba, with Excel function	288				ba-calcul	ations							
4	det V, vba, analytic formula	288	288		V	Da-Calculations								
5	det V, Excel on sheet	288												
6														
7														
8														
9														
10	Input: x1,,xn	Vandermonde Matrix:			atrix:				Inverse	Matrix:				
11	1.0		1	1	1	1	1		5	-10	10	-5	1	
12	2.0		1	2	4	8	16		-6.417	17.833	-19.5	10.167	-2.083	
13	3.0		1	3	9	27	81		2.9583	-9.833	12.25	-6.833	1.4583	
14	4.0		1	4	16	64	256		-0.583	2.1667	-3	1.8333	-0.417	
15	5.0		1	5	25	125	625		0.0417	-0.167	0.25	-0.167	0.0417	
16														
17			Check: \											
18			1	-1E-16	0	5E-16								
19			1E-15	1	0	3E-15	1E-15							
20			2E-15	1E-14	1	0	4E-15							
21			5E-15	2E-14	0	1	5E-15							
22			7E-15	3E-14	0	1E-14	1							
23														
24														
25														