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Wir müssen uns an Brownsche Bewegung, Wiener-Maß und das Black-Scholes Modell erin-
nern. Das sind natürlich sehr wichtige Sachen, die wir dann auch gleich in der Finanzmathe-
matik II benutzen werden, wenn wir etwa Preise von exotischen oder pfadabhängigen Op-
tionen berechnen wollen wie Barrier-Optionen oder All-Time-High Optionen. In der FM1
hatten wir uns im 4. Kapitel damit befasst.

Brownian Motion, Wiener Measure and the Black-Scholes Model

Consider some discrete times tk in the intervall [0, T ],

tk = k T
N

= k∆t , k = 0, 1, ..., N (1)

where

N = NT = T
∆t

∈ N (2)

Let Stk = Sk∆t be the price of some stock at time tk and denote the returns by going from
one time step to the next by

rettk =
Stk − Stk−1

Stk−1

(3)

One may think of ∆t being one day and Stk being the closing prices at each day although
later we will consider the limit ∆t → 0. It is an empirical fact that the daily returns of many
assets are bell shaped, like a Gaussian distribution. It is also an empirical fact that the mean
scales with ∆t and the standard deviation scales with

√
∆t. Thus, one is led to

rettk = µ∆t+ σ
√
∆t ϕk (4)

where the ϕk are identically independent normally distributed random variables with mean
zero and variance one,

ϕk ∈ N (0, 1) i.i.d. (5)

Equation (4) defines the Black-Scholes model in discrete time. Asset prices are given by

St = S0

Nt∏
k=1

(
1 + µ∆t+ σ

√
∆t ϕk

)
(6)



with Nt = t/∆t. For µ = 0 one obtains, using the second order Taylor expansion log(1+x) =
x− x2/2 +O(x3) in the third line,

St = S0

Nt∏
k=1

(
1 + σ∆t1/2ϕk

)
= S0 e

∑Nt
k=1 log(1+σ∆t1/2ϕk)

= S0 e
∑Nt

k=1(σ∆t1/2ϕk− 1
2
σ2∆tϕ2

k+O(∆t3/2))

= S0 e
σ∆t1/2

∑Nt
k=1 ϕk−σ2

2
∆t

∑Nt
k=1 ϕ

2
k+O(Nt∆t3/2=∆t1/2) (7)

We consider the expectation

E

[
f
(
∆t1/2

∑Nt

k=1 ϕk

)]
=

∫
RNt

f
(
∆t1/2

∑Nt

k=1 ϕk

) Nt

Π
k=1

1√
2π

e−
ϕ2k
2 dϕk (8)

where f is some function. We make a substitution of variables (ϕk)1≤k≤Nt → (xk)1≤k≤Nt

defined as follows:

x1 =
√
∆t ϕ1

x2 =
√
∆t (ϕ1 + ϕ2)

x3 =
√
∆t (ϕ1 + ϕ2 + ϕ3)

...

xNt =
√
∆t (ϕ1 + ϕ2 + ...+ ϕNt)

⇔

ϕ1 = x1/
√
∆t

ϕ2 = (x2 − x1)/
√
∆t

ϕ3 = (x3 − x2)/
√
∆t

...

ϕNt = (xNt − xNt−1)/
√
∆t

(9)

and instead of labelling the x with k ∈ {1, 2, ..., Nt}, we label them with k∆t which has the
meaning of time. In particular, Nt∆t = t. So, rename xk → xk∆t. The Jacobian of the

transformation (9) is det ∂ϕ
∂x

= 1/
√
∆t

Nt
. The expectation (8) becomes

E

[
f
(
∆t1/2

∑Nt

k=1 ϕk

)]
=

∫
RNt

f(xt)
Nt

Π
k=1

p∆t(x(k−1)∆t, xk∆t) dxk∆t (10)

where we introduced the kernel

pτ (x, y) :=
1√
2πτ

e−
(x−y)2

2τ (11)

and used the definition

x0 := 0 (12)

The kernel (11) has the following basic property:

Lemma 4.1: Let pt(x, y) be given by (11). Then∫
R ps(x, y)pt(y, z) dy = ps+t(x, z) . (13)

Using this lemma, (10) simplifies to

E

[
f
(
∆t1/2

∑Nt

k=1 ϕk

)]
=

∫
R
f(xt)pNt∆t(x0, xt) dxt

=

∫
R
f(xt)

1√
2πt

e−
x2t
2t dxt (14)



since x0 = 0.

Definition 4.1: Let NT = T/∆t. The measure

dW ({xt}0<t≤T ) := lim
∆t→0

NT

Π
k=1

p∆t(x(k−1)∆t, xk∆t) dxk∆t (15)

is called the Wiener measure and the family of random variables {xt}0<t≤T is called a Brow-
nian motion. In terms of i.i.d. random variables ϕk ∈ N (0, 1),

xt = lim
∆t→0

√
∆t

t/∆t∑
k=1

ϕk (16)

and, in discrete time,

dW = dW
(
{ϕk}1≤k≤NT

)
=

NT

Π
k=1

e−
ϕ2k
2

dϕk√
2π

.

Integrals with respect to the Wiener measure are computed according to the following very
important

Theorem 4.1: Let F : Rm → R be some function and let 0 =: t0 < t1 < · · · < tm ≤ T . Then∫
F (xt1 , ..., xtm) dW ({xt}0<t≤T ) =

∫
Rm

F (xt1 , ..., xtm)
m

Π
ℓ=1

ptℓ−tℓ−1
(xtℓ−1

, xtℓ) dxtℓ (17)

Now we return to (7). We have

St = S0 e
σ
√
∆t

∑Nt
k=1 ϕk−σ2

2
∆t

∑Nt
k=1 ϕ

2
k+O(

√
∆t) (18)

The first term in the exponent converges to a Brownian motion xt = lim∆t→0

√
∆t

∑Nt

k=1 ϕk

and the last term vanishes, but what about the second term? There was the following

Theorem: Let

I∆t := ∆t

t/∆t∑
k=1

ϕ2
k

Then

a) For arbitrary ∆t,

E[I∆t] = t

b)

lim
∆t→0

V[I∆t] = 0



c) For any ε > 0,

lim
∆t→0

Prob
[
|I∆t − t| ≥ ε

]
= 0

Thus the quantity

∆t

t/∆t∑
k=1

ϕ2
k

∆t→0→ t

becomes actually deterministic in the limit ∆t → 0. Substituting this in the exponent of (18),
we arrive at

St = S0 e
σ
√
∆t

∑Nt
k=1 ϕk−σ2

2
∆t

∑Nt
k=1 ϕ

2
k

= S0 e
σxt−σ2

2
t (19)

If we reintroduce the µ which we put to 0 in the beginning, one obtains

St = S0 e
µt+σxt − σ2

2
t (20)

We summarize our results: The statistics of financial data suggests the model

Stk − Stk−1

Stk−1

=
∆Stk

Stk−1

= µ∆t+ σ
√
∆t ϕk (21)

In view of (9), in particular, the right hand side thereof, and recalling the relabelling xk →
xk∆t, we may write this as

∆Stk

Stk−1

= µ∆t+ σ (xtk − xtk−1
) = µ∆t+ σ∆xtk (22)

or, in the continuous time limit ∆t → 0,

dS

S
= µ dt+ σ dxt (23)

where {xt}0<t≤T is a Brownian motion. Equation (23) is called the Black-Scholes SDE
and the asset price model (20), which is a solution of the Black-Scholes SDE, is called the
Black-Scholes model. The solution (20) is usually also refered to as a ‘geometric Brownian
motion’.


