Mathematische Strukturen – Übungsblatt 7

HAGEN KNAF, SS 2016

- 1. Eine Teilmenge Y eines metrischen Raums (X,d) heißt beschränkt, falls es eine abgeschlossene Kugel $B[x_0,r]$ mit der Eigenschaft $Y \subseteq B[x_0,r]$ gibt. Beweisen oder widerlegen Sie die folgenden Aussagen über beschränkte Mengen:
 - (a) Sind Y_1, \ldots, Y_r beschränkte Teilmengen von X, so sind auch die Teilmengen $Y_1 \cap \ldots \cap Y_r$ und $Y_1 \cup \ldots \cup Y_r$ beschränkt.
 - (b) Das Innere Y° einer beschränkten Menge ist beschränkt.
 - (c) Jeder metrische Raum ist nicht beschränkt.
 - (d) Der Abschluss \overline{Y} einer beschränkten Menge ist beschränkt.
 - (e) Die Teilmenge Y ist genau dann beschränkt, wenn ihr Komplement $X \setminus Y$ nicht beschränkt ist.

Bei dieser Aufgabe kommt es darauf an, die Beweise bzw. Begründungen präzise und knapp zu Papier zu bringen.

2. Skizzieren Sie die folgende Teilmenge des \mathbb{R}^2 :

$$Y := \bigcup_{n \in \mathbb{N}} \{ (\frac{1}{n}, y) : y \in [0, 1) \}.$$

Bestimmen Sie das Innere Y° , den Rand Rd(Y) und den Abschluss \overline{Y} bezüglich der euklidischen Metrik d_2 auf \mathbb{R}^2 , und bezüglich der Hammingmetrik h auf \mathbb{R}^2 .

3. In einem metrischen Raum (X,d) wird der Abstand eines Punktes $x \in X$ von einer Teilmenge $A \subseteq X$ durch

$$D(x,A) := \inf(d(x,a) : a \in A)$$

definiert, wobei inf das Infimum einer Menge reeller Zahlen bezeichnet. Beweisen Sie die folgenden beiden Aussagen:

- (a) $x \in \overline{A} \Leftrightarrow D(x, A) = 0$.
- (b) $x \in A^{\circ} \Leftrightarrow D(x, X \setminus A) > 0$.