Mathematische Strukturen – Übungsblatt 6

HAGEN KNAF, SS 2016

- 1. Welche der folgenden Polynomfunktionen sind Primelemente im Ring $\operatorname{Pol}_{\mathbb{Z}}(\mathbb{R},\mathbb{R})$ der Polynomfunktionen mit ganzzahligen Koeffizienten:
 - 35x + 56,
 - 13.
 - $3x^2 7x + 2$,
 - $8x^3 1$.
- 2. Bestimmen Sie mit dem Verfahren von Kronecker alle rationalen Nullstellen $q \in \mathbb{Q}$ des Polynoms

$$p(x) := x^4 + \frac{183}{77}x^3 + \frac{236}{77}x^2 - \frac{255}{77}x - \frac{25}{77}$$

und führen Sie eine Polynomdivision durch die zu den Nullstellen gehörenden Faktoren x-q durch.

- 3. Zeigen Sie, dass im Ring $\mathbb{Z}[i]$ die Zahl 5 kein Primelement ist, wohl aber die Zahl 3. Verwenden Sie dabei wie in der Vorlesung bei der Bestimmung der Einheiten von $\mathbb{Z}[i]$ die komplexe Betragsfunktion.
- 4. Es seien

$$A := \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right) \text{ und } B := \left(\begin{array}{cc} 1 & 3 \\ 0 & 1 \end{array}\right).$$

Zeigen Sie, dass die Menge R aller Matrizen $C \in \mathbb{R}^{2\times 2}$, die sich als Summe $M_1+M_2+\ldots+M_r$ einer beliebigen Zahl $r\in\mathbb{N}$ von Matrizen der Form

$$zE\cdot A^k\cdot B^\ell,\;z\in\mathbb{Z},\;E$$
die Einheitsmatrix,

schreiben lassen, bezüglich Matrixaddition und -multiplikation einen kommutativen Ring bilden.

Gibt es in diesem Ring Nullteiler? Gibt es von 0 verschiedene nilpotente Elemente?