2.1.4 Abbildungen zwischen metrischen Räumen

Dieser Abschnitt enthält aktuell nur die in der Vorlesung behandelten Begriffe und Sätze, keine der in der Vorlesung diskutierten Details.

DEFINITION 124: Eine Abbildung $f: X \to Y$ zwischen metrischen Räumen (X, d_X) und (Y, d_Y) heißt Isometrie, falls sie die Eigenschaft

$$\forall x, x' \in X \quad d_Y(f(x), f(x')) = d_X(x, x')$$

be sit zt.

BEISPIEL 125: Man betrachte den metrischen Raum (\mathbb{R}^2, d_p) für ein $p \in \mathbb{N} \cup \infty$ und die Drehung $D_{\phi} : \mathbb{R}^2 \to \mathbb{R}^2$ mit Drehzentrum (0,0) und Drehwinkel ϕ . Wählt man die Basis (1,0), (0,1), so lässt sich D_{ϕ} durch die Matrix

$$D = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}.$$

beschreiben: $D_{\phi}(x) = Dx$. Es gilt:

$$d_p(D_\phi(0,0), D_\phi(1,0)) = (|\cos(\phi)|^p + |\sin(\phi)|^p)^{\frac{1}{p}}, \quad p \neq \infty,$$

$$d_{\infty}(D_{\phi}(0,0), D_{\phi}(1,0)) = \max(|\cos \phi|, |\sin \phi|).$$

Notwendige Bedingung dafür, dass D_{ϕ} bei festem p eine Isometrie ist, ist also

$$|\cos(\phi)|^p + |\sin(\phi)|^p = 1$$

beziehungsweise

$$\max(|\cos\phi|, |\sin\phi|) = 1.$$

Es gilt $|\cos(\phi)|^2 + |\sin(\phi)|^2 = 1$ und außer für $\phi \in \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$ gilt für p > 2 stets

$$|\cos(\phi)|^p < |\cos(\phi)|^2$$
 und $|\sin(\phi)|^p < |\sin(\phi)|^2$.

Folglich ist D_{ϕ} für $\phi \notin \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$ und p > 2 keine Isometrie. In den Fällen $\phi \in \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$ liegen dagegen Isometrien vor, wie man unter Verwendung der Matrix D direkt nachrechnet.

Dieselbe Situation liegt offensichtlich(!) im Fall $p = \infty$ vor.

Im Fall p=2 nutzt man die Tatsache, dass man die Metrik als Matrix-produkt ausdrücken kann:

$$d_2(x,y)^2 = (x-y)^t(x-y),$$

wobei der Exponent t für das Transponieren einer Matrix steht. Für die Matrix D gilt die Gleichung $D^tD = E$. Es ergibt sich also:

$$d_{2}(Dx, Dy)^{2} = (Dx - Dy)^{t}(Dx - Dy)$$

$$= (D(x - y))^{t}D(x - y)$$

$$= (x - y)^{t}D^{t}D(x - y)$$

$$= (x - y)^{t}(x - y).$$

Folglich ist D_{ϕ} für jeden Winkel ϕ eine Isometrie.

Es bleibt der Fall p=1: Hier ist für $\phi \not\in \{0,\frac{\pi}{2},\pi,\frac{3\pi}{2}\}$ stets

$$|\cos(\phi)| > |\cos(\phi)|^2$$
 und $|\sin(\phi)| > |\sin(\phi)|^2$.

Also ergibt sich dieselbe Situation wie im Fall p > 2.

BEISPIEL 126: Landkarten liefern Isometrien: Man betrachtet die Oberfäche

 \Diamond

 \Diamond

$$S^2 := \{ x \in \mathbb{R}^3 : d_2(0, x) = 1 \}$$

der Einheitskugel im \mathbb{R}^3 als mathematisches Modell für die Oberfäche der Erdkugel. Auf S^2 betrachtet man die Metrik d des »kürzesten Weges zwischen zwei Punkten $x, x' \in S^2 \ll$. Gilt $x \neq x'$ und ist $K \subset S^2$ der Kreis mit Mittelpunkt (0,0,0), der durch die Punkte x und x' verläuft, so ist d(x,x') die Länge des kürzeren der beiden Kreisbögen mit den Endpunkten x und x'. Man kann sich leicht davon überzeugen, dass (S^2,d) ein metrischer Raum ist.

Sei nun $T\subset S^2$ eine Teilmenge aufgefasst als metrischer Unterraum, T könnte etwa der Kontinent Australien sein. Dann ist eine Landkarte von T eine Isometrie $L:T\to\mathbb{R}^2$, wobei man \mathbb{R}^2 mit der Metrik

$$d'(y,y') := \mu \cdot d_2(y,y')$$

versieht. Hierbei ist $\mu > 0$ ein geeigneter Maßstabsfaktor.

DEFINITION 127: Für eine Abbildung $f: X \to Y$ zwischen metrischen Räumen (X, d_X) und (Y, d_Y) bezeichnet man die Größe

$$E(f) := \sup(\frac{d_Y(f(x), f(x'))}{d_X(x, x')} : x, x' \in X, \ x \neq x') \in \mathbb{R}^{\geq 0} \cup \infty$$

als Expansion von f, die Größe

$$C(f) := \sup(\frac{d_X(x, x')}{d_Y((f(x), f(x')))} : x, x' \in X, \ f(x) \neq f(x') \in \mathbb{R}^{\geq 0} \cup \infty$$

als Kontraktion von f und die Größe

$$Dist(f) := E(f)C(f)$$

als Distorsion von f.

Ist $E(f) \neq \infty$, so heißt f dehnungsbeschränkt.

BEISPIEL 128: Ist $f:[a,b] \to \mathbb{R}$ eine stetig differenzierbare Funktion, so ist f dehnungsbeschränkt: Nach dem Mittelwertsatz der Differentialrechnung gibt es zu je zwei Zahlen $x, x' \in [a,b]$ eine Zahl $\xi \in (x,x')$ mit der Eigenschaft

$$f(x') - f(x) = f'(\xi)(x' - x).$$

Die stetige Funktion f' besitzt andererseits in [a,b] ein Maximum. Es gilt also

$$E(f) = \max(|f'(x)| : x \in [a, b]).$$

 \Diamond

BEISPIEL 129: Für die stetige(!) Funktion $f:(0,1)\to\mathbb{R},\ f(t)=\frac{1}{t}$ gilt offenbar

$$E(f) = \infty$$
.

 \Diamond

FESTSTELLUNG 130: Stets gilt $Dist(f) \ge 1$ und es ist Dist(f) = 1 falls f die Eigenschaft

$$\forall x, x' \in X \quad d_Y(f(x), f(x')) = Cd_X(x, x')$$

 $f\ddot{u}r\ ein\ C\geq 0\ besitzt.$

Dehnungsbeschränkte Abbildungen verhalten sich gegenüber konvergenten Folgen »verträglich«: Ist $f: X \to Y$ dehnungsbeschränkt und (x_k) eine

konvergente Folge in X mit Grenzwert x, so gibt es zu jedem $\epsilon>0$ ein $n\in\mathbb{N}$ mit der Eigenschaft

$$\{x_{n+1}, x_{n+2}, \ldots\} \subseteq B(x, \frac{\epsilon}{E(f)}).$$

Hieraus ergibt sich die Inklusion

$$f(B(x, \frac{\epsilon}{E(f)})) \subseteq B(f(x), \epsilon),$$

das heisst es gilt

$$\lim_{k \to \infty} f(x_k) = f(x).$$

Dies motiviert:

DEFINITION 131: Es seien (X, d_X) und (Y, d_Y) metrische Räume. Die Abbildung $f: X \to Y$ heißt stetig im Punkt $x_0 \in X$, falls für jede gegen x_0 konvergierende Folge (x_k) in X die Bildfolge $(f(x_k))$ konvergiert und die Gleichung

$$\lim_{k \to \infty} f(x_k) = f(x_0)$$

gilt.

Die Abbildung f heißt stetig, falls sie in jedem Punkt $x_0 \in X$ stetig ist.

Wie oben bereits bewiesen gilt:

Satz 132: Jede dehnungsbeschränkte Abbildung ist stetig.

SATZ 133: Es seien (X, d_X) und (Y, d_Y) metrische Räume. Die Abbildung $f: X \to Y$ ist im Punkt $x_0 \in X$ stetig genau dann, wenn

$$\forall \epsilon > 0 \; \exists \delta > 0 \; d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \epsilon.$$

BEWEIS: \Rightarrow : Man führt einen Widerspruchsbeweis, nimmt also an, dass es zu einem gewissen $\epsilon > 0$ kein geeignetes $\delta > 0$ gibt. Es sei dann (δ_k) eine Nullfolge positiver reeller Zahlen. Nach Annahme gibt es zu jedem k ein Element $x_k \in X$ mit der Eigenschaft $d_X(x_k, x) < \delta_k$ aber $d_Y(f(x_k), f(x_0)) \ge \epsilon$. Die Folge (x_k) konvergiert nach Konstruktion gegen x_0 , aber $(f(x_k))$ konvergiert nicht gegen $f(x_0)$, im Widerspruch zur Voraussetzung.

 \Leftarrow : Es sei (x_k) eine gegen x_0 konvergierende Folge in X und $\epsilon > 0$. Nach Voraussetzung gibt es ein δ mit der Eigenschaft

$$d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \epsilon.$$

und ein n mit der Eigenschaft $d_X(x_k, x_0) < \delta$ für alle k > n. Folglich gilt auch $d_Y(f(x_k), f(x_0)) < \epsilon$ für alle k > n, das heisst die Folge $(f(x_k))$ konvergiert gegen $f(x_0)$.