The following slides are taken from the introduction to the course

# Linear Programming and Convex Analysis <br> by Marco Cuturi 

## Flow of packets in Networks

We follow with an example in networks:

- We use the internet here, but this could be any network (factory floor, transportation, etc).
- Transport data packets from a source to a destination.
- For simplicity: two sources, two destinations.
- Each link in the network has a fixed capacity (bandwidth), shared by all the packets in the network.


## Networks: Routing

- When a link is saturated (congestion), packets are simply dropped.
- Packets are dropped at random from those coming through the link.
- Objective: choose a routing algorithm to maximize the total bandwidth of the network.

This randomization is not a simplification. TCP/IP, the protocol behind the internet, works according to similar principles.. . .

## Networks: Routing



## Networks: Routing

A model for the network routing problem: let $N=\{1,2, \ldots, 13\}$ be the set of network nodes and $L=\{(1,3), \ldots,(11,13)\}$ the set of links.

## Variables:

- $x_{i j}$ the flow of packets with origin 1 and destination 1 , going through the link between nodes $i$ and $j$.
- $y_{i j}$ the flow of packets with origin 2 and destination 2, going through the link between nodes $i$ and $j$.


## Parameters:

- $u_{i j}$ the maximum capacity of the link between nodes $i$ and $j$.


## Routing problem: Modeling

Write this as an optimization problem.

## Consistency constraints:

- Flow coming out of a node must be less than incoming flow:

$$
\sum_{j:(i, j) \in L} x_{i j} \leq \sum_{j:(j, i) \in L} x_{i j}, \quad \text { for all nodes } i
$$

and

$$
\sum_{j:(i, j) \in L} y_{i j} \leq \sum_{j:(j, i) \in L} y_{i j}, \quad \text { for all nodes } i
$$

- Flow has to be positive:

$$
x_{i j}, y_{i j} \geq 0, \quad \text { for all }(i, j) \in L
$$

## Routing problem: Modeling

## Capacity constraints:

- Total flow through a link must be less than capacity:

$$
x_{i j}+y_{i j} \leq u_{i j}, \quad \text { for all }(i, j) \in L
$$

- No packets originate from wrong source:

$$
x_{2,4}, x_{2,5}, y_{1,3}, y_{1,4}=0
$$

## Objective:

- Maximize total throughput at destinations:

$$
\text { maximize } x_{9,13}+x_{10,13}+x_{11,13}+y_{9,12}+y_{10,12}
$$

## Routing problem: Modelling

The final program is written:

$$
\begin{array}{ll}
\text { maximize } & x_{9,13}+x_{10,13}+x_{11,13}+y_{9,12}+y_{10,12} \\
\text { subject to } & \sum_{j:(i, j) \in L} x_{i j} \leq \sum_{j:(j, i) \in L} x_{i j} \\
& \sum_{j:(i, j) \in L} y_{i j} \leq \sum_{j:(j, i) \in L} y_{i j} \\
& x_{i j}+y_{i j} \leq u_{i j} \\
& x_{2,4}, x_{2,5}, y_{1,3}, y_{1,4}=0 \\
& x_{i j}, y_{i j} \geq 0, \quad \text { for all }(i, j) \in L
\end{array}
$$

Constraints and objective are linear: this is a linear program.

